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Abstract This article presents a fast and uncomplicated method to modify multilayer per-
ceptrons allowing for a considerable single-step reduction of the cost function which in this
case is the mean of squared errors. The method consists in, but is not limited to the change of
neuron activation functions in the last hidden layer and in the single application of the least
squares method. No changes are made to neuron weights in any hidden layer. Some essential
strong points of the method lie in the fact that it can be used to improve operation of networks
trained earlier and the learning process need not be started from the very beginning.

Keywords Multilayer perceptron · Activation functions · Least squares method

1 Introduction

Many problems are encountered with learning a multilayer perceptron (MLP). Local minima
of the cost function cause serious difficulty. The results are greatly influenced by initial values
of weights. Often, the learning process is run repeatedly with various initial weights. Usually,
gradient algorithms, such as the Levenberg–Marquardt, the conjugate gradients and the vari-
able metric ones are used to learn MLP. The papers [1,2] among others show the learning way
with the recurrent least squares method (LSM). There are algorithms which successively use
non-linear optimization techniques together with the LSM. The staggered training of MLP
[3] is one of them. Initially, LSM is used to optimize the weights of the output layer. The
weights of the remaining layers are then subjected to nonlinear optimization. These two steps
are repeated alternately. When determination of the weights is completed, they are subjected
to pruning in order to reduce the number of connections and to improve the network general-
ization capability. The MLP learning problems convinced numerous researchers to search for
other network structures where all parameters are subjected to changes during learning and
could be optimized in a single step using LSM. For instance, the networks with orthogonal
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activation functions where changes are made only for linear output neurons were proposed in
[4–7]. A significant drawback of these networks lies in the fact that as the number of inputs
increases, the number of weights grows exponentially. In [8] it was proven that for MLP
with one hidden layer and with neurons having sigmoidal activation functions, the integrated
squared error is of the order O( 1

n ), where n is the number of neurons in the hidden layer. It
was assumed that the function approximated by the network was bound on the first moment
of the magnitude distribution of the Fourier transform. Barron [8] also demonstrated that
for networks with radial basis functions (RBFs), the integrated squared approximation error
cannot be less than O( 1

n2/q ), where q is the input-dimension.
Despite of a difficult learning process, MLP is one of the most popular network structures

since it has essential advantages.
A predisposition for operation with multi-dimensional data being one of them. There are

numerous applications where MLPs have hundreds of inputs and large amounts of neurons.
From time to time, an operating network needs to be improved without the necessity to re-
start the whole learning and pruning processes from the beginning. This article proposes such
a method.

Neurons in the hidden layers of MLP have activation functions of the sigmoidal shape.
An example of such a function is f (x) = tanh(x). In order to reduce the number of numer-
ical calculations, the hyperbolic tangent can be replaced by the bipolar function f (x) =

2
1+exp(−2x) − 1 or the binary function f (x) = 1

1+exp(−2x) . Many microcontrollers have a low
processing capacity. Look-up tables with values necessary for interpolation of the activation
function or piecewise polynomial models [9] may be used in devices under the control of
such microcontrollers. Numerous papers have been published where various shapes of acti-
vation functions were examined. The iteration process with non-linear optimization algo-
rithms was used to select the parameters of these functions. In [10] the activation function
f (x) = a(1−exp(−bx))

1+exp(−bx) was used, where a and b were the parameters selected with gradient
algorithms. In [11], the Catmull–Rom spline curves were applied.

In [12], it was proven that the perceptron with at least one hidden layer is a universal
approximator provided the activation function of the neurons are squashing functions, i.e. a
function f : R → [0, 1] is a squashing function if it is non-decreasing, limx→∞ f (x) = 1
and limx→−∞ f (x) = 0 If limx→−∞ f (x) = −1, then this MLP is also the universal
approximator.

The further structure of this article is as follows: Section 2 outlines the proposed method.
Section 3 provides the results of numerical experiments. A comparison was made between the
results gained by the proposed method as compared to those reached by MLP with sigmoid
activation functions in all hidden layers. A summary is placed at the end of this article.

2 Proposed method

If the proposed method is used, the activation functions of the neurons in the last hidden layer
may take various shapes. To select the shapes of these all activation functions, it is merely
necessary to solve the set of the normal equations once. In this article, it was assumed that
MLP, whose performance is to be improved, has neurons with sigmoid activation functions
in hidden layers, whereas neurons in the output layer have the linear activation function
fout (x) = x . Many times this layer possesses neurons of the linear activation function.

For the sake of a concise notation, formulae are given for MISO MLP (Multiple Input,
Single Output). A similar procedure is used for networks with several outputs. It was assumed
that the minimized cost function is
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Fig. 1 The structure of the k-th
neuron in the last hidden layer,
⊗ denotes the adder, r is the
number of neuron inputs,
vk,1, vk,2, . . . , vk,r are the
weights assigned to the
connections with the previous
layer

E = 1

N

N∑

i=1

(
F̂(ui )− di

)2
, (1)

where F̂(ui ) is the network output value when the network inputs are equal to the elements
of the vector ui = [

u1,i , u2,i , . . . , uq,i ,
]T
, q is the number of the network inputs, di is the

desired value of the network output assigned with ui , N is the number of the pairs {ui , di }
in the learning set. The formula (1) is commonly used as a cost function.

Let f (x) denote the activation function in the last hidden layer prior application of the
proposed method. Let g1(x), g2(x), . . . , gm(x) be the consecutive functions of the series

f
( x

2h

)
, f

( x

2h−1

)
, . . . , f (x), . . . , f

(
2h−1x

)
, f

(
2h x

)
,

where h is a positive integer, m = 2h + 1. In applications where a small number of arith-
metical operation is significant, the author of this article recommends assumption h < 2.
Increasing of h may result in significant decrease of the cost function. After selection of h,
the activation functions of all neurons in the last hidden layer are changed into the functions

fk(x) = wk,1g1(x)+ wk,2g2(x)+ · · · + wk,m gm(x), (2)

where fk(x) denotes the activation function of the k-th neuron in the last hidden layer, k =
1, . . . , s, s is the number of neurons in the last hidden layer, wk,1, . . . , wk,m ∈ R. The way
of calculating wk,1, . . . , wk,m was described hereinafter. For various k, the wk,1, . . . , wk,m

values are, mostly, not the same, therefore each neuron in the final hidden layer may have
another activation function. Figure 1 shows the proposed structure of the neurons in this
layer.

The next step consists of a change of values for all weights in the output layer into 1.
When all weights in the output layer have the value 1, then the problem of optimizing the
vector w reduces to solving the set of normal equations

Zw = d, (3)

where w = [
w1,1, w1,2, . . . , w1,m, w2,1, w2,2, . . . , w2,m, . . . , ws,1, ws,2, . . . , ws,m, b

]T
,

d = [d1, d2, . . . , dN ]T ,

Z =

⎡

⎢⎢⎢⎣

z1(u1) z2(u1) · · · zs(u1) 1
z1(u2) z2(u2) · · · zs(u2) 1
...

...
. . .

...
...

z1(uN ) z2(uN ) · · · zs(uN ) 1

⎤

⎥⎥⎥⎦ ,

zk(ui ) = [g1 (xk(ui )) , g2 (xk(ui )) , . . . , gm (xk(ui ))] , i = 1, . . . , N , k = 1, . . . , s, xk(ui )

is the weighted sum of neuron inputs for the k-th neuron in the last hidden layer, i.e. xk(ui ) =∑r
a=1 vk,aψk,a(ui ), ψk,a is the a-th input of the k-th neuron, b is the bias in the output layer.
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The values of the new activation functions’ parameters which minimize the cost func-
tion (1) are determined by the formula

w =
(

ZT Z
)−1

ZT y. (4)

For the sake of numerical problems, the parameters of the activation functions should not
be calculated directly using (4). Instead, they should be determined using the appropriate
numerical methods for the set of the normal equations (3). As an example, the singular value
decomposition may be applied. If the matrix Z is ill-conditioned, the truncated singular value
decomposition or ride regression can be applied to calculate the vector w [13].

When some elements of vector w are much smaller than the remaining ones, the number
of the terms of the sum in (2) may be reduced. Many algorithms exist to solve the modified
least squares problem (MLSP), which is encountered when columns representing small-value
vector elements are removed from the matrix Z. Such a problem may be solved very simply
by using the QR decomposition [13].

The proposed method can be outlined as follows:

(1) Changing the activation functions of all neurons in the last hidden layer into the functions
given by (2)

(2) Changing the weights of all neurons in the output layer to 1.
(3) Solving the set of normal equations (3) using proper numerical methods.
(4) Calculating the value of the cost function (1)
(5) The possible removal from the matrix Z of the columns corresponding to the lowest

values of w, and solving the MLSP, that was created by this removal. Recalculating the
value of the cost function. If the cost function changes significantly, item 5 is repeated.
Otherwise, the changes introduced in this item are withdrawn.

The set of the equations (3) can be solved much faster than training MLP using non-lin-
ear optimization methods. One of the functions from the series g1(x), g2(x), . . . , gm(x) is
equal to f (x). Therefore, it is obvious that the modified network must have at least the same
approximation capabilities as MLP, prior to application of the method under consideration.
The following section shows how the outlined method improved the performance of MLPs
which were trained using the Levenberg–Marquardt algorithm.

3 Numerical experiments

In Sect. 3.1 the results obtained during approximation of a two-argument differentiable func-
tion are shown. In Sect. 3.2, the results obtained with use of benchmarks of the well-known
UC Irvine Machine Learning Repository [14]. Two data sets were chosen, that featured with
high numbers of instances and attributes. All experiments were carried out using a Pentium
T4400 2.2 GHz, 3GB RAM computer. Computational tasks were made with Matlab software
utilizing the learning function for the Levenberg–Marquardt algorithm included in the Neural
Networks Toolbox.

3.1 Two-argument function approximation

Ten identical networks with one hidden layer were trained to map the function F(u1, u2) =
u2

1 − u2
2, which is shown in Fig. 2. The output layer included one neuron with a linear acti-

vation function. Initial values of the weights were selected using the Nguyen–Widrow algo-
rithm. The activation functions in the hidden layer were determined by the formula f (x) =
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Fig. 2 The graph of the function
F(u1, u2) = u2

1 − u2
2

2
1+exp(−2x) − 1. It was assumed that g1(x) = f (−0.25x), g2(x) = f (−0.5x), g3(x) =
f (−x), g4(x) = f (−2x), g5(x) = f (−4x).

A set of 10,201 data was used for network learning. The values of network inputs in the
learning set were evenly distributed over the area [-2,2] X [-2,2]. Initially, the networks were
learnt using the Levenberg–Marquardt algorithm. Learning was terminated after 100 epochs
as it was found that after 70 epochs the changes of the cost function (1) were insignificant.
Following completion of learning with the Levenberg–Marquardt algorithm, the proposed
method was used. Item 5 was not performed. The results are shown in Tables 1, 2 and in Fig. 3.
Times in Tables 1, 2, 3, and 4 are in seconds. F M L P (u1, u2) denotes the mean value of the
network output following learning with the Levenberg–Marquardt algorithm. F M ET (u1, u2)

represents the mean value of the network output after application of the proposed method.
By using the proposed method, the value of the cost function (1) was reduced by several

orders in less than 1% of the time used for learning larger MLP with the Levenberg–Marquardt
algorithm.

The next stage consisted of increasing the number of neurons in the hidden layer to 50. The
results for this enlarged number of neurons are shown in Tables 3, 4 and in Fig. 4. Learning
the network with 50 neurons was terminated after 200 epochs because it was found that, after
120 epochs the changes in the cost function (1) were very insignificant. Figure 5 shows the
value of the cost function in consecutive epochs.

The proposed method allowed for the reduction in the value of the cost function (1) by
several orders of magnitude both for networks with 10 and those with 50 neurons in the
hidden layer. Significantly better results were reached using smaller networks trained with
the described method as opposed to larger networks having five times more neurons in the
hidden layer, that were learnt with the Levenberg–Marquardt algorithm. The application of
the proposed method for the network with 10 neurons in the hidden layer was over 2,000
times faster than training MLP with 50 neurons in the hidden layers from the beginning with
the Levenberg–Marquardt algorithm.

3.2 Experiments with UCI benchmarks

In this Section, the results obtained with use of benchmarks from the well-known UC Irvine
Machine Learning Repository [14]. The data set Wine Quality and the data set Communi-
ties and Crimes were used. These databases were selected for they have a high number of
instances and attributes.

The Wine Quality Data Set may be downloaded from the page http://archive.ics.uvi.edu/
ml/datasets/Wine+Quality. A relevant article concerning this benchmark is [15]. For the
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Table 2 Mean values of the results from Table 1

Value (1) after learning with the Levenberg–Marquard alg. 1.768 × 10−6

Value (1) after using the proposed method 7.947 × 10−13

Learning time for the Levenberg–Marquard alg. t LevMar 21.89
Resolving time for set of equations (3) t L SM 0.154
t LevMar /t L SM 142.2

experiments, the data set of the Portuguese red wines “Vinho Verde” was used, that includes
1600 instances. In this data set, due to privacy and logistic issues only physicochemical and
sensory attributes are given. There is no information concerning prices, grape sort, etc. The
input variables are: fixed acidity, volatile acidity, citric acid, residual sugar, chlorides, free
sulfur dioxide, total sulfur dioxide, density, pH, sulphates, alcohol. The output variable is the
wine quality that is contained within the interval from 0 up to 10.

The other data set used was Communities and Crime Data Set that may be downloaded from
http://archive.ics.uci.edu/ml/datasets/Communities+and+Crime. It includes 1994 instances.
In this set, there are 128 attributes: 127 input variables such as, e.g., the number of unem-
ployed people, the median of wages, percentage of people living in areas classified as urban,
the number of police officers, etc. The attribute intended for predicting is the number of
crimes (per capita violent crime). For the experiments, 21 input variables were used (the

Fig. 3 Graphs for the network with 10 neurons in the hidden layer: a F M L P (u1, u2), b F(u1, u2) −
F M L P (u1, u2), c F M ET (u1, u2) and d F(u1, u2)− F M ET (u1, u2)
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Table 4 Mean values of the results from Table 3

Value (1) after learning with the Levenberg–Marquard alg. 1.288 × 10−7

Value (1) after using the proposed method 7.179 × 10−13

Learning time for the Levenberg–Marquard alg. t LevMar 326.05
Resolving time for set of equations (3) t L SM 2.93
t LevMar /t L SM 111.2

Fig. 4 Graphs for the network with 50 neurons in the hidden layer: a F(u1, u2) − F M L P (u1, u2) and
b F(u1, u2)− F M ET (u1, u2)

Fig. 5 Changes of the cost
function (1) in successive epochs
for MLP learnt, with the
Levenberg–Marquardt algorithm.
This MLP had 50 neurons in the
hidden layer

fields from 18 up to 38). The related data set used in [16]. That article includes a description
of the integration of the three files [17].

20 identical networks were learnt to predict the wine quality. These networks had 11
inputs, each. In the hidden layer, there were 40 neurons. In the output layer, there was one
neuron with a linear activation function. The initial values of the weights were chosen with
the Nguyen–Widrow algorithm. The learning was terminated after 100 epochs since the cost
function changes were very insignificant. Following completion of the learning with the
Levenberg–Marquardt algorithm, the proposed method was used. Item 5 was not performed.
h = 2 was assumed. In the Table 5, the mean values of the results are presented.

To predict the number of crimes, 10 networks were used, that had 21 inputs and 35 neu-
rons in the hidden layer, each. The learning with the Levenberg–Marquardt algorithm was
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Table 5 Mean values of the results for the Wine Quality data set

Value (1) after learning with the Levenberg–Marquard alg. 0.2614
Value (1) after using the proposed method 0.2287
Learning time for the Levenberg–Marquard alg. t LevMar 71.1542
Resolving time for set of equations (3) t L SM 0.2046
t LevMar /t L SM 347.8

Table 6 Mean values of the results for the Communities and Crime data set

Value (1) after learning with the Levenberg–Marquard alg. 4.1619 × 10−4

Value (1) after using the proposed method 3.6721 × 10−4

Learning time for the Levenberg–Marquard alg. t LevMar 1000.1
Resolving time for set of equations (3) t L SM 0.2776
t LevMar /t L SM 3602.9

terminated after 50 epochs. In the proposed method, h = 2 was assumed. The mean values
of the results are presented in the Table 6.

In a time shorter than the duration of one epoch of learning for the Levenberg–Marqu-
ardt algorithm, the proposed method enabled to decrease the cost function value of more
than 10%. Application of the described method is recommended, in particular, when further
teaching with use of gradient-type algorithms results in only very insignificant changes of
the cost function. Probably, when higher h was chosen, the cost function value would be
noticeably lower, but the equation set solving time would be higher.

4 Conclusions

This article presents the method which provides for an uncomplicated and efficient way to
improve MLP approximation capabilities for many functions. It allows for optimization in
individual shapes of the activation function for each neuron in the last hidden layer. To this
purpose, it is sufficient to solve the set of the normal equations (3) only once. The proposed
method can also be used to improve the performance of the networks trained at an earlier
time. It is perfectly suited to be applied to further improve the operation of the application
wherein MLP successfully works for some time. In many cases, it is an attractive alterna-
tive to the usual approach which consists of enlarging the amount of neurons as well as the
re-starting of the learning process from the beginning. It requires neither the iterative learning
process nor large operational memory. As shown in Sect. 3.1, in less than 1% of time used
to train MLP with the Levenberg–Marquardt algorithm, it may well reduce the value of the
cost function (1) by several orders of magnitude. The author of this article supposes that the
described method fits especially well to approximation of functions, the partial derivatives
of which change slowly on a big part of the independent variable domain.

The experiments conducted with the data sets of the UCI Machine Learning Repository
confirmed that, for networks of a higher number of neurons in the hidden layer and inputs, the
application of the proposed method is reasonable and makes it possible, within a short time,
to decrease the cost function value though further teaching with the gradient-type methods
does not result in a noticeable improvement.

An essential advantage of the described method is its easy implementation with spe-
cial commands for solving sets of linear equations that are available in most mathematical
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computing environments. Free open-source libraries with proper numerical methods exist for
each popular programming language. It is also worth mentioning that the proposed method is
applicable for use with look-up tables or piecewise polynomial models. This method requires
no change in weights of the neurons in any hidden layer.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.
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