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Abstract Traffic congestion is a substantial time cost for many urban commuters.
This paper studies the response of subjects in an experimental setting in which
subjects choose between a short direct route that becomes increasingly congested as
more people travel on it and a more indirect route that does not become congested.
More specifically, I investigate how subjects respond to the use of a toll that theory
predicts will minimize travel time costs. The experimental results reported in this
paper show that this toll comes very close to achieving efficient use of the travel
network.

Keywords Congestion . Pigou-Knight-Downs paradox . Experiment . User
equilibrium . System optimal . Toll

In real traffic environments, coordination problems occur in any congested area on a
daily basis. Thousands of drivers try to determine the “best” route to travel on, based
on the information they have about traffic speed on their set of route choices on
previous days and/or current traffic reports. In such a situation, thousands of drivers
essentially make simultaneous travel decisions without the ability to coordinate,
which leads to equilibrium being an unlikely occurrence on many congested routes.
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Furthermore, cooperation that could lead to more efficient outcomes is not seen
much (if at all) on congested routes.

This situation is similar to coordination games, as discussed in Ochs (1995).
Cooper et al. (1990) describe coordination games as “a class of symmetric,
simultaneous move, complete information games” (p. 218). In these games, multiple
Nash equilibria exist. However, there may also exist outcomes that are better for all
participants but are not Nash equilibria.

One specific type of coordination game involves a congested transportation
network, which could have inelastic or elastic trip demand (e.g. de Palma 1992). In
this type of game, each person receives a benefit if the trip is made, but typically
incurs two types of costs. The first cost is due to the time required to travel a
particular distance under congestion-free conditions. This cost is dependent on the
route chosen. The second type involves costs due to congestion. These costs are
dependent on the route chosen and the number of other people deciding to travel the
same route.

In one type of transportation network, drivers must travel on one of two routes,
one congested and one uncongested. The congested route is the shorter of the two in
distance, but this entices at least some of the drivers to this route. This leads to the
Pigou-Knight-Downs paradox. As long as at least one driver is on the uncongested
route, all subjects have the same travel time, equal to the time on the uncongested
route.1 This is also known as a user equilibrium by Wardrop’s (1952) first principle.
However, if the drivers coordinated their efforts, or a central planner could enforce
the Vickrey-Clarke-Groves mechanism,2 they could decide to have fewer drivers
than the equilibrium number on the congested route. This would result in a faster
travel time on the congested route. The system optimal point, which comes from
Wardrop’s second principle, is the point that minimizes the total costs of driving. For
example, in a world of drivers with homogeneous values of time, an optimal
outcome could have a different group traveling the congested route each day so that
each driver could travel the congested route some of the time, resulting in an
outcome that Pareto-dominates any Nash equilibrium. Although all drivers are better
off if they all follow the agreement, this outcome is not a Nash equilibrium if they
are not bound to follow it. More specifically, it is not a Nash equilibrium because
any single driver could deviate and travel the congested route on a day that he is
assigned to the uncongested route, leading to a better travel time for that driver. This
paper uses a different mechanism than the one described above, with a toll used to
discourage travel on the congested route.

1 Another set of Nash equilibria exists. Let the set of equilibria with equal travel times have X drivers on
the congested route. Due to the discrete nature of driving, another set of Nash equilibria has X−1 drivers
on the congested route. Although the travel time is lower on the congested route in this case, these are also
Nash equilibria because if someone on the uncongested route switches to the congested route, the times
then become equal, leading to no change in the travel time of the person who switches. This set of
equilibria is ignored for simplicity in the analysis.
2 See Vickrey (1961), Clarke (1971), and Groves (1973) for more on the Vickrey-Clarke-Groves
mechanism. In a route choice context, the mechanism is described in Sandholm (2002).
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1 Congestion experiments

In recent years, experiments have been used to explore human behavior on various
traffic networks. These experiments pay subjects based on their performance in the
experiment, with better performance resulting in higher payouts. The experiments
listed below use modifications of the Pigou-Knight-Downs paradox. Before
discussing the findings of these experiments, it is important to emphasize that only
one of these experiments uses tolls as a mechanism for improving average travel
time. A brief summary of the congestion experiments described below, along with a
few others, is found in Table 1. Note that all of these experiments have subject
profiles that are the same for each person, and that total demand is typically inelastic
for traveling through the route network described.

Selten et al. (2007) modify the two-route network described by the Pigou-Knight-
Downs paradox by allowing both routes to be congestible. In this experiment, 18
subjects must travel between two points on either a “main” road or a “side” road,
where the side road requires more travel time than the main road if the number of
subjects traveling on both routes is the same. Subjects then receive a payout in each
round as a function of travel time, with higher travel time resulting in a lower
payout. These choices are repeated over 200 rounds, with theory predicting a user
equilibrium of 12 subjects on the main route. On average, subject route choices
come very close to the theoretical predictions. However, since the population in this
experiment is homogeneous and no tolls are charged, any subject’s route choice can
be part of an equilibrium as long as 12 subjects travel the main route, since theory

Table 1 A summary of select congestion experiments

Author(s) Year Brief description

Selten et al. 2007 Two congestible routes, with one route congesting more quickly than the
other; no tolls on either route; payout linearly related to total travel time

Chmura and Pitz 2004a and
2004b

Two routes in a minority game structure; in this version of the minority
game, an odd number of people must travel on one of two routes in
each round; the winners of each round are the people on the least
traveled route; the winners receive a positive payment and everyone
else receives nothing.

Schneider and
Weimann

2004 (Experiment 1) One route; only time incurred is due to congestion; small
cost per minute for early arrival; large cost per minute for late arrival; no
tolls

(Experiment 2) Similar to Experiment 1, except each experimental
subject represents 10 vehicles instead of one

Gabuthy et al. 2006 Two routes; toll imposed on one of the routes (with a higher toll leading
to less efficient use of route network in equilibrium); small cost per
minute for early arrival; large cost per minute for late arrival

Rapoport et al. 2004 Each individual has the choice of whether or not to enter a first in, first
out queue; no cost to enter the queue itself; a single service is performed
once a person is at the front of the queue; fixed opening and closing
times; for each person that enters the queue, a positive payout is
received if the service is able to be made before closing time; costs are
incurred for each minute in the queue
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only predicts the number of people on each route. With thousands of equilibria
possible, any subject could be on either route in equilibrium, leading to substantial
fluctuations of the number of travelers on each route from round to round, even in
rounds after equilibrium. Although such fluctuations reject the predictions of pure-
strategy equilibrium, the mean number of travelers on each route comes close to this
equilibrium.

Chmura and Pitz (2004a, b) modify the payoffs by using a minority game
structure.3 Although the minority game framework is useful in many economic
settings, it may not be the best way to model the payoffs in a transportation network
because commuters typically do not “win” or “lose,” but rather incur one of many
possible commuting costs.

Two results from the Selten et al. (2007) and Chmura and Pitz (2004a, b)
experiments are worth highlighting. First, a person’s payout in one round is
negatively correlated to the likelihood that the same person will switch routes in the
following round. This implies that many subjects think that the “other” route will be
the better choice after a relatively bad payout. In other words, many people believe
that a relatively bad payout follows another relatively bad payout if they remain on
the same route from one round to the next. Second, subjects who switch routes
frequently over the course of the experiment tend to have worse overall payouts than
those who switch less frequently. These results shed some light on how subjects
react when faced with a coordination problem, and how their reactions affect overall
payoffs.

2 A two-route model with only one route that congests

Suppose a group of people need to travel from point A to point B, and that each
person has the option to travel on an uncongested but indirect highway, or a more
direct but narrow bridge that gets congested (See Fig. 1).4 In other words, highway
travel time is independent of the number of travelers, while travel time on the bridge
is an increasing function of bridge traffic. Assume that the per-minute travel time
cost is independent of route choice. This rules out the possibility that the more scenic
route is preferred, all else being equal. Given this framework, it is easy to show that
under the standard assumption of homogeneous travel time costs (using uniform
point deductions in an experimental setting) equilibrium occurs when the total cost
to commuters (including tolls, if any) is identical on both routes.5

3 In this version of the minority game, an odd number of people must travel on one of two routes in each
round. The winners of each round are the people on the least traveled route. The winners receive a positive
payment and everyone else receives nothing.
4 This route network structure is as in Arnott and Small (1994), and some of the theory is similar to
Walters (1961).
5 Note that as long as some drivers travel on the highway, adding capacity to the bridge will not change
the equilibrium, since the added capacity will create demand on the bridge to the point where the new
equilibrium once again has equal costs on both routes.
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2.1 The no-toll case equilibrium

In the absence of tolls, the only costs of traveling from point A to point B are time costs. In
this example, I assume that each person’s per-minute travel time costs are homogeneous.
For simplicity, I assume that N commuters know the travel time on the bridge (tB) and
the highway (tH) with certainty. (See Table 2 for a description of all variables and
constants used in this paper.) In particular, they know that travel time on the highway is
constant and that travel time on the bridge is an increasing linear function of the number
of travelers on the bridge (Q) with intercept α and slope β, such that:

tB ¼ a þ bQ: ð1Þ

For each additional traveler on the bridge, time increases by β minutes. Based on
the above information, drivers can determine the marginal private benefit (MPB) of
traveling the bridge relative to the highway. If Q drivers travel the bridge, the MPB
in minutes of the Qth person traveling the bridge is the difference in travel time
between the two routes, or tH � a þ bQð Þ. To convert the travel time into monetary
terms, the time saved needs to be multiplied by the individual’s value of time:

MPBQ ¼ tH � a þ bQð Þð Þ � V ; ð2Þ
where V represents the value of time for the Qth person to travel the bridge. Based on
the following assumptions, MPB is a decreasing linear function,6 as shown in Fig. 2:
(1) V is constant for each traveler; (2) each traveler’s value of V is the same in a
homogeneous framework; (3) the marginal opportunity cost of travel time is assumed
to be independent of trip length; and (4) time savings decrease linearly with Q.

I also assume that subjects maximize utility by minimizing travel time.
Equilibrium therefore occurs when the travel time on both routes is the same, or at
the point where MPB is zero:7

tB ¼ tH ) bQ ¼ tH � a
b

: ð3Þ

6 The same cost/benefit analysis in Fig. 2 can be done either in minutes or dollars with the same result,
since per minute travel time costs are the same for each person in this case.
7 In a no-toll scenario, the same equilibrium occurs when drivers have different values of time. The idea of
homogeneity of value of time is relevant for the analysis of the toll case, which is described below.

highway 

  bridge 

Fig. 1 A visual of the scenario
that subjects see for their travel
situation
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Finally, although theory is able to predict the number of people on each route in
equilibrium, it is unable to predict the route that any particular person travels. Since
any person can travel on either route in equilibrium, any combination of bQ people on

the bridge constitutes an equilibrium. Thus, there exist
NbQ

 !
equilibrium

combinations.

2.2 Tolls and efficiency in a homogeneous time cost setting

The problem in the no-toll case is that people fail to internalize the additional costs
they impose on others when they use the congestible bridge. In a no-toll equilibrium,
everyone is just as well off in an environment in which both routes exist than in an
environment in which only the highway exists.8 If only the highway exists, adding
the bridge typically adds no social benefit because commuters simply congest the
bridge to the point where there is no time gain to traveling the bridge over the

8 The fact that everyone would be as well off in a no-toll equilibrium with or without the bridge is specific
to the Pigou-Knight-Downs paradox. Other paradoxes are presented in Arnott and Small (1994) in which
travel times are increased when road capacity increases. One such case is the Braess paradox. See Braess
et al. (2005) and Murchland (1970) for more information.

Table 2 Variable/constant table

Variable/constant Use of variable/constant

N Total number of drivers

Q Number of drivers on the bridge

tB Time to travel on the bridge, defined as a linear function tB ¼ a þ bQ

tH Time to travel on the highway, defined to be constant

β Marginal increase of travel time on the bridge for each additional driver

α Constant in bridge travel time functionbQ User equilibrium, which is also a Nash equilibrium; travel time on the bridge
and highway are equal without any restrictions on travel

V Value of time, which is assumed constant

TT Total travel time of all drivers

Q* System optimum, which occurs when TT is minimized when V is constant

MECQ Marginal external cost of the Qth driver

C Cost (perceived by drivers) of toll on the bridge

A, B Starting and ending points of the travel network, respectively

pi Probability of person i traveling on the bridge

p_ Probability of anybody except person i traveling on the bridge

Vp Variance given probability p

QB, QH Expected number of travelers on the bridge and highway, respectively

q Probability of switching routes

R Expected number of route changes

p Symmetric mixed strategy equilibrium probability, which is 10/17
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highway. Given the negative externalities present on the congested route, a toll on
the bridge can effectively optimize its use by reducing the travel time of some of the
drivers on this route. At the same time, no toll is needed on the highway because
there are no externalities, since congestion is never present by definition.

The optimal toll minimizes drivers’ total travel time costs.9 In a framework with
homogeneous values of time, this minimization problem is equivalent to minimizing
the total travel time of all drivers, since the monetary equivalent of time costs is the
same for all drivers. So if Q commuters use the bridge and (N–Q) commuters use the
highway, then the total travel time for all drivers (TT) is given by:

TT ¼ Q� tB þ N � Qð ÞtH : ð4Þ
Minimizing total travel time then gives the optimal distribution of travelers:

Q* ¼ tH � að Þ=2b: ð5Þ
Another way of determining Q* is by finding the point where MPB equals the

marginal external cost (MEC) on the bridge. MEC is positive because an additional
driver on the bridge imposes an additional β minutes to each driver already on the
bridge. MEC is then:

MECQ ¼
XQ�1

j¼1

b � Vj

� �
: ð6Þ

In this case, since both β and Vj are constants in this framework, MEC is an
increasing linear function, as seen in Fig. 2.

The optimal toll is then defined as the toll that makes travelers indifferent between
traveling on the bridge and the highway when Q* drivers travel on the bridge. To
find this toll, I must find the monetary equivalent of the difference between highway
travel time and optimal bridge travel time. This perceived cost (C) is a linear relation
of time, and so I only need to multiply this time difference by the per-minute value
of time:

C ¼ tH � a þ bQ*ð Þ½ � � V : ð7Þ
Finally, similar to the previous subsection, there exist

N

Q*

 !
possible combinations

that lead to equilibrium when the optimal toll is imposed.

2.3 Travel time uncertainty and mixed-strategy Nash equilibria

There is one important item to note regarding equilibria. In previous subsections,
each person knows the number of other travelers who take the bridge with certainty.
In reality, decisions of others are not known until after each repetition is over. This
may lead to subjects favoring mixed strategies over pure ones. Mixed strategies,
including those that are Nash equilibria, are analyzed more in the analysis of the
experiment, in Section 4.3.1.

9 Recall that I assume that tolls are simply transfers to the government, which can be rebated in some
lump-sum way to the drivers.
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3 Experimental design

The two-route travel network from the Pigou-Knight-Downs paradox is used in this
experiment both with and without tolls. In each experimental session, 18 subjects
must travel from point A to point B using either a congested bridge or an
uncongested highway in each round (see Fig. 1).10 Subjects know that the highway
guarantees a travel time of tH=20 min. In contrast, subjects also know that while the
bridge is uncongested for the first traveler, and hence has a travel time of 10 min,
each additional driver on the bridge adds 1 min to every bridge user’s travel time. In
other words, if there are Q subjects traveling the bridge in any round, the travel time
for each person is tB ¼ 9þ Qð Þminutes, or α=9 and β=1 using the notation from
the previous section. Each subject may stay on the same route or change from round
to round, but no one is permitted to change their choice within a round once their
decision has been made. At the end of each round, subjects receive information as to
how many people travel on the bridge for that round.11

Each of the 10 experimental sessions consists of three segments with 20 rounds
(or repetitions) each, and each subject begins with 8,500 points and a guaranteed $5
show-up fee. Points are deducted for travel time in the first two segments, but not for
the third segment. This paper examines the first two segments of the experiment.12

10 The experiment was programmed and conducted with the software z-Tree (Fischbacher 2007).
11 Selten et al. (2007) compare experimental sessions with and without giving information to subjects
about travel time on the route not chosen in each round. They find that when this information is given,
subjects travel each route with about the same frequency, but switch routes less often.
12 In the third segment, subjects are told that no point deductions are made for travel time, but they must
wait a fraction of their travel time in the computer lab in which the experiment is conducted after the
experiment is over. Subjects can reduce their waiting time by traveling the bridge and paying a six-point
toll. This part of the experiment is conducted in order to determine subjects’ willingness to give up money
in order to reduce waiting time.

Number of drivers
on bridge (Q) 

MEC or MPB, in dollars 

Marginal 
external cost 

Marginal 
private benefit 

*Q Q̂

Fig. 2 Marginal external cost
(MEC) and marginal private
benefit (MPB) in a homogeneous
value of time case
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After the experiment is finished, the remaining points are converted at a rate of 50
points per $1. Each session averages earnings of about $12 to $15 per subject for the
experiment, which lasts about 1 h.

3.1 Segment 1: the no-toll case with homogeneous time costs

Subjects are told that each minute of travel time leads to a 10-point deduction, but no
tolls are charged. If subjects are profit maximizers, they attempt to choose the route
that minimizes their point deduction in every round. This, of course, means that their
route choice depends on their expectations about what the other 17 subjects will do
in any particular round. Within this framework, theory predicts a user equilibrium
with 20 min of travel time on both routes. This occurs when Q=11.

3.2 Segment 2: the toll case with homogeneous time costs

Subjects continue to pay a 10-point deduction per minute of travel time, but now
there is a 60-point per round toll charge. At a cost of 10 points per minute, a 60-point
toll translates to the equivalent of 6 min of travel time cost. This means that a 14-
minute commute on the bridge is now equivalent (in total point deductions per
round) to a 20-minute commute on the highway. So the new toll equilibrium results
in a drastic decline in the number of subjects on the bridge, with five people using
the bridge, compared to 11 in Segment 1.13 This equilibrium also minimizes the total
travel time of all subjects. Since travel costs are homogeneous the Segment 2
equilibrium is also efficient, or system optimal.

4 Experimental results

4.1 Data summary and comparison to pure-strategy equilibria

Table 3 reports the average number of bridge travelers per round for each of the
experimental groups, with column 2 reporting the average number of bridge travelers
in the no-toll case (Segment 1) and column 3 reporting the results for the toll case
(Segment 2). Consistent with the theory presented in Section 2, tolls persuade some
subjects to change their route choice from the congested bridge to the uncongested
highway. Specifically, about five fewer subjects travel the bridge on average in
Segment 2 than in Segment 1. This means that an optimal toll is a successful tool to
re-route traffic into a more efficient equilibrium.

For Segment 1, recall that the theory in Section 2 predicts 11 subjects on the
bridge and seven on the highway in pure-strategy equilibrium. All of the session
averages are within 1.1 of this prediction, with none of these averages statistically
differing from 11. Round-by-round results can be seen Fig. 3, while Fig. 4 shows the

13 From the theory section, the optimal toll is based on the equivalent of 5.5 min, or 55 points. This would
result in a prediction of 5.5 travelers on the bridge. Since fractional numbers of travelers are not allowed,
two optimum results can occur, with either five or six travelers on the bridge.
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nearly normal distribution of the number of travelers on the bridge. As seen in
Fig. 3, the number of people traveling the bridge often changes after a round is in
equilibrium. Although no single subject can be made better off by being the only
person to switch routes after equilibrium is reached, some people tend to switch after
a round in equilibrium. Session 3 is a good example. Despite the fact that this group
has reached equilibrium in Round 3, in the fourth round, two subjects switch from
the bridge to the highway, while six switch from the highway to the bridge, resulting
in 15 subjects on the bridge. With nearly half of the subjects switching routes after
equilibrium is reached, predictions made by a user equilibrium typically do not apply
in such a situation. Subjects may also lack full rationality, although testing this is
difficult since subjects may be doing what they think is optimal given the actions of
others.14

In Segment 2, theory predicts five subjects on the bridge and 13 on the highway
in equilibrium. Unlike Segment 1, some of the group averages significantly differ
from this equilibrium. Specifically, Sessions 1, 6, and 8, along with the collective
average of all of the groups, significantly average more than five subjects on the
bridge per round. This is likely due to a transitioning effect going on from the end of
the first segment to the beginning of the second, where subjects may not initially
understand the new environment. For example, the first four rounds of Segment 2 for
Session 5 result in 13, 8, 7, and 7 bridge travelers, respectively. In the fifth round,
the number of bridge travelers is finally below equilibrium for the first time, and
equilibrium is finally reached for the first time in the sixth round. As in Segment 1,
many of the rounds are out of equilibrium after equilibrium is reached for the first
time.

14 For more on limited rationality, see Simon (1955) and Mahmassani and Chang (1987). The latter paper
addresses bounded rationality in a transportation system framework.

Table 3 Average number of bridge travelers per round in Segments 1 and 2, by session

Segment 1 Segment 2

Session 1 10.70 (2.15) 5.85a (1.79)

Session 2 11.10 (2.05) 5.60 (2.09)

Session 3 9.90 (2.45) 5.55 (2.28)

Session 4 10.90 (2.83) 5.15 (1.31)

Session 5 11.05 (1.93) 5.70 (2.43)

Session 6 11.30 (2.77) 5.80a (1.51)

Session 7 10.85 (1.98) 5.70 (1.66)

Session 8 10.85 (1.69) 6.00a (2.03)

Session 9b 10.80 (1.51) 5.60 (1.96)

Session 10 11.35 (2.50) 5.50 (1.93)

All sessions 10.88 (2.21) 5.65a (1.89)

Standard deviations are in parentheses
a Denotes significantly different from 11 (5) at the 5% level in Segment 1 (2)
b Only 17 subjects participated in this session
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Fig. 3 Round-by-round results of number of travelers on the bridge for each session, Segments 1 and 2
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Fig. 3 (continued)
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4.2 Efficiency

Given the imposed constant value of time, minimizing total travel time is equivalent to an
efficient outcome. As such, social welfare in the route network used in this experiment can
be measured by comparing the average travel times between the no-toll and toll schemes.
Recall from Section 2.2 that tolls are simply transfers and assumed not to be a cost.15 So
the lower the average travel time is, the higher the social welfare is for a group with
homogeneous travel costs. Thus, the lower the overall travel time, the more efficient the
outcome of the experiment. Given the imposed homogeneity, comparing average travel
times tells something about relative efficiency. Based on the model described in
Section 2.2, for a given group of drivers, five or six drivers on the bridge will yield the
fewest total number of minutes traveled. This results in the minimum possible total
travel time of 330 min.16 With the 10 sessions of the experiment, the best attainable
average time per round is 18.32 min.17 In Segment 1, the average is 20.20 min, or
10.2% higher than the efficient outcome. In fact, only 2% of the rounds achieved the
minimum total travel time possible, which occurs when five or six subjects travel the
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Fig. 3 (continued)

15 Note, however, that drivers perceive tolls as costs.
16 This assumes 18 subjects. In the one group with 17 subjects the minimum total travel time possible is
310 min.
17 This average factors in that one group has 17 subjects.
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bridge. In Segment 2, the average travel time is 18.51 min, or 1.0% more than the
efficient outcome. Here, 48.5% of the rounds resulted in efficient outcomes.

4.3 Analysis

4.3.1 Comparing mixed-strategy equilibria with the experimental results

In most of Section 2, the discussion focuses on situations in which subjects know
with certainty the actions of the other players before making her or his decision. In
reality, this does not occur, implying that some or all subjects may decide route
choice based on mixed strategies. More evidence supporting the possibility of
subjects playing mixed strategies comes from Fig. 3. In this figure, once a pure-
strategy Nash equilibrium is reached at any point in the first two segments, one or
more subsequent rounds in the same segment are typically not in equilibrium.

Appendix derives a symmetric mixed-strategy Nash equilibrium in Segment 1,
with each person playing bridge with probability 10/17. Also from Appendix, the
probability of playing bridge in mixed-strategy equilibrium is 4/17 for Segment 2.
Note that in mixed-strategy equilibrium for Segment 1, the expected number of
bridge travelers is 18 × (10/17), or 10.59, which is less than in the pure-strategy
Nash equilibrium prediction. In Segment 2, the expectation is 18 × (4/17), or 4.24
travelers on the bridge, also less than the pure-strategy Nash equilibrium. In
Appendix, I show that the total number of travelers on the bridge in Segment 1 is not
significantly different from the mixed-strategy prediction at the 5% level.18

However, in Segment 2, the total number of travelers on the bridge is significantly
different from the mixed-strategy prediction. Another measure that can be compared
between experimental results and the mixed-strategy prediction is the number of
road changes within a segment. As Appendix shows, there are far fewer route
changes in Segments 1 and 2 than the mixed strategy predicts.19 So although there
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of bridge travelers in Segment 1,
by round

19 The similar calculation for the Selten et al. (2007) experiment is also rejected in their experiment.

18 In Selten et al. (2007), a similar calculation in the experiment rejects the null hypothesis that the number
of travelers on the bridge each round is consistent with the mixed-strategy Nash equilibrium.
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may be some players acting close to the mixed-strategy equilibrium, there appears to
be some route “stickiness,” in which once a player is on a particular route, there is an
increased tendency to stay on the route in the next round.

4.3.2 Variation in number of bridge travelers by group

Theory predicts the same equilibrium for each group in Segments 1 and 2,
specifically 11 and 5 subjects on the bridge, respectively. Note that equilibrium is
predicted to be the same in each session. Group-to-group heterogeneity in Segments
1 and 2 can be tested using an F-test. More specifically, the null hypothesis is that
the mean number of bridge travelers is the same across sessions. In Segment 1, the
average number of bridge travelers per round by group ranges from 9.90–11.35. (See
data summary in Table 3 for a more thorough summary.) By finding an F-statistic (in
an ANOVA framework) for the difference in means, these averages are not
statistically different from each other, with a p-value of 0.743. This is consistent with
the theoretical prediction of the same equilibrium in each group. Segment 2’s
averages by group range from 5.15–6.00. Again, the averages are not significantly
different from each other, with a p-value of 0.978. This is also consistent with the
theoretical prediction of the same equilibrium in each group.

5 Conclusions

While theory certainly supports the use of tolls as a mechanism for reducing
congestion, there is only limited empirical and experimental evidence examining
the functioning of such plans. Consistent with standard theory that assumes
homogeneity in time costs across all commuters, on average, the Segment 1
results show that inefficient levels of congestion occur when no tolls are
imposed. When tolls are imposed in the same homogeneous time cost framework
in Segment 2, the results match the theoretical prediction that fewer subjects
choose the congested route.

Although the results reported in this paper, and previous experimental congestion
papers, answer some important questions about congestion behavior, further research
is necessary to address some nagging problems in congestion experiments. More
specifically, the existing experimental results do not match very well with some
aspects of congestion theory. In particular, in many experiments, a round in
disequilibrium follows a round in equilibrium. The most obvious generalization is to
allow for the fact that in reality different people have different values of time, which
may affect who decides to travel toll and non-toll routes. The question is, does this
type of heterogeneity lead to a stable, or at least more stable, equilibrium?

Appendix

Let pi equal the probability of person i traveling the bridge and let p_ equal the
probability that any one of the other people travels the bridge. If each subject is risk
neutral, then maximizing expected utility is equivalent to maximizing expected
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payout, and also equivalent to minimizing total expected travel time in Segment 1.
Let nB denote the number of travelers on the bridge in any round.20

In Segment 1, if person i travels the highway, the travel time is guaranteed at
20 min, while the expected number of travelers on the bridge is

E nB person i travels the bridgejð Þ ¼ 1þ 17p : ðA1Þ
To find out when person i is indifferent between routes, p_ must be found such

that expected travel times are equal:

9þ 1þ 17pð Þ ¼ 20; ðA2Þ
which yields

p ¼ 10

17
¼ 0:588: ðA3Þ

Thus, when the expected travel times are equal, person i is indifferent over any
strategy. In such a case, each person playing with probability 10/17 (which will
henceforth be denoted p) gives a symmetric mixed-strategy Nash equilibrium.

In the mixed-strategy equilibrium described above, the expected number of
travelers on each route is 18 * (10/17)=10.588. This results in fewer expected
travelers on the bridge than in the pure-strategy equilibrium. The variance of this
distribution is

Vp ¼ p 1� pð Þ ¼ 0:242; ðA4Þ
which results in a standard deviation of 2.088 total travelers in each period.

If QH and QB denote the total number of expected travelers over 20 rounds on the
highway and bridge, respectively, then

QB ¼ 20� 18p ¼ 211:765 andQH ¼ 20� 18 1� pð Þ ¼ 148:235: ðA5Þ
The variance of the totals in Eq. (A5) is

V ¼ 87:197; ðA6Þ
which results in the variance of the mean of nine groups21 of

V

9
¼ 9:689: ðA7Þ

The standard error is then

s ¼ 3:113: ðA8Þ
In the experiment, a per-group average of 217.778 bridge trips are taken in the

nine groups with 18 subjects, while the expected number of trips in the mixed-
strategy equilibrium is 211.765. Since this difference is about 1.93σ from the mean,

20 This Appendix uses the same techniques as Selten et al. (2007).
21 Group 9 is not examined here, since it only has 17 subjects.
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a null hypothesis of subjects playing the mixed-strategy equilibrium cannot be
rejected at the 5% level.

Similarly, in Segment 2, pi=p_=4/17, Vp=0.180, QB=84.706, QH=275.294, V=
64.775, (V/9)=7.197, and σ=2.683. In the experiment, a per-group average of 113
bridge trips are taken in the nine groups with 18 subjects, while the expected number
of trips in the mixed-strategy equilibrium is 84.706. This difference is more than 10σ
from the mean, and so a null hypothesis of subjects playing the mixed-strategy
equilibrium can be rejected at a very high level of significance.22

Another aspect worth examining is whether or not the predictions of mixed-
strategy equilibrium are consistent with the number of route changes in the
experiment. For each subject playing the mixed-strategy equilibrium in Segment 1,
the probability q that a subject will switch routes from one round to the next is

q ¼ 2p 1� pð Þ ¼ 0:484: ðA9Þ
In Segment 1, there are 19 opportunities to switch routes, leading to 342

opportunities to switch routes for all players within the same group of Segment 1.
The expected number of route changes (R) is thus

R ¼ 342q ¼ 165:7: ðA10Þ
Since the binomial distribution is used, the variance is

Vq ¼ q 1� qð Þ ¼ 0:2498; ðA11Þ
which implies that the variance of R is

VR ¼ 342Vq ¼ 85:42: ðA12Þ
Since there are nine groups of participants with 18 subjects, it is useful to

calculate the variance for the mean of nine observations:

VR

9
¼ 9:491: ðA13Þ

The standard error of this variance is thus

sR ¼ 3:081: ðA14Þ
The observed number of route changes per group is 113.78. This is more

than 16σR below the predicted number of route changes, leading to the conclusion
that the number of route changes is inconsistent with the mixed-strategy Nash
equilibrium.

In Segment 2, the same calculations lead to q=0.360, R=123.1, Vq=0.2304, VR=
78.78, (VR/9)=8.754, and σR=2.959. The number of route changes per group is
80.56, which is more than 14σR below the predicted number of route changes.
Again, the number of route changes is not consistent with the mixed-strategy Nash
equilibrium.

22 Since there is likely a transition period from Segment 1 to Segment 2, it is worth noting that the same
rejection of the null hypothesis can be made when only the final 10 rounds of Segment 2 are looked at.
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