ORIGINAL PAPER

Inositol 1,4,5-Trisphosphate Receptor Subtype-Specific Regulation of Calcium Oscillations

Songbai Zhang · Nicolas Fritz · Cristian Ibarra · Per Uhlén

Accepted: 18 March 2011/Published online: 11 April 2011 © The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract Oscillatory fluctuations in the cytosolic concentration of free calcium ions (Ca^{2+}) are considered a ubiquitous mechanism for controlling multiple cellular processes. Inositol 1,4,5-trisphosphate (IP₃) receptors (IP₃R) are intracellular Ca²⁺ release channels that mediate Ca²⁺ release from endoplasmic reticulum (ER) Ca²⁺ stores. The three IP₃R subtypes described so far exhibit differential structural, biophysical, and biochemical properties. Subtype specific regulation of IP₃R by the endogenous modulators IP₃, Ca²⁺, protein kinases and associated proteins have been thoroughly examined. In this article we will review the contribution of each IP₃R subtype in shaping cytosolic Ca²⁺ oscillations.

Keywords Inositol 1,4,5-trisphosphate receptor · Inositol 1,4,5-trisphosphate receptor-associated protein · Calcium signaling · Calcium oscillations

Abbreviations

Ca^{2+}	Calcium
CCK-OP	Cholecystokinin octapeptide
IP ₃	Inositol 1,4,5-trisphosphate
IP ₃ R	IP ₃ receptor
IP_3R1 , 2 and 3	IP_3R subtype 1, 2, and 3
ER	Endoplasmic reticulum
PLC	Phospholipase C
IICR	IP ₃ -induced Ca ²⁺ release
CaM	Calmodulin

Special Issue: In Honor of Dr. Mikoshiba.

cAMP-dependent protein kinase
Protein kinase C
Ca ²⁺ /CaM-dependent protein kinase II
COOH-terminal tail
Ca ²⁺ -induced Ca ²⁺ release
PKA-anchoring adaptor protein
leucine/isoleucine zipper
Presenilin
Presenilin-1 and Presenilin-2
Familial Alzheimer's disease
G-protein-coupled receptor kinase-
interacting protein
Neuronal Ca ²⁺ sensor 1

Introduction

Intracellular calcium (Ca^{2+}) dynamics play pivotal roles in numerous physiological processes, including fertilization, cell proliferation and differentiation, apoptosis, embryonic development, secretion, muscle contraction, immunity, brain function, chemical senses, and light transduction [1, 2]. Two main Ca^{2+} mobilizing systems co-exist in the cell: Ca^{2+} influx from the extracellular medium and Ca^{2+} release from internal stores. The inositol 1,4,5-trisphosphate (IP₃) receptor (IP₃R) is a tetrameric intracellular IP₃gated Ca²⁺ release channel that is predominantly located on the membrane of the endoplasmic reticulum (ER). It is present in almost all cell types and plays a crucial role in converting extracellular stimuli into intracellular signals [1, 3]. Upon extracellular stimulation by various agonists, such as hormones, growth factors, neurotransmitters, neurotrophins, odorants, and light, Phospholipase-C (PLC) is activated and phosphatidylinositol 4,5-bisphosphate is

S. Zhang · N. Fritz · C. Ibarra · P. Uhlén (⊠) Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden e-mail: per.uhlen@ki.se

hydrolysated, generating IP₃. IP₃ binds to the IP₃R, leading to the IP₃-induced Ca^{2+} release (IICR) from the ER. Thirty years ago, Mikoshiba et al. found a mutant mouse with deficient Purkinje cells that had very low expression of P_{400} , a glycoprotein that was later uncovered as one of the IP₃R subtypes (IP₃R1) [4, 5]. In 1989, Mikoshiba and co-workers were the first group to reveal that IP₃R is a transmembrane protein and determine the primary sequence of IP₃R1, at the time the second largest molecule successfully cloned [6]. So far, three IP₃R subtypes (IP₃R1, IP₃R2, IP₃R3) as well as alternative splicing variants of IP₃R1 and IP₃R2 have been identified and cloned in mammals [1]. The expression patterns of the three subtypes are distinct but overlapping, and most cells express more than one subtype [7-9]. The three IP₃R subtypes share 65-85%homology and can be separated into five functional domains [1, 10-12]. The NH₂-terminal region contains a ligand coupling/suppressor domain, which suppresses IP₃binding activity and determines different IP₃-binding affinity for each subtype [13], and an IP₃-binding core domain that is the minimum region required for specific IP_3 binding [14]. The ligand coupling/suppressor domain and the IP₃-binding core are often referred to as the IP₃-binding domain. Besides the IP₃-binding domain is the internal coupling domain, which confers regulation by various intracellular modulators (Ca²⁺, calmodulin (CaM), ATP) and phosphorylation by several protein kinases (cAMPdependent protein kinase (PKA), protein kinase C (PKC), cGMP-dependent protein kinase, Ca²⁺/CaM-dependent protein kinase II (CamKII), and tyrosine kinase) [3]. The COOH-terminal region has a six membrane-spanning channel domain and a short cytoplasmic COOH-terminal tail (CTT), called the "gatekeeper domain", which is critical for IP₃R channel opening [10]. The Ca^{2+} release activity of the IP₃R channel is therefore regulated by many intracellular modulators (IP₃, Ca²⁺, ATP, CaM), protein kinases, and IP₃R-binding proteins [1, 3], leading to various spatiotemporal cytosolic Ca²⁺ patterns and diverse cellular responses [1, 2]. The relatively low homology in the three IP₃R subtypes may underlie subtype-specific properties, that will affect Ca²⁺ signaling and in particular the spatiotemporal features of Ca^{2+} responses.

A prolonged elevation in the cytosolic Ca^{2+} concentration is considered toxic to the cell and in some cases may result in cell death. However, the cell can protect itself by temporally limiting the cytosolic Ca^{2+} elevation, often resulting in one of the most delicate patterns of Ca^{2+} signals, that being the oscillatory change in the cytosolic Ca^{2+} concentration, or Ca^{2+} oscillations [15–17]. Extensive studies over the past 30 years have revealed that cytosolic Ca^{2+} oscillations are ubiquitous and diverse cellular signals that control multiple processes in the cell. With cytosolic Ca^{2+} oscillations, cells not only avoid deleterious

effects of sustained cytosolic Ca^{2+} concentrations, but also send out information encoded in the frequency and/or the amplitude of the oscillations to modulate cellular activity [15]. This review focuses on the separate role of the IP₃R subtypes in generating Ca^{2+} oscillations and on the molecular mechanisms responsible for the specific role of each subtype in regulating this ubiquitous signal.

A General Mechanism Generating Ca^{2+} Oscillations Based on Regulation of IP_3R

Many studies have indicated that IP3R is involved in generating cvtosolic Ca^{2+} oscillations [15–17]. For instance, the FGF-induced Ca^{2+} oscillations in mice fibroblasts are inhibited by an IP₃R antagonist [18]. Ca^{2+} oscillations are thought to arise due to periodic release of Ca^{2+} from intracellular Ca^{2+} stores via IP₃R [19]. Early studies using reconstituted IP₃R in lipid bilayers have indicated that Ca^{2+} can both activate and inhibit IP₃R [20, 21]. The IP₃R is activated at low cytosolic Ca^{2+} concentrations, elevating the cytosolic Ca^{2+} concentration through a process often referred to as Ca²⁺-induced Ca²⁺ release (CICR). High cytosolic Ca²⁺ concentration can instead inhibit IP₃R, leading to a decrease in intracellular Ca^{2+} release. In vivo, the binding of IP₃ together with fluctuating cytosolic Ca²⁺ concentrations can trigger successive cycles of IP₃R activation and inhibition, which result in cytosolic Ca²⁺ oscillations. Accordingly, Ca²⁺ oscillations can be produced by application of IP₃ to permeabilized hepatocytes [22] and blowfly salivary gland cells [23] and by injecting IP₃ analogs into fertilized ascidians eggs [24]. Moreover, DT40 cells expressing a mutant IP₃R with reduced sensitivity to Ca^{2+} do not exhibit Ca²⁺ oscillations upon application of cross-linked B-cell receptors [25]. Finally, thimerosal, which sensitizes IP₃R for lower IP₃ levels, potentiates IP₃-induced Ca²⁺ oscillations in sea urchin eggs [26]. These data, together with mathematical models [27, 28], have confirmed that the cross-talk between Ca^{2+} and IP_3 in regulating the IP_3R is critical for generating Ca²⁺ oscillations. However, in Madin-Darby canine kidney epithelial cells [29] and Chinese hamster ovary cells [30-32], each peak of the oscillatory Ca^{2+} signal is preceded by elevated IP₃, as measured by means of a pleckstrin homology domain of PLC- δ_1 tagged with a fluorescent protein indicator. Therefore, it has been proposed that dynamic IP₃ production may produce cytosolic Ca²⁺ oscillations. Nevertheless, other studies using different cells and methods reported opposite conclusions [33–35]. For example, expression of an IP₃ binding domain of IP₃R1 together with two different fluorescent proteins in HeLa cells does not reveal fluctuations in the intracellular IP₃ concentration during Ca^{2+} oscillations [33].

Subtype Specificity of Ca²⁺ Oscillations

Numerous studies using cells endogenously or exogenously expressing single or combined IP₃R subtypes indicate that the subtle distinctions in the properties of each subtype contribute differently to the regulation of cytosolic Ca^{2+} oscillations [3].

Mivakawa et al. [36] first described IP₃R subtype-specific Ca²⁺ oscillations using genetically engineered B cells that express either single or combined IP₃R subtypes. They found that Ca²⁺-signaling patterns depend on the expression levels of IP₃R subtypes, probably because of their specific response to endogenous modulators, such as IP₃, Ca^{2+} and ATP. IP₃R2 is the most sensitive to IP₃ and is required for robust, long lasting, and regular Ca2+ oscillations that occur upon activation of B-cell receptors. IP_3R1 mediates less regular Ca²⁺ oscillations. IP_3R3 is the least sensitive to IP_3 as well as Ca^{2+} and generates only monophasic Ca^{2+} transients. Morel et al. [37] examined the roles of IP₃R1 and IP₃R2 in Ca²⁺ oscillations using vascular myocytes and found that acetylcholine induces Ca²⁺ oscillations in cells expressing both subtypes, and fails to do so in cells expressing only IP₃R1. The oscillations are inhibited by intracellular infusion of heparin, anti-IP₃R2 antibody or antisense oligonucleotides targeting IP₃R2, suggesting that the IP₃R2 subtype is required for acetylcholine-induced Ca²⁺ oscillations in vascular myocytes. Using HeLa cells, which express comparable amounts of IP₃R1 and IP₃R3, Mikoshiba and co-workers showed that knockdown of IP₃R1 terminates Ca²⁺ oscillations, whereas knockdown of IP₃R3 leads to more robust and long lasting Ca²⁺ oscillations [38]. These IP₃R3 knockdown effects were similar in COS-7 cells that predominantly express IP₃R3, suggesting that IP₃R3 functions as an anti Ca^{2+} oscillatory unit. Almirza et al. reported similar results using normal kidney fibroblasts, which expresses IP₃R1 and IP₃R3 [39]. When IP₃R1 or IP₃R3 are knocked-down, the frequency of prostaglandin $F_{2\alpha}$ -induced Ca²⁺ oscillations is significantly decreased or increased, respectively. In NIH-3T3 cells, which predominantly express IP₃R2 and IP₃R3, ATP activates Ca^{2+} oscillations [40]. Ca^{2+} oscillations were induced by application of carbachol in AR4-2J cells, which predominantly expresses IP₃R2, and in HEK293A cells in which both IP₃R1 and IP₃R3 were knocked-down [41]. The contribution of IP_3R2 to Ca^{2+} oscillations is further confirmed by the fact that IP_3 -dependent Ca^{2+} oscillations were abolished in osteoclasts of IP₃R2 knockout mice [42]. In rat insulinoma RINm5F cells, which almost exclusively express IP₃R3, application of carbachol or EGF, two agonists that activate PLC through different receptors, or application of IP₃ to permeabilized cells, elicit transient Ca²⁺ release and does not induce Ca²⁺ oscillations [43]. Several reports, including mathematical

modeling studies, have indicated that the specific intracellular localization of the IP₃R is crucial for the generation of Ca^{2+} oscillations [44–46]. For instance, Kim et al. [45] found that HL-1 cells derived from mouse cardiac myocytes express both IP₃R1 and IP₃R2. IP₃R1 is expressed diffusely in the perinucleus and IP₃R2 is expressed in the cytosol with a punctuated distribution. Both application of ATP to intact cells and direct introduction of IP₃ into permeabilized cells evoke IP3-dependent transient intracellular Ca^{2+} release accompanied by Ca^{2+} oscillations. The magnitude of Ca^{2+} oscillations is significantly larger in the cytosol than in the nucleus, while the monophasic Ca²⁺ transient is more pronounced in the nucleus. These results suggest that subtype specificity as well as specific localization of the IP₃R contribute to distinct local Ca²⁺ signaling. Altogether, these data suggest that IP₃R1 and IP₃R2, in particular IP₃R2, crucially contribute in generating Ca²⁺ oscillations, whereas IP₃R3 is an anti-oscillatory unit. Nevertheless, in A7r5 cells derived from rat embryonic thoracic aorta muscle cells, which express IP₃R1 and IP₃R3, knockdown of IP₃R1 only reduces the frequency of arginine vasopressin-induced Ca²⁺ oscillations without affecting the number of cells exhibiting Ca^{2+} oscillations [47]. Moreover, both acetylcholine and cholecystokinin octapeptide activate IP₃R2- and IP₃R3-dependent Ca^{2+} oscillations in pancreatic acinar cells. However, unlike IP₃R2-dependent oscillations, the amplitude of IP₃R3-dependent oscillations decreases throughout the stimulation [48]. The IP₃R subtype-specific Ca^{2+} oscillations are summarized in Table 1.

The IP₃R exists as a homo- or hetero-tetrameric complex to form a functional Ca^{2+} release channel [49–51]. The influence of homo- or hetero-tetrameric channels on intracellular Ca^{2+} oscillations has been investigated. Studies on genetically engineered DT40 cells that express a single IP₃R subtype and therefore a homo-tetrameric receptor demonstrate Ca^{2+} oscillations [36]. Cells with all subtypes, which should at least partially express heterotetrameric IP₃Rs, also exhibit Ca^{2+} oscillations [37–43, 45, 47]. Taken together these data suggest that both homo- and hetero-tetrameric IP₃Rs can generate intracellular Ca^{2+} oscillations.

In conclusion, it appears that IP₃R subtype-specific expression crucially shapes cytosolic Ca²⁺ signaling patterns. IP₃R2 is the main pro-oscillatory subtype, whereas IP₃R1 can induce a transient Ca²⁺ signal or an oscillatory Ca²⁺ signal. IP₃R3 mainly shows an anti-oscillatory behavior, but could underlie short-term oscillations depending on the cell type and stimulus. Further characterization of homo- and hetero-tetrameric IP₃R-dependent Ca²⁺ oscillations are needed for fully understanding the intricacies of each IP₃R subunit in shaping Ca²⁺ oscillations.

Cell type	IP ₃ R1	IP ₃ R2	IP ₃ R3	Activator	Ca ²⁺ oscillations	Reference
DT40	+	_	_	B cell receptor	↑	[36]
DT40	_	+	_	B cell receptor	Ţ	[36]
DT40	_	_	+	B cell receptor	\downarrow	[36]
Vascular myocytes	+	+	_	Acetylcholine	↑	[37]
Vascular myocytes	+	_	_	Acetylcholine	\downarrow	[37]
HeLa	++	+	++ (kd)	ATP	Ţ	[38]
HeLa	++ (kd)	+	++	ATP	\downarrow	[38]
COS-7	+	+	++ (kd)	ATP	Ţ	[38]
NRK	+	_	+ (kd)	Prostaglandin F 2a	Ţ	[39]
NRK	+ (kd)	_	+	Prostaglandin F $_{2\alpha}$	\downarrow	[39]
NIH-3T3	+	++	++	ATP	Ţ	[40]
AR4-2 J	+	++	+	IGF-1	↑	[41]
HEK293A	+ (kd)	+	+ (kd)	Carbachol	Ţ	[41]
Osteoclasts	+	+	+	RANKL	↑	[42]
Osteoclasts	+	_	+	RANKL	\downarrow	[42]
Osteoclasts	+	_	_	RANKL	\downarrow	[42]
RINm5F	±	±	++	Carbachol, EGF, IP ₃	\downarrow	[43]
HL-1	+	+	_	ATP	Ţ	[45]
A7r5	+ (kd)	_	+	Arginine vasopressin	\downarrow	[47]
Pancreatic acinar cells	+	+	+	Acetylcholine, CCK-OP	Ţ	[48]
Pancreatic acinar cells	+	_	+	Acetylcholine, CCK-OP	Ţ	[48]

Table 1 The occurrence of Ca^{2+} oscillations and the expression of the different IP₃R subtypes

+ high expression, - low expression, and kd, knock down or low expression

Subtype Specificity of IP₃-Binding Affinity to IP₃R

As summarized earlier, cytosolic Ca²⁺ oscillations are IP_3R subtype-dependent. IP_3 and Ca^{2+} are the two key modulators of IP₃R and the distinct subtype properties determine the diverse regulatory effects. Each subtype has different IP₃ binding affinity. Sudhof et al. were first to report, using an equilibrium IP3 binding assay, that the order of IP₃-binding affinity was $IP_3R2 > IP_3R1 > IP_3R3$ [9, 52]. Applying the same method, Wojcikiewicz et al. [53] and Nerou et al. [54] later claimed a different order, $IP_3R1 > IP_3R2 > IP_3R3$. Mikoshiba and co-workers performed a detailed molecular analysis of the IP₃ binding affinity of all three subtypes [11, 13]. They found that the IP₃-binding affinities of purified IP₃-binding domains are close to the intrinsic IP₃-binding affinity of all three IP₃R subtypes, and describe the following order $IP_3R2 >$ $IP_3R_1 > IP_3R_3$. They also showed that IP_3 -binding core fragments, which do not contain the ligand coupling/suppressor domain, display an almost identical IP₃-binding affinity for all three subtypes. By a serious and compelling molecular analysis, they concluded that the functional diversity in ligand sensitivity among IP₃R subtypes arises from structural differences in the ligand coupling/suppressor domain, which attenuate the IP₃-binding affinity of the IP₃-binding core domain through an intramolecular mechanism. Tu et al. recorded single-channel activities of the recombinant IP₃R1, IP₃R2, and IP₃R3 reconstituted into planar lipid bilayers [55]. This report had a similar conclusion with IP₃R2 showing the highest apparent IP₃-affinity, followed by IP₃R1, and then by IP₃R3.

Differences amongst IP₃R subtypes in terms of IP₃-binding affinities do not reflect intrinsic differences in the properties of the channels to regulate Ca^{2+} oscillations. Instead differences in the state of phosphorylation and/or association with interacting proteins exist. Nevertheless, IP₃R1 and IP₃R2 are most sensitive to IP₃, a property that could contribute in their function as Ca^{2+} oscillatory unit. The exact contribution of subtype specific IP₃-binding affinities on Ca^{2+} oscillations remains to be further investigated.

Subtype Specificity of Ca²⁺ Inhibition and Induction

As mentioned earlier, repeated activation and inhibition of IICR by fluctuating cytosolic Ca^{2+} levels have been proposed as central molecular mechanisms for IP₃R-dependent Ca^{2+} oscillations [56]. Several stimulatory and inhibitory Ca^{2+} binding sites on the IP₃R have been identified and characterized. For instance, two sites are localized in the

IP₃ binding core and another site is located close to the transmembrane domain [57], exemplifying the complex synergy between IP₃ and Ca²⁺ in the regulation of the IICR [12]. Ca²⁺ regulation of IP₃R activity may result in changed IP₃ binding affinity, alteration of channel open probability, or indirect influence on IP₃R associated proteins, such as the CaM. Interestingly, this can occur specifically on one IP₃R subtype, making Ca²⁺ regulation of IICR one of the major mechanisms to produce versatile signals, as confirmed by mathematical modeling studies [58].

The complex regulation of the IP₃R subtypes' activity by Ca^{2+} has been recently reviewed in detail [3] and we will therefore mainly focus on how Ca²⁺ itself modulates Ca²⁺ oscillations. Everyone in the field agrees that all three subtypes are activated by Ca^{2+} . Inhibition of the IP₃R by Ca^{2+} , however, is more controversial. In single channel studies, each subtype is inhibited by high Ca²⁺ concentrations, even though the threshold and speed of inhibition differs [3]. Moreover, Ca^{2+} inhibition of IICR sometimes depends on the addition of an extra factor, for example ATP for IP₃R3 [55]. Therefore, all three subtypes can potentially support Ca^{2+} oscillations based on the model described previously, where concerted actions of IP_3 and Ca^{2+} stimulates IP_3R . Accordingly, IP₃R1-, IP₃R2-, and IP₃R3-dependent Ca²⁺ oscillations have been observed, although IP₃R3-dependent Ca²⁺ oscillations are less likely to occur and are also less frequently observed (see previous sections).

In most cases, cells express more than one IP₃R subtype. Interestingly, when several IP₃R subtypes are expressed, one of them becomes dominant regarding Ca²⁺ regulation of IICR [36]. This result also calls for caution when drawing conclusions on the subtype specificity of Ca²⁺ signaling, since expression of even a small amount of one subtype could critically affect the Ca²⁺ signaling pattern [59].

Taken together, Ca^{2+} activation and inhibition properties of IP₃R1 and IP₃R2 make them likely to support Ca^{2+} oscillations in physiological conditions [60], whereas specific cellular circumstances are required for activation of IP₃R3-dependent Ca²⁺ oscillations.

Subtype Specificity of Phosphorylation of IP₃R

Phosphorylation of the IP₃R is involved in many Ca²⁺ signaling pathways [61] and the different subtypes are interacting with protein kinases and phosphatases differently [62]. Many of the phosphorylation sites are subtype-specific, increasing the diversity in regulatory fine tuning of Ca²⁺ oscillations. The functional consequences of these regulatory modifications are only partially understood, and in some cases remain controversial. Therefore we will here focus on those protein kinases known to modulate Ca²⁺ oscillations through phosphorylation of IP₃R.

PKA-dependent phosphorylation of IP₃R has been demonstrated extensively. Phosphomimetic mutations of IP₃R1 expressed in DT40 cells showed that PKA-mediated phosphorylation decreases the threshold for Ca^{2+} oscillations, without affecting the amplitude or frequency [63]. PKA phosphorylates two distinct sites in IP₃R1 internal coupling domain (S1588 and S1755) [64]. Although these sites are not conserved in IP₃R2 and IP₃R3. PKA-dependent phosphorylation of these subtypes has been demonstrated [65]. In parotid acinar cells [66] and the pancreatic AR4-2J cell line [67]. PKA directly phosphorylates IP₃R2. dramatically potentiating Ca^{2+} release. Interestingly, raising cAMP during sub-threshold agonist stimulation resulted in an oscillatory Ca²⁺ signal, while raising cAMP during an Ca^{2+} oscillation converted the response into a peak and plateau-like signal [66], probably because of a shift in the concentration dependency in IICR. CaMKII has been proposed to be involved in the control of the Ca^{2+} dependent regulation of IICR and in the occurrence of Ca^{2+} oscillations [68]. The most extensive information regarding CaMKII regulation of IP₃R is derived from studies performed on IP₃R2 [69, 70], which is the predominant subtype in cardiac ventricular myocytes. CaM-KII-dependent phosphorylation significantly decreased the open probability of IP₃R2 in lipid bilayers, which suggests a Ca²⁺-dependent negative feedback mechanism on IP₃R2 activity in the cardiomyocyte nuclear envelope [71]. This may also result in a Ca²⁺-dependent inhibitory loop of Ca²⁺ oscillations [72]. Functional effects of PKC-mediated phosphorylation of the IP₃R were first studied in isolated rat liver nuclei [73]. PKC-mediated phosphorylation of IP₃R1 in vitro is in addition regulated by Ca²⁺ and CaM [74]. As both Ca^{2+} and CaM inhibit the PKC-mediated phosphorylation of IP₃R1, it is possible that this process may contribute to the negative slope of the Ca^{2+} -dependent bell-shaped regulation of IP₃R by Ca^{2+} , consequently affecting Ca²⁺ oscillations. Recent demonstrations suggest a role for PKC-mediated phosphorylation of IP₃R2 [75] and IP₃R3 [43]. These reports show that when IP₃R2 or IP₃R3 are phosphorylated by PKC, IP_3 -dependent Ca^{2+} oscillations are decreased in cells expressing only those subtypes. Thus, PKC may act as a subtype specific regulator of IP₃R-mediated cytosolic Ca^{2+} oscillations. These differences are not unexpected since IP₃R subtypes possess different potential phosphorylation sites [43, 76]. How phosphorylation of IP₃R subtypes by distinct protein kinases affect Ca²⁺ oscillations are summarized in Table 2.

The subtype specific regulation of IP_3R by phosphorylation and its relation to Ca^{2+} oscillations are not fully understood. These processes are likely to be dependent on specific IP_3R subtypes expression levels and protein kinases activation, and need to be further investigated.

Effect	Stimulatory		Inhibitory			
Effectors	IP ₃ R1	IP ₃ R2	IP ₃ R3	IP ₃ R1	IP ₃ R2	IP ₃ R3
РКС	[73, 74]	-	-	_	[75]	[43]
PKA	[63]	[67]	-	_	[67]	-
CaMKII	_	_	_	[68][72]	-	-
CaBP1	_	_	_	[82]	-	[82]
Na,K-ATPase	[83, 84]	[83, 84]	[83, 84]	-	_	-
IRBIT	_	-	_	[85]	_	-
AKAP9	[87]	-	_	-	_	-
PS1/PS2	[88, 89]	[88, 89]	[88, 89]	-	_	-
ERp44	_	-	_	[90]	_	-
GRP78	[91]	-	_	-	_	-
Bcl-2	[78, 92, 94, 96]	[78, 92, 94, 96]	[78, 92, 94, 96]	[97]	[97]	[<mark>97</mark>]
Bcl-X _L	[93, 95]	[93, 95]	[93, 95]	-	_	-
Mcl-1	[78]	[78]	[78]	-	_	-
Cytochrome C	[98, 99]	-	_	-	_	-
GIT1/GIT2	_	-	_	[81]	[81]	[<mark>81</mark>]
NCS-1	[80, 100]	[80, 100]	[80, 100]	-	-	-

Table 2 The IP_3R subtype specificity of protein kinases and IP_3R -associated proteins and their modulating effects on Ca^{2+} oscillations

Regulation of IP₃R Activity by Accessory Proteins

About forty proteins have been reported to interact with IP_3R , most of which modulate IP_3R channel activity [1, 3, 77–81]. There is a lack of data regarding IP_3R2 and IP_3R3 specific binding proteins since most of these proteins are identified by co-immunoprecipitation studies with one or two IP₃R subtypes or using IP₃R1 probes. Few reports show that some of these associated proteins modulate Ca^{2+} oscillations differently. Therefore, we summarize here the proteins that bind to IP₃R and modulate Ca^{2+} oscillations, whether they bind to a specific IP₃R subtype or not (Table 2; Fig. 1).

CaBP1, one of the neuronal Ca²⁺ binding proteins, was co-immunoprecipitated with IP₃R1 and IP₃R3 [82]. The CaBP1-binding site was mapped in the ligand coupling/ suppressor domain of IP₃R1. This interaction functionally inhibits IP₃-dependent Ca²⁺ oscillations in COS-7 cells expressing CaBP1, in permeabilized COS-7 cells exposed to recombinant CaBP1, and in *Xenopus* oocytes injected with recombinant CaBP1.

Na,K-ATPase, a plasma membrane ion pump, directly binds to the IP₃ binding-domain of all three IP₃R subtypes through its NH₂-terminal tail [83, 84]. In the presence of ouabain, Na,K-ATPase triggers IP₃-dependent Ca²⁺ oscillations in COS-7 cells and in primary culture of rat renal proximal tubule cells. Overexpression of a peptide corresponding to the wild type NH₂-terminal tail of Na,K-ATPase decreased the number of cells exhibiting Ca²⁺ oscillations, an effect not observed when a mutant type that does not bind to IP₃R was used.

IRBIT was identified to bind to the IP₃ binding core of IP₃R1 [85]. This interaction suppresses the activation of IP₃R by regulating the IP₃ sensitivity of IP₃R1. Knock-down of IRBIT in HeLa cells increases ATP-induced cytosolic Ca²⁺ oscillations.

AKAP9, one of the neuronal PKA-anchoring adaptor proteins, binds to the leucine/isoleucine zipper (LIZ) motif in the internal coupling domain of IP₃R1 [86]. Expression of a 36-residues LIZ fragment, which can disrupt the IP₃R1-AKAP9 association, reduces the frequency of Ca^{2+} oscillations induced by application of dopamine in primary culture of medium spiny neuron [87].

Presenilins (PS), including PS1 and PS2, are proteins bound to the gamma-secretase protease complex. Mutations in the genes encoding PS1 and PS2 are the major cause of familial Alzheimer's disease (FAD). Wildtype and FADmutants of PS1 and PS2 have been co-immunoprecipitated with IP₃R1 and IP₃R3 [88, 89]. These interactions exert profound stimulatory effects on the IP₃R gating activity. Mutated PSs were demonstrated to increase frequency of both spontaneous Ca^{2+} oscillations and Ca^{2+} oscillations triggered by cross-linking the B cell receptor with IgM antibody in both DT40 cells and FAD patient B cells.

ERp44 is an ER lumenal protein of the thioredoxin family. Depending on the oxidative status in the ER lumen, it can interact directly with the third IP_3R1 lumenal loop and inhibit its activity [90]. Knockdown of ERp44 in HeLa cells increases ATP-triggered cytosolic Ca²⁺ oscillations.

GRP78, another ER lumenal protein, also interacts with the third lumenal loop of the IP₃R1 [91]. In contrast to ERp44, GRP78 enhances IP₃R1 channel activity. Knockdown of GRP78 in HeLa cells decreases ATP-triggered Ca^{2+} oscillations, which is restored by re-expression of the protein.

Bcl-2, Bcl- X_L , and Mcl-1, three anti-apoptotic proteins that belong to Bcl-2 family, have been reported to bind to

the CTT and/or the internal coupling domain of all three IP₃R subtypes [78, 92–95]. Bcl-2 enhances IP₃-mediated Ca²⁺ oscillations induced by T cell receptor activation in WEHI7.2 cells, Jurkat cells, and wild type DT40 cells [78, 92, 94, 96], whereas Ca^{2+} oscillations induced by serum withdrawal in NIH-3T3 murine fibroblasts are dampened [97]. Expression of Bcl-X_L in wild type DT40 cells or in DT40 cells engineered to express each IP₃R subtype increases the number of the cells exhibiting Ca²⁺ oscillations as well as the oscillatory frequency [93, 95]. Interaction of Mcl-1 with IP₃R increases the number of DT40 cells exhibiting anti-B cell receptor antibody induced Ca²⁺ oscillations [78]. Bcl-2 and Mcl-1 also increase the number of cells exhibiting Ca²⁺ oscillations and the amplitude and/ or the frequency of spontaneous Ca^{2+} oscillations in DT 40 cells [78].

Cytochrome C, one of the key components of the apoptotic cascade, was found to selectively and directly bind to IP₃R1 CTT during early apoptosis via a cluster of glutamic acid residues (binding to IP₃R2 and IP₃R3 were not confirmed), resulting in staurosporine-induced sustained Ca²⁺ oscillations [98, 99].

G-protein-coupled receptor kinase-interacting proteins (GIT), including GIT1 and GIT2, bind to the CTT of all three IP₃R subtypes, but have stronger binding affinity to IP₃R2 (more than 10- and 20-fold as compared to IP₃R1 and IP₃R3, respectively), and inhibit IICR [81]. Knockdown of GIT proteins in HeLa or COS-7 cells increases the number of cells exhibiting Ca²⁺ oscillations.

Neuronal Ca^{2+} sensor 1 (NCS-1), a Ca^{2+} binding protein whose expression could be enhanced by application of Taxol, a natural product for the treatment of solid tumors, was co-immunoprecipitated with all three subtypes of IP₃R [80, 100]. The NCS-1-IP₃R interaction increases the number of cells exhibiting IP₃R-dependent Ca²⁺ oscillations in SH-SY5Y human neuroblastoma cells [100] and the frequency of spontaneous Ca²⁺ oscillations in rat ventricular cardiomyocytes [80].

The diversity in distribution of associated proteins and/ or IP₃R subtypes is essential for the versatility of IP₃R subtype-dependent Ca^{2+} oscillations in different cell types. More information, however, is required for determining the individual role of each separate subtype in modulating cytosolic Ca^{2+} oscillations.

Conclusion and Future Directions

It is evident that the different IP₃R subtypes are regulated by a large number of cellular mechanisms that varies in a cell type-specific manner. In this review we have focused on IP₃R subtype-specific modulation of Ca^{2+} oscillations. Ca^{2+} oscillations are repetitive increases in the cytosolic Ca²⁺ concentration that are used by the cell to convey information within or between cells. The oscillatory Ca²⁺ signal is known to be initiated at the onset of fertilization [101-103] and to continue throughout life to control a vast array of cellular processes as diverse as proliferation, differentiation, development, learning and memory, contraction, secretion, and cell death [1, 15]. Altered intracellular Ca^{2+} signaling has been linked to many diseases, such as Hungtington's, Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, schizophrenia, spinocerebellar ataxias, heart failure, polycystic kidney disease, and human immunodeficiency virus infection [104–107]. It is therefore essential to determine the molecular mechanisms involved in the generation of intracellular Ca²⁺ oscillations. Additionally, Ca²⁺ oscillations are known to encode information in their frequency and amplitude to activate various specific downstream targets [15-17]. Efforts to understand the nature of these "cellular radio signals" started at the same time as Ca²⁺ oscillations were discovered and have resulted in a large number of publications [16-18, 22, 28, 30, 32, 35, 37, 39, 42, 47, 56, 60, 83, 100-102], most of which is cell type- and agonist-specific. To determine the associations between (1) stimulus, (2) Ca^{2+} oscillation, and (3) activation of a specific downstream cellular process, future studies will have to consider the molecular partners involved in each step. The recent rapid development of sophisticated molecular and genetic tools, such as small interfering RNA [108] and optogenetics [109], will surely advance our future knowledge about IP_3R subtype-specific regulation of Ca²⁺ oscillations.

Acknowledgements This work was supported by the Swedish Research Council (Dnr 2005-6682, 2009-3364, 2010-4392 and DBRM), the Foundation for Strategic Research (CEDB), the Knut and Alice Wallenberg Foundation (CLICK and Research Fellow to PU), The Royal Swedish Academy of Sciences (PU), and Fredrik and Ingrid Thuring's Foundation (PU). The authors wish to thank Dr. Arindam Majumdar for proof reading of the manuscript.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

- Mikoshiba K (2007) IP3 receptor/Ca²⁺ channel: from discovery to new signaling concepts. J Neurochem 102:1426–1446
- Berridge MJ (1993) Inositol trisphosphate, calcium signalling. Nature 361:315–325
- Foskett JK, White C, Cheung KH, Mak DO (2007) Inositol trisphosphate receptor Ca²⁺ release channels. Physiol Rev 87:593–658
- Mikoshiba K, Changeux JP (1978) Morphological, biochemical studies on isolated molecular, granular layers from bovine cerebellum. Brain Res 142:487–504

- Mikoshiba K, Huchet M, Changeux JP (1979) Biochemical, immunological studies on the P400 protein, a protein characteristic of the Purkinje cell from mouse, rat cerebellum. Dev Neurosci 2:254–275
- Furuichi T, Yoshikawa S, Miyawaki A, Wada K, Maeda N, Mikoshiba K (1989) Primary structure, functional expression of the inositol 1, 4, 5-trisphosphate-binding protein P400. Nature 342:32–38
- Wojcikiewicz RJ (1995) Type I, II, and III inositol 1, 4, 5-trisphosphate receptors are unequally susceptible to down-regulation, are expressed in markedly different proportions in different cell types. J Biol Chem 270:11678–11683
- De Smedt H, Missiaen L, Parys JB, Bootman MD, Mertens L, Van Den Bosch L, Casteels R (1994) Determination of relative amounts of inositol trisphosphate receptor mRNA isoforms by ratio polymerase chain reaction. J Biol Chem 269:21691–21698
- Newton CL, Mignery GA, Sudhof TC (1994) Co-expression in vertebrate tissues, cell lines of multiple inositol 1, 4, 5-trisphosphate (InsP3) receptors with distinct affinities for InsP3. J Biol Chem 269:28613–28619
- Uchida K, Miyauchi H, Furuichi T, Michikawa T, Mikoshiba K (2003) Critical regions for activation gating of the inositol 1, 4, 5-trisphosphate receptor. J Biol Chem 278:16551–16560
- Iwai M, Tateishi Y, Hattori M, Mizutani A, Nakamura T, Futatsugi A, Inoue T, Furuichi T, Michikawa T, Mikoshiba K (2005) Molecular cloning of mouse type 2, type 3 inositol 1, 4, 5-trisphosphate receptors, identification of a novel type 2 receptor splice variant. J Biol Chem 280:10305–10317
- Taylor CW, Genazzani AA, Morris SA (1999) Expression of inositol trisphosphate receptors. Cell Calcium 26:237–251
- Iwai M, Michikawa T, Bosanac I, Ikura M, Mikoshiba K (2007) Molecular basis of the isoform-specific ligand-binding affinity of inositol 1, 4, 5-trisphosphate receptors. J Biol Chem 282:12755–12764
- Yoshikawa F, Morita M, Monkawa T, Michikawa T, Furuichi T, Mikoshiba K (1996) Mutational analysis of the ligand binding site of the inositol 1, 4, 5-trisphosphate receptor. J Biol Chem 271:18277–18284
- Berridge MJ, Lipp P, Bootman MD (2000) The versatility, universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21
- Fewtrell C (1993) Ca²⁺ oscillations in non-excitable cells. Annu Rev Physiol 55:427–454
- Uhlen P, Fritz N (2010) Biochemistry of calcium oscillations. Biochem Biophys Res Commun 396:28–32
- 18. Uhlen P, Burch PM, Zito CI, Estrada M, Ehrlich BE, Bennett AM (2006) Gain-of-function/Noonan syndrome SHP-2/Ptpn11 mutants enhance calcium oscillations, impair NFAT signaling. Proc Natl Acad Sci U S A 103:2160–2165
- Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis, remodelling. Nat Rev Mol Cell Biol 4:517–529
- Finch EA, Turner TJ, Goldin SM (1991) Calcium as a coagonist of inositol 1, 4, 5-trisphosphate-induced calcium release. Science 252:443–446
- Bezprozvanny I, Watras J, Ehrlich BE (1991) Bell-shaped calcium-response curves of Ins(1, 4, 5)P3-and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 351:751–754
- Hajnoczky G, Thomas AP (1997) Minimal requirements for calcium oscillations driven by the IP3 receptor. EMBO J 16:3533–3543
- Zimmermann B (2000) Control of InsP3-induced Ca²⁺ oscillations in permeabilized blowfly salivary gland cells: contribution of mitochondria. J Physiol 525(Pt 3):707–719

- 24. Dumollard R, Sardet C (2001) Three different calcium wave pacemakers in ascidian eggs. J Cell Sci 114:2471–2481
- Miyakawa T, Mizushima A, Hirose K, Yamazawa T, Bezprozvanny I, Kurosaki T, Iino M (2001) Ca(²⁺)-sensor region of IP(3) receptor controls intracellular Ca(²⁺) signaling. EMBO J 20:1674–1680
- 26. Tanaka Y, Tashjian AH Jr (1994) Thimerosal potentiates Ca^{2+} release mediated by both the inositol 1, 4, 5-trisphosphate, the ryanodine receptors in sea urchin eggs. Implications for mechanistic studies on Ca^{2+} signaling. J Biol Chem 269: 11247–11253
- Falcke M, Tsimring L, Levine H (2000) Stochastic spreading of intracellular Ca(²⁺) release. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 62:2636–2643
- Schuster S, Marhl M, Hofer T (2002) Modelling of simple, complex calcium oscillations. From single-cell responses to intercellular signalling. Eur J Biochem 269:1333–1355
- Hirose K, Kadowaki S, Tanabe M, Takeshima H, Iino M (1999) Spatiotemporal dynamics of inositol 1, 4, 5-trisphosphate that underlies complex Ca²⁺ mobilization patterns. Science 284:1527–1530
- Nash MS, Young KW, Challiss RA, Nahorski SR (2001) Intracellular signalling. Receptor-specific messenger oscillations. Nature 413:381–382
- Nash MS, Young KW, Willars GB, Challiss RA, Nahorski SR (2001) Single-cell imaging of graded Ins(1, 4, 5)P3 production following G-protein-coupled-receptor activation. Biochem J 356:137–142
- 32. Young KW, Nash MS, Challiss RA, Nahorski SR (2003) Role of Ca²⁺ feedback on single cell inositol 1, 4, 5-trisphosphate oscillations mediated by G-protein-coupled receptors. J Biol Chem 278:20753–20760
- Matsu-ura T, Michikawa T, Inoue T, Miyawaki A, Yoshida M, Mikoshiba K (2006) Cytosolic inositol 1, 4, 5-trisphosphate dynamics during intracellular calcium oscillations in living cells. J Cell Biol 173:755–765
- Bartlett PJ, Young KW, Nahorski SR, Challiss RA (2005) Single cell analysis and temporal profiling of agonist-mediated inositol 1, 4, 5-trisphosphate, Ca²⁺, diacylglycerol, and protein kinase C signaling using fluorescent biosensors. J Biol Chem 280:21837–21846
- Tamarina NA, Kuznetsov A, Rhodes CJ, Bindokas VP, Philipson LH (2005) Inositol (1, 4, 5)-trisphosphate dynamics and intracellular calcium oscillations in pancreatic beta-cells. Diabetes 54:3073–3081
- 36. Miyakawa T, Maeda A, Yamazawa T, Hirose K, Kurosaki T, Iino M (1999) Encoding of Ca²⁺ signals by differential expression of IP3 receptor subtypes. EMBO J 18:1303–1308
- 37. Morel JL, Fritz N, Lavie JL, Mironneau J (2003) Crucial role of type 2 inositol 1, 4, 5-trisphosphate receptors for acetylcholineinduced Ca²⁺ oscillations in vascular myocytes. Arterioscler Thromb Vasc Biol 23:1567–1575
- Hattori M, Suzuki AZ, Higo T, Miyauchi H, Michikawa T, Nakamura T, Inoue T, Mikoshiba K (2004) Distinct roles of inositol 1, 4, 5-trisphosphate receptor types 1 and 3 in Ca²⁺ signaling. J Biol Chem 279:11967–11975
- 39. Almirza WH, Peters PH, van Meerwijk WP, van Zoelen EJ, Theuvenet AP (2010) Different roles of inositol 1, 4, 5-trisphosphate receptor subtypes in prostaglandin F(2alpha)-induced calcium oscillations and pacemaking activity of NRK fibroblasts. Cell Calcium 47:544–553
- 40. Tovey SC, de Smet P, Lipp P, Thomas D, Young KW, Missiaen L, De Smedt H, Parys JB, Berridge MJ, Thuring J, Holmes A, Bootman MD (2001) Calcium puffs are generic InsP(3)-activated elementary calcium signals and are downregulated by

prolonged hormonal stimulation to inhibit cellular calcium responses. J Cell Sci 114:3979–3989

- 41. Regimbald-Dumas Y, Fregeau MO, Guillemette G (2011) Mammalian target of rapamycin (mTOR) phosphorylates inositol 1, 4, 5-trisphosphate receptor type 2 and increases its Ca(²⁺) release activity. Cell Signal 23:71–79
- 42. Kuroda Y, Hisatsune C, Nakamura T, Matsuo K, Mikoshiba K (2008) Osteoblasts induce Ca²⁺ oscillation-independent NFATc1 activation during osteoclastogenesis. Proc Natl Acad Sci USA 105:8643–8648
- 43. Caron AZ, Chaloux B, Arguin G, Guillemette G (2007) Protein kinase C decreases the apparent affinity of the inositol 1, 4, 5-trisphosphate receptor type 3 in RINm5F cells. Cell Calcium 42:323–331
- 44. Hernandez E, Leite MF, Guerra MT, Kruglov EA, Bruna-Romero O, Rodrigues MA, Gomes DA, Giordano FJ, Dranoff JA, Nathanson MH (2007) The spatial distribution of inositol 1, 4, 5-trisphosphate receptor isoforms shapes Ca²⁺ waves. J Biol Chem 282:10057–10067
- 45. Kim JC, Son MJ, Subedi KP, Kim do H, Woo SH (2010) IP3induced cytosolic and nuclear Ca²⁺ signals in HL-1 atrial myocytes: possible role of IP3 receptor subtypes. Mol Cells 29:387–395
- 46. Shuai JW, Jung P (2003) Optimal ion channel clustering for intracellular calcium signaling. Proc Natl Acad Sci U S A 100:506–510
- 47. Li M, Zacharia J, Sun X, Wier WG (2008) Effects of siRNA knock-down of TRPC6 and InsP(3)R1 in vasopressin-induced Ca(²⁺) oscillations of A7r5 vascular smooth muscle cells. Pharmacol Res 58:308–315
- 48. Futatsugi A, Nakamura T, Yamada MK, Ebisui E, Nakamura K, Uchida K, Kitaguchi T, Takahashi-Iwanaga H, Noda T, Aruga J, Mikoshiba K (2005) IP3 receptor types 2 and 3 mediate exocrine secretion underlying energy metabolism. Science 309: 2232–2234
- Joseph SK, Bokkala S, Boehning D, Zeigler S (2000) Factors determining the composition of inositol trisphosphate receptor hetero-oligomers expressed in COS cells. J Biol Chem 275:16084–16090
- 50. Maeda N, Kawasaki T, Nakade S, Yokota N, Taguchi T, Kasai M, Mikoshiba K (1991) Structural and functional characterization of inositol 1, 4, 5-trisphosphate receptor channel from mouse cerebellum. J Biol Chem 266:1109–1116
- Monkawa T, Miyawaki A, Sugiyama T, Yoneshima H, Yamamoto-Hino M, Furuichi T, Saruta T, Hasegawa M, Mikoshiba K (1995) Heterotetrameric complex formation of inositol 1, 4, 5-trisphosphate receptor subunits. J Biol Chem 270:14700–14704
- Sudhof TC, Newton CL, Archer BT 3rd, Ushkaryov YA, Mignery GA (1991) Structure of a novel InsP3 receptor. EMBO J 10:3199–3206
- 53. Wojcikiewicz RJ, Luo SG (1998) Differences among type I, II, and III inositol-1, 4, 5-trisphosphate receptors in ligand-binding affinity influence the sensitivity of calcium stores to inositol-1, 4, 5-trisphosphate. Mol Pharmacol 53:656–662
- Nerou EP, Riley AM, Potter BV, Taylor CW (2001) Selective recognition of inositol phosphates by subtypes of the inositol trisphosphate receptor. Biochem J 355:59–69
- 55. Tu H, Wang Z, Nosyreva E, De Smedt H, Bezprozvanny I (2005) Functional characterization of mammalian inositol 1, 4, 5-trisphosphate receptor isoforms. Biophys J 88:1046–1055
- 56. Berridge MJ (1990) Calcium oscillations. J Biol Chem 265:9583–9586
- 57. Sienaert I, De Smedt H, Parys JB, Missiaen L, Vanlingen S, Sipma H, Casteels R (1996) Characterization of a cytosolic and

a luminal Ca^{2+} binding site in the type I inositol 1, 4, 5-trisphosphate receptor. J Biol Chem 271:27005-27012

- 58. Dupont G, Combettes L (2006) Modelling the effect of specific inositol 1, 4, 5-trisphosphate receptor isoforms on cellular Ca^{2+} signals. Biol Cell 98:171–182
- 59. Swatton JE, Morris SA, Cardy TJ, Taylor CW (1999) Type 3 inositol trisphosphate receptors in RINm5F cells are biphasically regulated by cytosolic Ca^{2+} and mediate quantal Ca^{2+} mobilization. Biochem J 344(Pt 1):55-60
- 60. Fritz N, Mironneau J, Macrez N, Morel JL (2008) Acetylcholine-induced Ca²⁺ oscillations are modulated by a Ca²⁺ regulation of InsP3R2 in rat portal vein myocytes. Pflugers Arch 456:277-283
- 61. Krizanova O, Ondrias K (2003) The inositol 1, 4, 5-trisphosphate receptor-transcriptional regulation and modulation by phosphorylation. Gen Physiol Biophys 22:295-311
- 62 Vanderheyden V, Devogelaere B, Missiaen L, De Smedt H, Bultynck G, Parys JB (2009) Regulation of inositol 1, 4, 5-trisphosphate-induced Ca²⁺ release by reversible phosphorylation and dephosphorylation. Biochim Biophys Acta 1793:959-970
- 63. Wagner LE 2nd, Li WH, Joseph SK, Yule DI (2004) Functional consequences of phosphomimetic mutations at key cAMPdependent protein kinase phosphorylation sites in the type 1 inositol 1, 4, 5-trisphosphate receptor. J Biol Chem 279:46242-46252
- 64. Ferris CD, Cameron AM, Bredt DS, Huganir RL, Snyder SH (1991) Inositol 1, 4, 5-trisphosphate receptor is phosphorylated by cyclic AMP-dependent protein kinase at serines 1755 and 1589. Biochem Biophys Res Commun 175:192-198
- 65. Wojcikiewicz RJ, Luo SG (1998) Phosphorylation of inositol 1, 4, 5-trisphosphate receptors by cAMP-dependent protein kinase. Type I, II, III receptors are differentially susceptible to phosphorylation, are phosphorylated in intact cells. J Biol Chem 273:5670-5677
- 66. Bruce JI, Shuttleworth TJ, Giovannucci DR, Yule DI (2002) Phosphorylation of inositol 1, 4, 5-trisphosphate receptors in parotid acinar cells. A mechanism for the synergistic effects of cAMP on Ca²⁺ signaling. J Biol Chem 277:1340–1348
- 67. Regimbald-Dumas Y, Arguin G, Fregeau MO, Guillemette G (2007) cAMP-dependent protein kinase enhances inositol 1, 4, 5-trisphosphate-induced Ca²⁺ release in AR4-2 J cells. J Cell Biochem 101:609-618
- 68. Aromolaran AA, Blatter LA (2005) Modulation of intracellular Ca²⁺ release and capacitative Ca²⁺ entry by CaMKII inhibitors in bovine vascular endothelial cells. Am J Physiol Cell Physiol 289:C1426-1436
- 69. Ibarra C, Estrada M, Carrasco L, Chiong M, Liberona JL, Cardenas C, Diaz-Araya G, Jaimovich E, Lavandero S (2004) Insulin-like growth factor-1 induces an inositol 1, 4, 5-trisphosphate-dependent increase in nuclear and cytosolic calcium in cultured rat cardiac myocytes. J Biol Chem 279:7554-7565
- 70. Bare DJ, Kettlun CS, Liang M, Bers DM, Mignery GA (2005) Cardiac type 2 inositol 1, 4, 5-trisphosphate receptor: interaction and modulation by calcium/calmodulin-dependent protein kinase II. J Biol Chem 280:15912-15920
- 71. Zima AV, Bare DJ, Mignery GA, Blatter LA (2007) IP3dependent nuclear Ca²⁺ signalling in the mammalian heart. J Physiol 584:601-611
- 72. Zhu DM, Tekle E, Chock PB, Huang CY (1996) Reversible phosphorylation as a controlling factor for sustaining calcium oscillations in HeLa cells: Involvement of calmodulin-dependent kinase II and a calyculin A-inhibitable phosphatase. Biochemistry 35:7214-7223
- 73. Matter N, Ritz MF, Freyermuth S, Rogue P, Malviya AN (1993) Stimulation of nuclear protein kinase C leads to phosphorylation

of nuclear inositol 1, 4, 5-trisphosphate receptor and accelerated calcium release by inositol 1, 4, 5-trisphosphate from isolated rat liver nuclei. J Biol Chem 268:732-736

- 74. Vermassen E, Fissore RA, Nadif Kasri N, Vanderheyden V, Callewaert G, Missiaen L, Parys JB, De Smedt H (2004) Regulation of the phosphorylation of the inositol 1, 4, 5-trisphosphate receptor by protein kinase C. Biochem Biophys Res Commun 319:888-893
- 75. Arguin G, Regimbald-Dumas Y, Fregeau MO, Caron AZ, Guillemette G (2007) Protein kinase C phosphorylates the inositol 1, 4, 5-trisphosphate receptor type 2 and decreases the mobilization of Ca²⁺ in pancreatoma AR4-2J cells. J Endocrinol 192:659-668
- 76. Patel S, Joseph SK, Thomas AP (1999) Molecular properties of inositol 1, 4, 5-trisphosphate receptors. Cell Calcium 25:247-264
- 77. Choe CU, Ehrlich BE (2006) The inositol 1,4,5-trisphosphate receptor (IP3R) and its regulators: sometimes good and sometimes bad teamwork. Sci STKE re15
- 78. Eckenrode EF, Yang J, Velmurugan GV, Foskett JK, White C (2010) Apoptosis protection by Mcl-1 and Bcl-2 modulation of inositol 1, 4, 5-trisphosphate receptor-dependent Ca²⁺ signaling. J Biol Chem 285:13678-13684
- 79. Kawaai K, Hisatsune C, Kuroda Y, Mizutani A, Tashiro T, Mikoshiba K (2009) 80 K-H interacts with inositol 1, 4, 5-trisphosphate (IP3) receptors and regulates IP3-induced calcium release activity. J Biol Chem 284:372-380
- 80. Zhang K, Heidrich FM, DeGray B, Boehmerle W, Ehrlich BE (2010) Paclitaxel accelerates spontaneous calcium oscillations in cardiomyocytes by interacting with NCS-1 and the InsP3R. J Mol Cell Cardiol 49:829-835
- 81. Zhang S, Hisatsune C, Matsu-Ura T, Mikoshiba K (2009) G-protein-coupled receptor kinase-interacting proteins inhibit apoptosis by inositol 1, 4, 5-triphosphate receptor-mediated Ca²⁺ signal regulation. J Biol Chem 284:29158–29169
- 82. Kasri NN, Holmes AM, Bultynck G, Parys JB, Bootman MD, Rietdorf K, Missiaen L, McDonald F, De Smedt H, Conway SJ, Holmes AB, Berridge MJ, Roderick HL (2004) Regulation of InsP3 receptor activity by neuronal Ca²⁺-binding proteins. EMBO J 23:312-321
- 83. Miyakawa-Naito A, Uhlen P, Lal M, Aizman O, Mikoshiba K, Brismar H, Zelenin S, Aperia A (2003) Cell signaling microdomain with Na, K-ATPase and inositol 1, 4, 5-trisphosphate receptor generates calcium oscillations. J Biol Chem 278: 50355-50361
- 84. Zhang S, Malmersjo S, Li J, Ando H, Aizman O, Uhlen P, Mikoshiba K, Aperia A (2006) Distinct role of the N-terminal tail of the Na, K-ATPase catalytic subunit as a signal transducer. J Biol Chem 281:21954-21962
- 85. Ando H, Mizutani A, Kiefer H, Tsuzurugi D, Michikawa T, Mikoshiba K (2006) IRBIT suppresses IP3 receptor activity by competing with IP3 for the common binding site on the IP3 receptor. Mol Cell 22:795-806
- 86. Tu H, Tang TS, Wang Z, Bezprozvanny I (2004) Association of type 1 inositol 1, 4, 5-trisphosphate receptor with AKAP9 (Yotiao) and protein kinase A. J Biol Chem 279:19375-19382
- 87. Tang TS, Bezprozvanny I (2004) Dopamine receptor-mediated $Ca(^{2+})$ signaling in striatal medium spiny neurons. J Biol Chem 279:42082-42094
- 88. Cheung KH, Shineman D, Muller M, Cardenas C, Mei L, Yang J, Tomita T, Iwatsubo T, Lee VM, Foskett JK (2008) Mechanism of Ca²⁺ disruption in Alzheimer's disease by presenilin regulation of InsP3 receptor channel gating. Neuron 58:871-883
- 89. Muller M, Cheung KH, Foskett JK (2010) Enhanced ROS Generation Mediated by Alzheimer's Disease Presenilin Regulation of InsP(3)R Ca(2+) Signaling. Antioxid Redox Signal

- 90. Higo T, Hattori M, Nakamura T, Natsume T, Michikawa T, Mikoshiba K (2005) Subtype-specific and ER lumenal environment-dependent regulation of inositol 1, 4, 5-trisphosphate receptor type 1 by ERp44. Cell 120:85–98
- 91. Higo T, Hamada K, Hisatsune C, Nukina N, Hashikawa T, Hattori M, Nakamura T, Mikoshiba K (2010) Mechanism of ER stress-induced brain damage by IP(3) receptor. Neuron 68:865–878
- 92. Chen R, Valencia I, Zhong F, McColl KS, Roderick HL, Bootman MD, Berridge MJ, Conway SJ, Holmes AB, Mignery GA, Velez P, Distelhorst CW (2004) Bcl-2 functionally interacts with inositol 1, 4, 5-trisphosphate receptors to regulate calcium release from the ER in response to inositol 1, 4, 5-trisphosphate. J Cell Biol 166:193–203
- 93. Li C, Wang X, Vais H, Thompson CB, Foskett JK, White C (2007) Apoptosis regulation by Bcl-x(L) modulation of mammalian inositol 1, 4, 5-trisphosphate receptor channel isoform gating. Proc Natl Acad Sci U S A 104:12565–12570
- 94. Rong YP, Aromolaran AS, Bultynck G, Zhong F, Li X, McColl K, Matsuyama S, Herlitze S, Roderick HL, Bootman MD, Mignery GA, Parys JB, De Smedt H, Distelhorst CW (2008) Targeting Bcl-2-IP3 receptor interaction to reverse Bcl-2's inhibition of apoptotic calcium signals. Mol Cell 31:255–265
- 95. White C, Li C, Yang J, Petrenko NB, Madesh M, Thompson CB, Foskett JK (2005) The endoplasmic reticulum gateway to apoptosis by Bcl-X(L) modulation of the InsP3R. Nat Cell Biol 7:1021–1028
- 96. Zhong F, Davis MC, McColl KS, Distelhorst CW (2006) Bcl-2 differentially regulates Ca²⁺ signals according to the strength of T cell receptor activation. J Cell Biol 172:127–137
- 97. Magnelli L, Cinelli M, Turchetti A, Chiarugi VP (1994) Bcl-2 overexpression abolishes early calcium waving preceding apoptosis in NIH-3T3 murine fibroblasts. Biochem Biophys Res Commun 204:84–90
- Boehning D, Patterson RL, Sedaghat L, Glebova NO, Kurosaki T, Snyder SH (2003) Cytochrome c binds to inositol (1, 4, 5) trisphosphate receptors, amplifying calcium-dependent apoptosis. Nat Cell Biol 5:1051–1061

- 99. Boehning D, van Rossum DB, Patterson RL, Snyder SH (2005) A peptide inhibitor of cytochrome c/inositol 1, 4, 5-trisphosphate receptor binding blocks intrinsic and extrinsic cell death pathways. Proc Natl Acad Sci U S A 102:1466–1471
- 100. Boehmerle W, Splittgerber U, Lazarus MB, McKenzie KM, Johnston DG, Austin DJ, Ehrlich BE (2006) Paclitaxel induces calcium oscillations via an inositol 1, 4, 5-trisphosphate receptor and neuronal calcium sensor 1-dependent mechanism. Proc Natl Acad Sci U S A 103:18356–18361
- 101. Cuthbertson KS, Cobbold PH (1985) Phorbol ester and sperm activate mouse oocytes by inducing sustained oscillations in cell Ca2+. Nature 316:541–542
- Halet G, Marangos P, Fitzharris G, Carroll J (2003) Ca²⁺ oscillations at fertilization in mammals. Biochem Soc Trans 31:907–911
- 103. Shiraishi K, Okada A, Shirakawa H, Nakanishi S, Mikoshiba K, Miyazaki S (1995) Developmental changes in the distribution of the endoplasmic reticulum and inositol 1, 4, 5-trisphosphate receptors and the spatial pattern of Ca²⁺ release during maturation of hamster oocytes. Dev Biol 170:594–606
- Bezprozvanny I (2009) Calcium signaling and neurodegenerative diseases. Trends Mol Med 15:89–100
- 105. Ehrlich LS, Medina GN, Khan MB, Powell MD, Mikoshiba K, Carter CA (2010) Activation of the inositol (1, 4, 5)-triphosphate calcium gate receptor is required for HIV-1 Gag release. J Virol 84:6438–6451
- 106. Foskett JK (2010) Inositol trisphosphate receptor Ca²⁺ release channels in neurological diseases. Pflugers Arch 460:481–494
- 107. Wu G, Markowitz GS, Li L, D'Agati VD, Factor SM, Geng L, Tibara S, Tuchman J, Cai Y, Park JH, van Adelsberg J, Hou H Jr, Kucherlapati R, Edelmann W, Somlo S (2000) Cardiac defects and renal failure in mice with targeted mutations in Pkd2. Nat Genet 24:75–78
- Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498
- Sohal VS, Zhang F, Yizhar O, Deisseroth K (2009) Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459:698–702