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Abstract. Cluster validity has been widely used to evaluate the fitness of partitions pro-
duced by clustering algorithms. This paper presents a new validity, which is called the
Vapnik–Chervonenkis-bound (VB) index, for data clustering. It is estimated based on the
structural risk minimization (SRM) principle, which optimizes the bound simultaneously
over both the distortion function (empirical risk) and the VC-dimension (model complexity).
The smallest bound of the guaranteed risk achieved on some appropriate cluster number val-
idates the best description of the data structure. We use the deterministic annealing (DA)
algorithm as the underlying clustering technique to produce the partitions. Five numerical
examples and two real data sets are used to illustrate the use of VB as a validity index. Its
effectiveness is compared to several popular cluster-validity indexes. The results of compar-
ative study show that the proposed VB index has high ability in producing a good cluster
number estimate and in addition, it provides a new approach for cluster validity from the
view of statistical learning theory.

Key words. cluster validity, data clustering, deterministic annealing, structural risk
minimization, Vapnik–Chervonenkis-bound

1. Introduction

Clustering plays an important role in many engineering fields such as pat-
tern recognition, system modelling, image processing, communication, data min-
ing, and so on. The deterministic annealing (DA) algorithm, in particular, the
mass-constrained DA algorithm, in which the annealing process with its phase
transitions leads to a natural hierarchical clustering, is independent of the choice
of the initial data configuration and has the ability to avoid poor local optima
[19–21]. As reviewed in [21], the DA approach to clustering and its extensions has
demonstrated substantial performance improvement over standard supervised and
unsupervised learning methods. However, the DA clustering algorithm (i.e., the use
of DA approach for data clustering) needs to pre-select the optimal cluster number
of clusters, which is generally unknown in practical applications. Thus, an evalua-
tion methodology is required to validate each of the partitions (according to c=
2,3, . . . , cmax) and to obtain an optimal partition (or optimal number of clusters
c∗). This quantitative evaluation is the subject of cluster validity. The mathematical
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formula used to compute the validation is referred to as a cluster validity index.
In this paper, we use the DA algorithm as the underlying clustering technique to
produce the partitions.

In the last three decades, many indexes have been proposed in the literature,
which are used to measure the fitness of the partitions produced by clustering algo-
rithms. Especially in fuzzy clustering, Bezdek first proposed two cluster validity
indexes, the partition coefficient (PC) and partition entropy (PE) [1, 2]. Although
these two indexes are widely cited in the literature, the major drawback is that they
use only the fuzzy membership degrees for each cluster without considering the
data structure of the clusters [11, 16]. To overcome this disadvantage, Xie and Beni
[26] and Fukayama and Sugno [6] introduced new fuzzy validity criteria, denoted
by XB and FS indexes, respectively, for evaluating fuzzy c-partitions by exploit-
ing the concepts of compactness and separation. They combined, with a unique
function, the properties of the fuzzy membership degrees and the structure of data,
and therefore took into account the geometrical properties of the input data. Kwon
extended the XB index to eliminate its tendency to monotonically decrease when
the number of clusters approaches to the number of data points [13]. Most recently
developed indexes focused on the modification or extension of the traditional com-
pactness and separation to achieve better performance (e.g., [11, 15, 25, 27], etc.).
Different from the indexes described above, which tend to focus on compactness
and separation, the fuzzy hypervolume (FHV) and partition density (PD) validity
functions proposed by Gath and Geva [7] have been developed based on measures
of the degree of variance within each cluster. The variance measure was also used
in some late proposed indexes such as in [4, 17].

In this paper, a new approach for clustering validity is proposed from the view
of statistical learning theory. The proposed VC-bound (VB) index is estimated
based on the structural risk minimization (SRM) principle [24], which optimizes
the bound simultaneously over both the distortion function (empirical risk) and
the VC-dimension (model complexity) to achieve the minimum of the guaranteed
risk. The empirical risk is monotonically decreased with the increase of the cluster
number c. While the model complexity is monotonically increased with the index
of cluster number. The VB index aims to find a minimum value of the VC-bound
(within the cluster number range) to make a trade-off between the minimizations
of the empirical risk and model complexity. The corresponding cluster number and
its partition validate the best description of the data structure. To construct the VB
index, the empirical risk is represented by the distortion function of DA clustering
algorithm, and the VC-dimension of system structure is found to be equal to the
number of parameters of a set of specifically defined indicator functions. The valid-
ity indexes are considered to be independent of clustering algorithms. Most clus-
tering algorithms can generate fuzzy partitions and cluster centers for a given data
set. Although the proposed VB index is applicable to any fuzzy and crisp cluster-
ing algorithms, we only investigate its performance on the partitions produced by
the DA clustering algorithm.
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The rest of this paper is organized as follows. In Section 2, we review the DA
clustering algorithm with several most cited validity indexes. The new cluster valid-
ity (i.e., VB index) is derived for data clustering in Section 3. The proposed index
is estimated based on minimizing the bound over the guaranteed risk to reach the
best description of the underlying data structure. In Section 4, the experimental
results demonstrating the superiority of the VB index in appropriately determin-
ing the number of clusters, as compared to other well-known validity indexes, are
provided for several numerical examples and real data sets. Conclusion is given in
Section 5.

2. DA Clustering Algorithm and Several Popular Validity Indexes

2.1. data clustering by da algorithm

Let the input data set be X={x1, x2, . . . , xl}⊂Rn, where l is the number of input
data points, n is the dimension of input space. Based on a measure of similarity
(the most used one is the squared Euclidean distance), the data set is partitioned
into c clusters whose centers are denoted by V={v1, v2, . . . , vc}⊂Rn. Let d(xj , vk)

be the distance (squared Euclidean distance in [21]) between xj and vk, p(vk|xj )

be the association probability (membership) relating input point xj with cluster
center vk, p(xj ) be the source distribution. Then, the average expected distortion is
given by

Je=
l∑

j=1

c∑

k=1

p(xj )p(vk|xj )d(xj , vk). (1)

Minimization of Je with respect to the free parameters {vk,p(vk|xj } would immedi-
ately produce a hard clustering solution, as it is always advantageous to fully assign
an input point to the nearest cluster center [21]. To formulate the DA algorithm,
Rose et al. [19] and Rose [20] recast the optimization problem as that of seeking the
distribution, which minimizes Je subject to a specified level of randomness. The level
of randomness is, naturally, measured by the Shannon entropy as

Hs=−
l∑

j=1

p(xj )

c∑

k=1

p(vk|xj ) log p(vk|xj ). (2)

Then the DA algorithm is formulated as minimization of the Lagrangian

F =Je−THs. (3)

It turns out [21] (according to the maximum entropy principle) that the resultant
probability is the titled distribution and is given by

p(vk|xj )= p(vk)e−
d(xj ,vk)

T

Zxj

, (4)
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where Zxj
=∑c

i=1 p(vi)e−
d(xj ,vi )

T is the partition function, p(vk)=
∑l

j=1 p(xj )p(vk|xj )

is the mass probability of k(th) cluster, and T is the Lagrange multiplier, which
bears an analogy to the temperature in statistical mechanics. Clearly, at limited high
T , these are uniform distributions, each data point is equally associated with all
clusters. These are extremely fuzzy associations. As T is lowered, the distributions
become more discriminating and the associations less fuzzy. And at limited low T ,
the clustering becomes hard with each data point assigned to the nearest cluster with
probability one.

To estimate the free parameter vk, the effective cost to be minimized turns out
to be the free energy (a well-know concept in statistical mechanics [19]) as follows.

F = min
{p(vk |xj )}

(Je−T Hs)=−T

l∑

j=1

p(xj ) log
c∑

i=1

pie−
d(xj ,vi )

T . (5)

Based on (4), we can get the expression of cluster center vk by minimizing (5), that
is

vk=
∑l

j=1 p(xj )p(vk|xj )xj
∑l

j=1 p(xj )p(vk|xj )
. (6)

Alternative updating (4) and (6) with phase transition gives the (mass constrained)
DA algorithm, which has been shown superiority for data clustering and its exten-
sions [21]. The pseudo-code of DA with the proposed validity index for data
clustering is given in the next section.

During the annealing in T it is observed, that the cluster center remains at the
mass center of the related cluster up to a critical value. At that point the represen-
tation undergoes a transition and the cluster center splits up in data space [9, 21].
The critical T ∗k for the phase transition for kth cluster can be approximately
calculated as follows [21]

T ∗k =2λmax(Ck(x)), (7)

where λmax(Ck(x)) is the largest eigenvalue of the fuzzy covariance matrix of kth
cluster, that is

Ck(x)=
l∑

j=1

p(xj |vk)(xj −vk)(xj −vk)
T (8)

with the posteriori p(xj |vk) obtained by the Bayes formula

p(xj |vk)= p(xj )p(vk|xj )

p(vk)
. (9)

Figure 1 shows the annealing process with its phase transitions on a simple
example. The training set is generated from a mixture of five equal variance
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Figure 1. The annealing process with its phase transitions of DA clustering algorithm on a simple data.
The original cluster centers are denoted by “o”, the partitioned cluster centers are denoted by “*”.

Gaussian whose centers are marked by “o”. At high temperature, there is only
one effective cluster represented by one cluster center, marked by “x”, at the center
of mass of the training set. As the temperature is lowered, the system undergoes
phase transitions, which increase the number of effective clusters as shown in the
figure.

2.2. several popular validity indexes

In this subsection, we brief review several popular fuzzy cluster validity indexes,
which aims to: (1) provide a comparative study together with the proposed VB index
and (2) investigate the performance of the existing fuzzy cluster validity indexes on
the partitions produced by DA clustering algorithm. In the following the ukj denotes
the fuzzy membership of data point xj belonging to the kth cluster.

Bezdek proposed two cluster validity indexes for fuzzy clustering, the PC and
PE [1, 2], which were defined as

PC(c)= 1
l

l∑

j=1

c∑

k=1

(ukj )
2 (10)
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and

PE(c)=−1
l

l∑

j=1

c∑

k=1

(ukj ) log(ukj ). (11)

The optimal partition (or an optimal value of c∗) is obtained by maximizing PC
(or minimizing PE) with respect to c=2,3, . . . , cmax because this provides compact
clusters with higher values of ukj .

The FHV and PD validity functions proposed by Gath and Geva [7] were
defined by

FHV(c)=
c∑

k=1

[det(Fk)]1/2 (12)

and

PD(c)=
∑c

k=1 Sk∑c
k=1 Fk

, (13)

where the matrix Fk defined by

Fk=
∑l

j=1(ukj )
m(xj −vk)(xj −vk)

T

∑l
j=1(ukj )m

, (14)

denotes the fuzzy covariance matrix of cluster k; and the “sum of central
members” Sk defined by

Sk=
l∑

j=1

ukj , ∀xj ∈{xj : (xj −vk)F
−1
k (xj −vk)<1} (15)

takes into account only the points contributing to the core of the cluster, whose
radii are the standard deviations of the cluster features. A fuzzy partition can be
expected to have a low FHV (or high PD) value if the partition is tight. Thus,
we find an optimal c∗ by solving min2≤c≤cmax FHV(c) (or max2≤c≤cmax PD(c)) to
produce a best clustering performance for the data set X. Other indexes based on
measures of the degree of variance within each cluster are [4, 17].

XB proposed a validity index [26] that focused on two properties: compactness
and separation, defined as

XB(c)=
∑l

j=1
∑c

k=1(ukj )
2‖xj −vk‖2

l mini �=k ‖vi −vk‖2
. (16)

The numerator indicates the compactness of the fuzzy partition, while the denom-
inator indicates the strength of the separation between clusters. They stated that a
good partition produces a small value for the compactness, and that well-separated
cluster centers will produce a high value for the separation. Hence, the most desir-
able partition is obtained by minimizing XB for c=2,3, . . . , cmax.
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FS also tried to model the cluster validation [6] by exploiting the concepts of
compactness and separation, defined as

FS(c)=Jm−Km=
l∑

j=1

c∑

k=1

(ukj )
m‖xj −vk‖2−

l∑

j=1

c∑

k=1

(ukj )
m‖vk− v̄‖2, (17)

where v̄ is the mean of the cluster centers, Jm is a compactness measure, and
Km measures the degree of separation between clusters. The optimal partition is
obtained by minimizing FS with respect to c= 2,3, . . . , cmax. Based on XB and
FS indexes, lately developed indexes (e.g., [11, 13, 15, 25, 27]) focused on the
modifying or extending of the traditional compactness and separation to achieve
better performances.

3. The Proposed New Cluster Validity

In this section, we propose a novel practical cluster validity called VB index for
data clustering from the view of statistical learning theory [24]. For this purpose,
we need firstly to introduce the basics of SRM principle and related VC-bound as
below.

3.1. srm principle and vc-bound

The principle of SRM is a key issue to obtain good generalization performances
for a variety of learning machines, as e.g., the well-known support vector machines
(SVMs). The SRM principle finds the function that for the fixed amount of data
achieves the minimum of the guaranteed risk. To find the guaranteed risk, one has
to use bounds, e.g., VC-bound, on the actual risk. Under the SRM, a set of admis-
sible structures with the nested subsets is defined as follows

S1⊂S2⊂· · ·⊂Sc. . . (18)

with the non-decreasing VC-dimension of the structure

h1≤h2≤· · ·≤hc. . ., (19)

where Sc= (Qc(xj ,V ) : V ∈�c),∀j denotes the element of the structure at cluster
number c, with a set of indicator functions Qc(xj ,V ) of the empirical risk defined
according to the problems under investigation [24]. The task of the SRM principle
is to choose the element Sc of the structure for which the smallest bound on the
real risk (the smallest guaranteed risk)1

VB≤Rems+ ε

2

(
1+

(
1+Rems

4
ε

))1/2

(20)

1The bound (20) is based on the bias-variance dilemma [8]. The first term of inequality can be regarded
as the bias (also viewed as the approximation error in [10, 22]) and the second term of the inequal-
ity can be regarded as the variance (also viewed as the estimation error in [10, 22]) from the view of
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Figure 2. Graphical depiction of the SRM principle. The SRM picks a function f∗, which has small
training error (empirical risk), and comes from an element of the structure that has low capacity h

(confident interval), thus minimizing a risk bound in (20). The figure is taken from [22].

with

ε=
hc

(
log 2l

hc
+1

)
− log ζ

4

l
(21)

is achieved. Above ζ <1 is a constant (we set ζ =0.01 in all experiments). The first
term of the right-hand side of the bound (20) represents the empirical risk and the
second term is the confidence interval of the SRM based estimation. The bound
on the risk is the sum of the empirical risk and of the confident interval. The
empirical risk is decreased with the index of element of the structure (determined
by cluster number in data clustering, refer to the next subsection), while the con-
fidence interval is increased. The smallest bound of the risk is achieved on some
appropriate element of the structure, as shown in Figure 2. We call the bound (20)

(Footnote 1 continued )
bias-variance dilemma. To achieve good overall performance, the bias and the variance of the learn-
ing would both have to be small. The VC dimension is the well-known technique to balance bias and
variance raised in the literature of statistical learning theory. The important point here is that the defi-
nition can be used constructively to measure the capacity of a class of functions. The power of this
approach stems from generic results about the rate of uniform convergence [8, 24]. The authors would
like to thank the anonymous reviewer for pointing out the connection of the bound to the bias-variance
dilemma.
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above as “VC-bound2” (VC is the abbr. of Vapnik–Chervonenkis) in this paper. We
apply it for data clustering to select the optimal cluster number in the next subsec-
tion. The induced cluster validity criteria is called VB index in this paper.

3.2. cluster number selection by vb index

Assume the given data is partitioned by the DA clustering algorithm, which results
in certain partitions with according probabilities p(vk|xj ) (k= 1,2, . . . , c and j =
1,2, . . . , l) within the cluster number range (c= 2,3, . . . , cmax). The key issue of
applying (20) for cluster number selection is to construct a set of indicator func-
tions specifically for DA clustering algorithm. Let’s consider the function

Pk= lim
T→0

p(vk|xj )= lim
T→0

p(vk)e−d(xj ,vk)/T

∑c
i=1 p(vi)e−d(xj ,vi )/T

≈
{

1, if xj→vk,

0, otherwise,
(22)

where xj→ vk means the point j is assigned (clustered) into the cluster k at the
limit low temperature T→0. Note the unique Pk=1 is reached if and only if the
condition d(xj , vk) < d(xj , vi) (i �= k; i, k ∈ [1, c]) is satisfied. It bears the similarity
to the step function. Since the independent variable d(xj , vk) can be presented as
an inner product of two (n)-dimensional vectors of the input space as

d(xj , vk)=‖xj −vk‖2=〈xj −vk〉 · 〈xj −vk〉=
[
(d1

kj )
2+ (d2

kj )
2+· · ·+ (dn

kj )
2
]
, (23)

where dr
kj (r = 1,2, . . . , n) denotes the rth element of the vector xj − vk, and n is

the dimensionality of the input data. Then the function (22) can be approximated
by the step function as

Pk≈ θ

(
n∑

i=1

γkiφki(X
k)

)
, (24)

where γki is the diameter parameter and φki is linearly independent function
with the subset Xk ⊂X of the input space.3 We can now construct the indicator
functions for the DA clustering algorithm as

Qc(xj ,V )=
c∑

k=1

Pk≈
c∑

k=1

θ

(
n∑

i=1

γkiφki(X
k)

)
(25)

2We have to say that the name “VC-bound” is not popular for the bound (20) in the literature. We call
it “VC-bound” here just because we used the VC-dimension in the bound, and in some sense, in honor
of its originators.
3At the limit low temperature (hard clustering), we have

∑n
i=1 γkiφki (X

k)=1 for each data point with its
nearest cluster k. This makes sure that φki(X

k) is linearly independent without any assumption as in the
hyperplane case, which needs one more bias parameter [24]. And vk is a function of the subset Xk ⊂X

of the input data points as derived in (6), in which the parameter γk has nonzero value only for xj ∈Xk

in the hard clustering partition.



334 XULEI YANG ET AL.

It can be seen that the above constructed indicator functions, i.e., step functions
(25), are linear in their parameters. According to [24] (chapter 4.11), the VC-
dimension of a set of functions linear in their parameters is equal to the number
of parameters, i.e.,

hc= c×n (26)

for each nested subset Sc, such that the increase of cluster number is propor-
tional to the increase of the estimated VC-dimension. To obtain good generaliza-
tion performance one has to use the admissible structure (18) based on the set of
indicator functions (25) to search for an optimal cluster number that minimizes the
VC-bound (20).

Another important issue of applying (20) for cluster number selection is to
represent the empirical risk in the VC-bound for DA clustering algorithm. It
is well-known for the pattern recognition problem, the empirical risk in SRM
estimation is defined based on the misclassified error as follows,

Rems= 1
l

l∑

j=1

sign(yj − ȳj ), (27)

where yj is the actual class label of xj and ȳj is the estimated class label of xj .
Inspired by (27), a natural representation of empirical risk for clustering problem
can be obtained based on the distortion measures. Hence, we define it as

Rems=Jc/Jvar, (28)

where Jc is the distortion obtained by DA at cluster number c (c=2,3, . . . , cmax),
which is defined by

Jc=
c∑

k=1

l∑

j=1

p(xj )p(vk|xj )d(xj , vk). (29)

Jvar is the variance of the input data, which is defined by

Jvar= 1
l

l∑

j=1

‖xj − x̄‖2, (30)

where x̄= 1
l

∑l
j=1 xj is the mean of the input data. The distortion Jc is scaled by

the variance such that the induced Rems is located inside the range of [0,1]. As
shown in the experimental results, this representation normally leads to the con-
vex of the curve of VB index with the minimum value at the optimal cluster num-
ber. In conclusion, the proposed VB index is stated as: by evaluating the estimated
VC-bound for each chosen cluster number by Equation (20), where hc is defined
by (26) and Rems is defined by (28), we select the one that yields the minimum
value of VB as the optimal cluster number.
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3.3. pseudo-code of the proposed method

According to the above discussions, we now give a detailed pseudo-code of the DA
clustering algorithm with the proposed VB index for cluster number selection as
follows:

• Step (1) Set the maximum number of clusters cmax
4, initial temperature

Tini >2T ∗1 (see (7)), minimum temperature Tmin=Tini/1000, convergence param-
eter ε = 0.001, cluster center v1 = 1

l

∑l
j=1 xj with mass probability p(v1) = 1,

source distribution p(xj )= 1
l
(j =1,2, . . . , l), and c=1.

• Step (2) Alternatively update the titled distribution (4), and the cluster centers
(6) for k= 1,2, . . . , c (fixed point iterations) until the maximum change in the
cluster centers between consecutive iterations is less than the given threshold
value ε.
• Step (3) Save the induced partition, and calculate the value of VB (20) (or any

other cluster validity index introduced above) for the current cluster number c.
If c= cmax, set flag=0 then go to step 5; otherwise, go to the next step.
• Step (4) If T < Tmin, set flag = 1 then go to step 5; Otherwise, let T = ηT

(0<η<1), and check condition of phase transition for k=1,2, . . . , c, if critical
T ∗k is reached for cluster k (see (7)), add a new cluster center by vk+1= vk + δ

with p(vk+1)=p(vk)/2 and p(vk)=p(vk)/2, where δ is a small disturbance, and
let c← c+1, then go to step 2.
• Step (5) If flag = 0, then select the optimal cluster number c∗ by

c∗ = arg minc VB (here VB could be any other validity index), where
c = 2,3, . . . , cmax, and recover the saved partition according to the optimal
cluster number c∗. If flag = 1, then indicate that the clustering procedure is
failed.

4. Experimental Results

To demonstrate the effectiveness and superiority of the proposed VB index for
determining the optimal cluster number, we conducted extensive comparisons with
other cluster validity indexes on five numerical examples and two real data sets.
The proposed VB index was compared with six well-known fuzzy cluster validity
indexes introduced in Section 2.2: Bezdek’s PC and PE [1, 2], Xie and Beni’s XB
[26], Fukuyama and Sugenor’s FS [6], and Gath and Geva’s FHV and PD [7].

4.1. numerical examples

For the purpose of data structure visualization, we only consider two-dimensional
(2D) data sets in this subsection. We test the effectiveness and robustness of VB

4There is no general agreement on what value to use for cmax, a rule of thumb that many investigators
use is cmax≤ (l)1/2 [16]. In this paper, we set cmax=8 in all experimental results.
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Figure 3. The five data sets used in the numerical examples.

index for optimal cluster number selection on five specific data sets. The first
three data tested are Noisy data shown in Figure 3(a), Overlapped data shown
in Figure 3(b), and Unbalanced data shown in Figure 3(c). They are all derived
from a simple data set, which is generated from four Gaussian distributions with
means [(−3,−3), (−3,3), (3,−3), (3,3)], variances [0.6,0.6,0.6,0.6], and number
[30,30,30,30]. The fourth data tested is Butterfly data [13] shown in Figure 3(d),
in which 15 points have the positions of

{
0 0 0 1 1 1 2 3 4 5 5 5 6 6 6 0 2 4 1 2 3 2 2 2 1 2 3 0 2 4

}
.

And the last one is Synthetic data where 90 data points are generated by random
clicking as shown in Figure 3(e).

Example 1: Noisy Data: The Noisy data, as shown in Figure 3(a), is generated
by contaminating the simple data set with 60 random noisy points. In practi-
cal applications, the presence of noise makes it harder to determine the number
of clusters [5]. A good validity index should work well in the noisy situations.
We plot the values of VB (20) with respect to the cluster number c= 2,3, . . . ,8
in Figure 4(a). It can be seen that the minimum of VB is reached at c∗ = 4, so
that the proposed VB index correctly reveals the underlying cluster number for
this noisy data. We also plot the values of XB, FS, PC, PE, FHV, and PD with
respect to cluster number c in Figure 4(b–g), respectively. Where only FHV and
PD indexes can also find the correct cluster number c∗ = 4 for this data set as
shown in Figures 4(f) and (g). Among the unsuccessful indexes, PC, PE, and FS
indexes indicate the optimal value of c∗ =7. XB index points to the optimal num-
ber c∗ = 6; however, it indicates that c∗ = 4 may be another good cluster number
estimate as shown in Figure 4(b). For clustering result visualization, Figure 4(h)
shows the partition obtained by DA clustering algorithm with c∗ =4.

Example 2: Overlapped Data: The Overlapped data, as shown in Figure 3(b),
is derived by moving the means of the four clusters in the simple data set from
[(−3,−3), (−3,3), (3,−3), (3,3)] to [(−1,−1), (−1,1), (1,−1), (1,1)] but keeping
other parameters unchanged. In practical applications, the data sets are normally
overlapped. Hence, it is interesting to investigate the performances of existing
validity indexes including the proposed VB on this overlapped data set. The plots
of different validity indexes with different cluster number c= 2, . . . ,8 are shown
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Figure 4. (a–g) Performances of different cluster indexes on Noisy data. (h) Clustering result of DA with
c∗ =4 for Noisy data.
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Figure 5. (a–g) Performances of different cluster indexes on Overlapped data. (h) Clustering result of
DA with c∗ =4 for Overlapped data.

in Figure 5. Four of them correctly point to the optimal cluster number c∗ = 4
for this overlapped data set: VB, XB, and FHV indexes reach the minimum and
PD gets the maximum at the point c∗ = 4. The corresponding partition from DA
clustering algorithm at c∗ = 4 is shown in Figure 5(h), which correct reveals the
underlying data structure. On the other hand, the unsuccessful indexes, PC, PE,
and FS present a monotonic tendency of the cluster number c where they give a
largest optimal cluster number estimate c∗ =8.
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Example 3: Unbalanced Data: The Unbalanced data, as shown in Figure 3(c), is
derived by changing the number of one cluster in the simple data set from 30 to 240
and the according variance from 0.6 to 1.2 but keeping other parameters unchanged.
The situation that there are great difference in the number of samples in different
clusters may occur in the practical applications, so it is also interesting to investigate
this unbalanced data set. Figure 6 shows all the validity indexes with respect to the
cluster number c= 2, . . . ,8. It can be observed that the unbalance of the samples
does not obviously affect the performances of validity indexes, the optimal number
of clusters c∗ = 4 for this unbalanced data set is correctly recognized by all valid-
ity indexes except PD and FS. The FS index incorrectly reveals the optimal number
c∗=5. Although PD points to c∗=6 as the optimal value, it also indicates that c∗=4
is a possible estimate. The partition of DA clustering algorithm with c∗ =4 is shown
in Figure 6(h) for clustering result visualization. It provides a good description of
the underlying data structure, only two points are misclassified.

Example 4: Butterfly Data: The above examples considered three specific data
sets with Gaussian distributions in a variety of situations. To show the generality
of the proposed index, we consider two more data sets with nonGaussian distribu-
tions in this and the next examples. The Butterfly data, as shown in Figure 3(d),
consists of 15 points with the preferred cluster number copt=2. Figure 7 plots the
performances of the seven cluster validity indexes on this data set with respect to
the cluster number c= 2, . . . ,8. It can be observed that only VB and XB indexes
correctly reveal the optimal cluster number c∗=2 as shown in Figures 7(a) and (b).
PC, PE, and PD indicate that c∗ = 2 is a possible optimal estimate though they
point to a largest optimal cluster number c∗ = 8. The other two indexes, i.e., FS

2 3 4 5 6 7 8
1.8

2

2.2

2.4

2.6

2.8

3

Cluster Number

V
B

 In
d

ex

2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Cluster Number

V
B

 In
d

ex

2 3 4 5 6 7 8
–2500

–2000

–1500

–1000

–500

0

500

Cluster Number

F
S

 In
d

ex

2 3 4 5 6 7 8
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Cluster Number

P
C

 In
d

ex

(a)VB Index (b)XB Index (c)FS Index (d)PC Index

2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Cluster Number

P
E

 In
d

ex

2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

9

10

Cluster Number

F
H

V
 In

d
ex

2 3 4 5 6 7 8
0

5

10

15

20

25

30

35

40

45

Cluster Number

P
D

 In
d

ex

–10 –8 –6 –4 –2 0 2 4 6 8 10
–10

–8

–6

–4

–2

0

2

4

6

8

10

(e)PE Index (f)FHV Index (g)PD Index (h)Partition with c* = 4

Figure 6. (a–g) Performances of different cluster indexes on Unbalanced data. (h) Clustering result of
DA with c∗ =4 for Unbalanced data.
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Figure 7. (a–g) Performances of different cluster indexes on Butterfly data. (h) Clustering result of DA
with c∗ =2 for Butterfly data.

and FHV, cannot find the preferred cluster number: they reach the minimum at
c∗ =8. The partitioning result of Butterfly data set by DA algorithm with c∗ =2 is
shown in Figure 7(h) for visualization.

Example 5: Synthetic Data: The Synthetic data set, as shown in Figure 3(e),
contains 90 randomly generated data points. These points are distributed in three
assumed clusters with number 20, 30, and 40, respectively. The preferred cluster
number for Synthetic data is copt=3. The performances of different cluster validity
indexes with different cluster number on this data set are shown in Figures 8(a–g).
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Figure 8. (a–g) Performances of different cluster indexes on Synthetic data. (h) Clustering result of DA
with c∗ =3 for Synthetic data.
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It can be seen that all the indexes except FS indicate that c∗ = 3 is the optimal
(VB and XB indexes) or a possible optimal (PC, PE, FHV, and PD indexes) clus-
ter number. The unsuccessful index, i.e., FS, presents a monotonic tendency of the
cluster number c where it gives a largest optimal cluster number estimate c∗=8, as
shown in Figure 8(c). The partitioning result of Synthetic data by DA algorithm
with c∗ =3 is shown in Figure 8(h) for visualization.

4.2. two real data sets

The Iris and Wine data are investigated in this subsection for validity index com-
parisons. They are standard benchmarks in the machine learning literature and can
be obtained from the UCI repository [23].

Example 6: Iris Data: The Iris data set contains three classes (Iris Setosa, Iris
Versicolor and Iris Virginica) of 50 points each, where each class refers to a type
of iris plant. One class is linearly separable from the other two; the latter are
not linearly separable from each other. Thus, one can argue c∗ = 2 or c∗ = 3 for
the Iris data set. The validity indexes of the Iris data set are shown in Figure 9.
The proposed VB index reaches the minimum at c∗=3 so that correctly reveals the
underlying cluster number. The partition of DA clustering algorithm with c∗ =3 is
shown in Figure 9(h) by Iris’ two dominated features [i.e., petal length (PL) and
petal width (PW)]. The XB index shows that c∗ = 2, argued as another correct
number for Iris [16], is the optimal cluster number estimate. The PD index regards
c∗ = 8 as the optimal number and indicates that c∗ = 4 may be another optimal
number. The results of other indexes (including PC, PE, FS, and FHV) are unex-
pected since they present a monotonic tendency of the cluster number c where they
give a largest optimal cluster number estimate c∗ =8.

Example 7: Wine Data: As a final data set we present results from a wine recog-
nition problem. The Wine data consists of 178 13-dimensional samples, which are a
set of chemical analysis of three types of wine with number of samples 59, 71, and
48, respectively. Figure 10 shows the cluster validity results for the normalized Wine
data set5. Two of them find the correct cluster number: both VB and XB indexes
reach the minimum at the point of c∗ =3. The partition of DA clustering algorithm
with c∗ =3 is shown in Figure 10(h) by Wine’ first two principal components (taken
from [18]). FHV indicates that c∗ = 3 may be an optimal cluster number, though it
reaches the minimum at c∗=8. PC, PE, and FS indexes failed in this case, they show
that c∗ = 7 is the optimal cluster number. The PD index doesn’t work in this case
since it possesses a constant value with independence of cluster number c.

5Most clustering problems are solved by minimizing the constructed dispersion measures. In general,
each dimension presents one characteristic of data in an n-dimensional data set where each characteris-
tic has different dispersion. Thus, the results from minimizing the total dispersion measure may discard
the effects of some characteristics, especially, for those that have small dispersion values. This situation
frequently occurs in high-dimensional data sets. To use sufficiently all the information of characteristics,
we shall normalize the data set [25].
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Figure 9. (a–g) Performances of different cluster indexes on Iris data. (h) Clustering result of DA with
c∗ =4 for Iris data by its two dominated features (PL and PW).
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Figure 10. (a–g) Performances of different cluster indexes on Wine data. (h) Clustering result of DA
with c∗ =4 for Wine data by its first two principle components.

4.3. summary of experimental results

Table I summarizes the results obtained when the seven different validity indexes
were applied to the seven different data sets tested. The column copt in Table I
gives the optimal number of clusters for each data set, and the other columns show
the optimal cluster numbers obtained using each validity index. The proposed VB
index is the only index that correctly recognizes the number of clusters for all data
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Table I. Values of c∗ preferred by each cluster validity index for the
seven data sets tested in this paper.

Data set copt VB XB FS PC PE FHV PD

Noisy 4 4 6(4) 7 7 7 4 4
Overlapped 4 4 4 8 8 8 4 4
Unbalanced 4 4 4 5 4 4 4 6
Butterfly 2 2 2 8 8(2) 8(2) 8 8(2)
Synthetic 3 3 3 8 8(3) 8(3) 8(3) 5(3)
Iris 2/3 3 2 8 8 8 8 8
Wine 3 3 3 7 7 7 8(3) –

2/3 means both c∗ = 2 and 3 are argued as optimal number for Iris;
(x) means the number x inside the bracket is indicated as another good
estimate; – means PD index doesnot work on Wine.

sets; hence VB is the most effective of the indexes considered. The XB index cor-
rectly identifies the optimal c∗ in all data sets except the noisy data. It indicates
that the correct number c∗ = 4 may be another good cluster number estimate for
the noisy data; hence XB is also an effective index. FHV and PD work well on
most of the numerical examples with Gaussian distributions. However, they fail
in most of the real data sets and numerical examples with nonGaussian distribu-
tions. Although they have been widely used for c-shells cluster number estimate,
as in [12, 14], the practical applications of these two indexes need to be further
investigated. On the other hand, PC, PE, and FS indexes present a monotonic ten-
dency of the cluster number c on most of the data sets and therefore have the diffi-
culty in revealing the correct cluster number. In particular, the FS indexes, failed
in all data sets, hence it is proved as the most ineffective of the index considered.
The PC and PE indexes find the correct cluster number for only the unbalanced
data, hence they are also ineffective indexes. Note the direction of the monotonic
tendency of PC (and PE) on fuzzy c-means FCM [3] clustering algorithm is the
inverse of that on DA clustering algorithm. This is induced by the fact that they
use only the membership from clustering algorithms. The fuzzy membership degree
of FCM is increased with the increase of the cluster number assume that the fuzzi-
ness exponent keeps a constant, while for DA the probabilistic membership degree
is decreased with the increase of the cluster number (as the temperature decreases
from high value to low value). This observation indicates that some fuzzy cluster
validity indexes are not suitable for evaluating the partitions produced by DA clus-
tering algorithm.

5. Conclusion

Interest in clustering has increased recently because of new areas of application,
such as data mining, image and speech processing, and bio-informatics. A cen-
tral issue in these and other applications of clustering is how many clusters pro-
vide an appropriate description of the data. This is the main issue of cluster
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validity. In this paper, we have reviewed several validity indexes and then pro-
posed a new validity index, which is called VB index, for data clustering. It is esti-
mated based on the SRM principle in statistical learning theory, which optimizes
the bound simultaneously over both the distortion function (empirical risk) and
the VC-dimension (model complexity) to reach the minimum of the guaranteed
risk, i.e., the best generalization performance. The smallest value of VB index on
some appropriate cluster number validates the best description of the data struc-
ture. Its effectiveness and superiority are demonstrated by comparing to several
popular cluster-validity indexes on five numerical examples and two real data sets.
And the results of comparative study have shown that the proposed VB index has
high ability in producing a good cluster number estimate.
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