Skip to main content
Log in

Characterization of core/shell Cu/Ag nanopowders synthesized by electrochemistry and assessment of their impact on hemolysis, platelet aggregation, and coagulation on human blood for potential wound dressing use

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Copper/silver core/shell nanopowders with different metal ratio have been elaborated by electrochemistry (ultrasound-assisted electrolysis followed by a displacement reaction). Characterization was performed by several methods (X-ray diffraction, scanning electron microscope, energy-dispersive X-ray spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, centrifugal liquid sedimentation, and zeta potential measurements). The mean diameter of all nanoparticles is around 10 nm. The impact of each nanopowder on hemolysis, platelet aggregation, and coagulation has been studied on whole human blood. Hemolysis assays were performed with spectrophotometric measurement and platelet aggregation, with light transmission aggregometry and was compared to Cu/Pt core/shell nanoparticles with similar size as negative control. Calibrated thrombin generation test has been used for a coagulation study. They neither impact platelet aggregation nor hemolysis and have a procoagulant effect whatever their composition (i.e., metal ratio). These results highlight that such nanopowders have a potential use in medical applications (e.g., wound dressing).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexiou C, Jurgons R, Seliger C, Iro H (2006) Medical applications of magnetic nanoparticles. J Nanosci Nanotechnol 6(9):2762–2768

    Article  Google Scholar 

  • Amini E, Azadfallah M, Layeghi M, Talaei-Hassanloui R (2016) Silver-nanoparticle-impregnated cellulose nanofiber coating for packaging paper. Cellulose 23(1):557–570

    Article  Google Scholar 

  • Asharani PV, Sethu S, Vadukumpully S, Zhong S, Lim CT, Hande MP, Valiyaveettil S (2010) Investigations on the structural damage in human erythrocytes exposed to silver, gold, and platinum nanoparticles. Adv Funct Mater 20(8):1233–1242

    Article  Google Scholar 

  • Balogh LP, Nigavekar SS, Cook AC, Minc L, Khan MK (2003) Development of radioactive dendrimer nanocomposites to treat tumor microvasculature. Pharma Chem 2:94–99

    Google Scholar 

  • Bhattacharjee S (2016) DLS and zeta potential—what they are and what they are not? J Control Release 235:337–351

    Article  Google Scholar 

  • Cattarin S, Musiani M (2007) Electrosynthesis of nanocomposite materials for electrocatalysis. Electrochim Acta 52(8):2796–2805

    Article  Google Scholar 

  • Chatterjee K, Sarkar S, Jagajjanani Rao K, Paria S (2014) Core/shell nanoparticles in biomedical applications. Adv Colloid Interf Sci 209:8–39

    Article  Google Scholar 

  • Chen Z, Mochizuki D, Maitani MM, Wada Y (2013a) Facile synthesis of bimetallic Cu-Ag nanoparticles under microwave irradiation and their oxidation resistance. Nanotechnology 24(26):265602

    Article  Google Scholar 

  • Chen K-T, Ray D, Peng Y-H, Hsu Y-C (2013b) Preparation of Cu–Ag core–shell particles with their anti-oxidation and antibacterial properties. Curr Appl Phys 13(7):1496–1501

    Article  Google Scholar 

  • Cho K-H, Park J-E, Osaka T, Park S-G (2005) The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim Acta 51(5):956–960

    Article  Google Scholar 

  • Choi J, Reipa V, Hitchins VM, Goering PL, Malinauskas RA (2011) Physicochemical characterization and in vitro hemolysis evaluation of silver nanoparticles. Toxicol Sci 123(1):133–143

    Article  Google Scholar 

  • Clark A, Zhu A, Sun K, Petty HR (2011) Cerium oxide and platinum nanoparticles protect cells from oxidant-mediated apoptosis. J Nanopart Res 13(10):5547–5555

    Article  Google Scholar 

  • Deb S, Chatterjee M, Bhattacharya J, Lahiri P, Chaudhuri U, Choudhuri SP, Kar S, Siwach OP, Sen P, Dasgupta AKR (2009) Role of purinergic receptors in platelet-nanoparticle interactions. Nanotoxicology 1(2):93–103

    Article  Google Scholar 

  • Deb S, Raja SO, Dasgupta AK, Sarkar R, Chattopadhyay AP, Chaudhuri U, Guha P, Sardar P (2012) Surface tunability of nanoparticles in modulating platelet functions. Blood Cells Mol Dis 48(1):36–44

    Article  Google Scholar 

  • Debouttière PJ, Roux S, Vocanson F, Billotey C, Beuf O, Favre-Réguillon A, Lin Y, Pellet-Rostaing S, Lamartine R, Perriat P, Tillement O (2006) Design of gold nanoparticles for magnetic resonance imaging. Adv Funct Mater 16(18):2330–2339

    Article  Google Scholar 

  • Delplancke JL, Bella VD, Reisse J, Winand R (1994) "production of metal nanopowders by sonoelectrochemistry." MRS Proceedings 372

  • Dobrovolskaia MA, Aggarwal P, Hall JB, McNeil SE (2008) Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol Pharm 5(4):487–495

    Article  Google Scholar 

  • Frohlich E (2016) Action of nanoparticles on platelet activation and plasmatic coagulation. Curr Med Chem 23(5):408–430

    Article  Google Scholar 

  • Golubeva OY, Shamova OV, Orlov DS, Pazina TY, Boldina AS, Kokryakov VN (2010) Study of antimicrobial and hemolytic activities of silver nanoparticles prepared by chemical reduction. Glas Phys Chem 36(5):628–634

    Article  Google Scholar 

  • Grouchko M, Kamyshny A, Magdassi S (2009) Formation of air-stable copper-silver core-shell nanoparticles for inkjet printing. J Mater Chem 19(19):3057–3062

    Article  Google Scholar 

  • Guzman M, Delplancke J-L, Long GJ, Delwiche J, Hubin-Franskin M-J, Grandjean F (2002) Morphologic and magnetic properties of Pd100−xFex nanoparticles prepared by ultrasound assisted electrochemistry. J Appl Phys 92(5):2634–2640

    Article  Google Scholar 

  • Huang H, Lai W, Cui M, Liang L, Lin Y, Fang Q, Liu Y, Xie L (2016) An evaluation of blood compatibility of silver nanoparticles. Sci Rep 6:25518

    Article  Google Scholar 

  • Hunter RJ (1981) Zeta potential in colloid science principles and applications, academic press: v-vi

  • Ilinskaya AN, Dobrovolskaia MA (2013) Nanoparticles and the blood coagulation system. Part I: benefits of nanotechnology. Nanomedicine (Lond) 8(5):773–784

    Article  Google Scholar 

  • Jing H, Yu Z, Li L (2008) Antibacterial properties and corrosion resistance of Cu and Ag/Cu porous materials. J Biomed Mater Res A 87(1):33–37

    Article  Google Scholar 

  • Johnston HJ, Hutchison G, Christensen FM, Peters S, Hankin S, Stone V (2010) A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Crit Rev Toxicol 40(4):328–346

    Article  Google Scholar 

  • Jun EA, Lim KM, Kim K, Bae ON, Noh JY, Chung KH, Chung JH (2011) Silver nanoparticles enhance thrombus formation through increased platelet aggregation and procoagulant activity. Nanotoxicology 5(2):157–167

    Article  Google Scholar 

  • Kang HS, Koo YH, Park HD, Chai GS, Ryoo SY, Bae HB, Lee BC (2015) Manufacturing method for core-shell metal nanoparticle structure having excellent oxidation stability using Cu@Ag core-shell nanoparticles. J Nanosci Nanotechnol 15(11):8508–8514

    Article  Google Scholar 

  • Karlsson HL, Cronholm P, Hedberg Y, Tornberg M, De Battice L, Svedhem S, Wallinder IO (2013) Cell membrane damage and protein interaction induced by copper containing nanoparticles—importance of the metal release process. Toxicology 313(1):59–69

    Article  Google Scholar 

  • Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3(1):95–101

    Article  Google Scholar 

  • Kim CK, Lee G-J, Lee MK, Rhee CK (2014) A novel method to prepare Cu@Ag core–shell nanoparticles for printed flexible electronics. Powder Technol 263:1–6

    Article  Google Scholar 

  • Klinkajon W, Supaphol P (2014) Novel copper (II) alginate hydrogels and their potential for use as anti-bacterial wound dressings. Biomed Mater 9(4):045008

    Article  Google Scholar 

  • Krajewski S, Prucek R, Panacek A, Avci-Adali M, Nolte A, Straub A, Zboril R, Wendel HP, Kvitek L (2013) Hemocompatibility evaluation of different silver nanoparticle concentrations employing a modified Chandler-loop in vitro assay on human blood. Acta Biomater 9(7):7460–7468

    Article  Google Scholar 

  • Kwon T, Woo HJ, Kim YH, Lee HJ, Park KH, Park S, Youn B (2012) Optimizing hemocompatibility of surfactant-coated silver nanoparticles in human erythrocytes. J Nanosci Nanotechnol 12(8):6168–6175

    Article  Google Scholar 

  • Laloy J, Robert S, Marbehant C, Mullier F, Mejia J, Piret JP, Lucas S, Chatelain B, Dogne JM, Toussaint O, Masereel B, Rolin S (2012) Validation of the calibrated thrombin generation test (cTGT) as the reference assay to evaluate the procoagulant activity of nanomaterials. Nanotoxicology 6(2):213–232

    Article  Google Scholar 

  • Laloy J, Minet V, Alpan L, Mullier F, Beken S, Toussaint O, Lucas S, Dogné J (2014a) Impact of silver nanoparticles on haemolysis, platelet function and coagulation. Nano 1:4

    Google Scholar 

  • Laloy J, Mullier F, Alpan L, Mejia J, Lucas S, Chatelain B, Toussaint O, Masereel B, Rolin S, Dogne JM (2014b) A comparison of six major platelet functional tests to assess the impact of carbon nanomaterials on platelet function: a practical guide. Nanotoxicology 8(2):220–232

    Article  Google Scholar 

  • Laloy J, Mullier F, Alpan L, Mejia J, Lucas S, Chatelain B, Toussaint O, Masereel B, Rolin S, Dogne JM (2014c) A comparison of six major platelet functional tests to assess the impact of carbon nanomaterials on platelet function: a practical guide. Nanotoxicology 8:220–232

    Article  Google Scholar 

  • Levi S, Mancier V, Rousse C, Garcia OL, Mejia J, Guzman M, Lucas S, Fricoteaux P (2015) Synthesis of spherical copper-platinum nanoparticles by sonoelectrochemistry followed by conversion reaction. Electrochim Acta 176:567–574

    Article  Google Scholar 

  • Luyts K, Napierska D, Nemery B, Hoet PHM (2013) How physico-chemical characteristics of nanoparticles cause their toxicity: complex and unresolved interrelations. Environ Sci : Processes Impacts 15(1):23–38

    Google Scholar 

  • Mancier V, Delplancke J-L, Delwiche J, Hubin-Franskin M-J, Piquer C, Rebbouh L, Grandjean F (2004) Morphologic, magnetic, and Mössbauer spectral properties of Fe75Co25 nanoparticles prepared by ultrasound-assisted electrochemistry. J Magn Magn Mater 281(1):27–35

    Article  Google Scholar 

  • Mancier V, Daltin AL, Leclercq D (2008) Synthesis and characterization of copper oxide (I) nanoparticles produced by pulsed sonoelectrochemistry. Ultrason Sonochem 15(3):157–163

    Article  Google Scholar 

  • Mancier V, Rousse-Bertrand C, Dille J, Michel J, Fricoteaux P (2010) Sono and electrochemical synthesis and characterization of copper core-silver shell nanoparticles. Ultrason Sonochem 17(4):690–696

    Article  Google Scholar 

  • Martinez-Gutierrez F, Thi EP, Silverman JM, de Oliveira CC, Svensson SL, Vanden Hoek A, Sanchez EM, Reiner NE, Gaynor EC, Pryzdial EL, Conway EM, Orrantia E, Ruiz F, Av-Gay Y, Bach H (2012) Antibacterial activity, inflammatory response, coagulation and cytotoxicity effects of silver nanoparticles. Nanomedicine 8(3):328–336

    Article  Google Scholar 

  • Mocan, T. (2013). "Hemolysis as expression of nanoparticles-induced cytotoxicity in red blood cells." Biotechnology, molecular biology and nanomedicine 1(1)

  • Park K-W, Han D-S, Sung Y-E (2006) PtRh alloy nanoparticle electrocatalysts for oxygen reduction for use in direct methanol fuel cells. J Power Sources 163(1):82–86

    Article  Google Scholar 

  • Petrović S, Salatić B, Milovanović D, Lazović V, Živković L, Trtica M, Jelenković B (2015) Agglomeration in core-shell structure of CuAg nanoparticles synthesized by the laser ablation of cu target in aqueous solutions. J Opt 17(2):025402

    Article  Google Scholar 

  • Reidy B, Haase A, Luch A, Dawson K, Lynch I (2013) Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials 6(6):2295–2350

    Article  Google Scholar 

  • Reisse J, Deplancke JL, Winand R (1995) Device for the production of ultrafine powders, Google Patents

  • Rigo C, Ferroni L, Tocco I, Roman M, Munivrana I, Gardin C, Cairns WR, Vindigni V, Azzena B, Barbante C, Zavan B (2013) Active silver nanoparticles for wound healing. Int J Mol Sci 14(3):4817–4840

    Article  Google Scholar 

  • Rousse C, Josse J, Mancier V, Levi S, Gangloff SC, Fricoteaux P (2016) Synthesis of copper–silver bimetallic nanopowders for a biomedical approach; study of their antibacterial properties. RSC Adv 6(56):50933–50940

    Article  Google Scholar 

  • Shiny PJ, Mukherjee A, Chandrasekaran N (2014) Haemocompatibility assessment of synthesised platinum nanoparticles and its implication in biology. Bioprocess Biosyst Eng 37(6):991–997

    Article  Google Scholar 

  • Shrivastava S, Bera T, Singh SK, Singh G, Ramachandrarao P, Dash D (2009) Characterization of antiplatelet properties of silver nanoparticles. ACS Nano 3(6):1357–1364

    Article  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275(1):177–182

    Article  Google Scholar 

  • Steuer H, Krastev R, Lembert N (2014) Metallic oxide nanoparticles stimulate blood coagulation independent of their surface charge. J Biomed Mater Res B Appl Biomater 102(5):897–902

    Article  Google Scholar 

  • Stevens KN, Crespo-Biel O, van den Bosch EE, Dias AA, Knetsch ML, Aldenhoff YB, van der Veen FH, Maessen JG, Stobberingh EE, Koole LH (2009) The relationship between the antimicrobial effect of catheter coatings containing silver nanoparticles and the coagulation of contacting blood. Biomaterials 30(22):3682–3690

    Article  Google Scholar 

  • Willner I (2005) Nanoparticle- and nanorod-biomaterial hybrid systems for sensor, circuitry and motor applications. e-J Surf Sci Nanotechnol 3:1–7

    Article  Google Scholar 

  • Xu R, Zhou K, Hu M (2009) Preparation of core-shell Cu-Ag bimetallic powder via electroless coating. J Wuhan Univ Technol-Mater Sci Ed 24(4):637–639

    Article  Google Scholar 

  • Yao KF, Peng Z, Liao ZH, Chen JJ (2009) Preparation and photocatalytic property of TiO2-Fe3O4 core-shell nanoparticles. J Nanosci Nanotechnol 9(2):1458–1461

    Article  Google Scholar 

  • Zhang J, Mo Y, Vukmirovic MB, Klie R, Sasaki K, Adzic RR (2004) Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles. J Phys Chem B 108(30):10955–10964

    Article  Google Scholar 

  • Zhang J, Lima FHB, Shao MH, Sasaki K, Wang JX, Hanson J, Adzic RR (2005) Platinum monolayer on nonnoble metal−noble metal core−shell nanoparticle electrocatalysts for O2 reduction. J Phys Chem B 109(48):22701–22704

    Article  Google Scholar 

  • Zhang Y, Chen Y, Zhang H, Zhang B, Liu J (2013) Potent antibacterial activity of a novel silver nanoparticle-halloysite nanotube nanocomposite powder. J Inorg Biochem 118:59–64

    Article  Google Scholar 

Download references

Acknowledgements

This research received support from the QualityNano Project http://www.QualityNano.eu which is financed by the European Community Research Infrastructures under the F7 Capacities Programme (grant no. INFRA-2010-262163) and its partner University of Namur. This work was also supported by the DGO6 (Direction Générale Opérationnelle de l’Economie, de l’Emploi et de la Recherche) of the Walloon Region of Belgium (“Project Complément FP7 Qnano, Convention n°1117448”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie Laloy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This study was funded by the European Community Research Infrastructures (grant number INFRA-2010-262163) and by the Walloon Region of Belgium (Project Complément FP7 Qnano, Convention n°1117448).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laloy, J., Haguet, H., Alpan, L. et al. Characterization of core/shell Cu/Ag nanopowders synthesized by electrochemistry and assessment of their impact on hemolysis, platelet aggregation, and coagulation on human blood for potential wound dressing use. J Nanopart Res 19, 266 (2017). https://doi.org/10.1007/s11051-017-3937-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-017-3937-0

Keywords

Navigation