Skip to main content
Log in

Recent progress in all-solid-state quantum dot-sensitized TiO2 nanotube array solar cells

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

All-solid-state quantum dot-sensitized TiO2 nanotube array solar cells have been drawing great attention to solar energy conversion, which break through restrictions in traditional solar cells, such as the high recombination at interfaces of porous TiO2 films/sensitizers/hole conductors/counter electrodes, instability of dyes, and leakage of solution electrolyte, and so the novel solar cells exhibit promising applications in the future. In this Minireview article, the assembling of solar cells including the preparation of TiO2 nanotube array photoanodes, quantum dot preparation and sensitization on photoanodes, filling of hole conductors in TiO2 nanotubes, and selection of counter electrodes are overviewed, and the development course of all-solid-state quantum dot-sensitized TiO2 nanotube array solar cells in recent years are summarized in detail. Moreover, the influences of TiO2 nanotube array photoanodes, quantum dots, solid electrolyte, and counter electrodes on photon-to-current efficiencies of solar cells are summarized. In addition, current problems of solid-state quantum dot-sensitized TiO2 nanotube array solar cells are analyzed, and the corresponding improvements, such as multisensitizers and passivation layers, are proposed to improve the photoelectric conversion efficiency. Finally, this Minireview provides a perspective for the future development of this novel solar cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albu SP, Roy P, Virtanen S, Schmuki P (2010) Self-organized TiO2 nanotube arrays: critical effects on morphology and growth. Isr J Chem 50:453–467

    Article  Google Scholar 

  • Baker DR, Kamat PV (2009) Photosensitization of TiO2 nanostructures with CdS quantum dots: particulate versus tubular support architectures. Adv Funct Mater 19:805–811

    Article  Google Scholar 

  • Bierman MJ, Jin S (2009) Potential applications of hierarchical branching nanowires in solar energy conversion. Energy Environ Sci 2:1050–1059

    Article  Google Scholar 

  • Chalita R, Yuan T Jr, Balkus KJ (2009) Photocatalytic activity of PbS quantum dot/TiO2 nanotube composites. J Phys Chem C 113:10755–10760

    Article  Google Scholar 

  • Chang H, Tzeng W, Lin C, Cheng S (2011) Ionic compounds lamination reaction and characteristics of photosensitive copper indium sulfide on titania nanotube arrays. J. Alloys Compd 509:8700–8706

    Article  Google Scholar 

  • Chang L, Lunt RR, Brown PR, Bulovic V, Bawendi MG (2013a) Low-temperature solution-processed solar cells based on PbS colloidal quantum dot/CdS heterojunctions. Nano Lett 13:994–999

    Article  Google Scholar 

  • Chang W, Hsueh Y, Huang S, Liu K, Kei C, Perng T (2013b) Fabrication of Ag-loadedmulti-walled TiO2 nanotube arrays and their photocatalytic activity. J Mater Chem A 1:1987–1991

    Article  Google Scholar 

  • Chaudhuri RG, Paria S (2012) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112:2373–2433

    Article  Google Scholar 

  • Chen C, Ali G, Yoo SH, Kuma JM, Cho SO (2011a) Improved conversion efficiency of CdS quantum dot-sensitized TiO2 nanotube-arrays using CuInS2 as a co-sensitizer and an energy barrier layer. J Mater Chem 21:16430–16435

    Article  Google Scholar 

  • Chen G, Wang L, Zou Y, Sheng X, Liu H, Pi X, Yang D (2011b) CdSe quantum dots sensitized mesoporous TiO2 solar cells with CuSCN as solid-state electrolyte. J Nanomater 2011:269591

    Google Scholar 

  • Chen K, Feng X, Hu R, Li Y, Xie K, Li Y, Gu H (2013) Effect of Ag nanoparticle size on the photoelectrochemical properties of Ag decorated TiO2 nanotube arrays. J Alloys Compd 554:72–79

    Article  Google Scholar 

  • Cheng H, Zhao X, Sui X, Xiong Y, Zhao J (2011) Fabrication and characterization of CdS-sensitized TiO2 nanotube photoelectrode. J Nanopart Res 13:555–562

    Article  Google Scholar 

  • Cheng S, Fu W, Yang H, Zhang L, Ma J, Zhao H, Sun M, Yang L (2012) Photoelectrochemical performance of multiple semiconductors (CdS/CdSe/ZnS) co-sensitized TiO2 photoelectrodes. J Phys Chem C 116:2615–2621

    Article  Google Scholar 

  • Chi C, Chen P, Lee Y, Liu I, Chou S, Zhang X, Bach U (2011) Surface modifications of CdS/CdSe co-sensitized TiO2 photoelectrodes for solid-state quantum-dot-sensitized solar cells. J Mater Chem 21:17534–17540

    Article  Google Scholar 

  • Chu VH, Nghiem THL, Le TH, Vu DL, Tran HN, Vu TKL (2012) Synthesis and optical properties of water soluble CdSe/CdS quantum dots for biological applications. Adv Nat Sci 3:025017

    Google Scholar 

  • Chung I, Lee B, He J, Chang RPH, Kanatzidis MG (2012a) All-solid-state dye-sensitized solar cells with high efficiency. Nature 485:486–489

    Article  Google Scholar 

  • Chung I, Song JH, Im J, Androulakis J, Malliakas CD, Li H, Freeman AJ, Kenney JT, Kanatzidis MG (2012b) CsSnI3: semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions. J Am Chem Soc 134:8579–8587

    Article  Google Scholar 

  • Dao VD, Kim SH, Choi HS, Kim JH, Park HO, Lee JK (2011) Efficiency enhancement of dye-sensitized solar cell using Pt hollow sphere counter electrode. J Phys Chem C 115:25529–25534

    Article  Google Scholar 

  • Gao X, Li H, Sun W, Chen Q, Tang F, Peng L (2009) CdTe quantum dots-sensitized TiO2 nanotube array photoelectrodes. J Phys Chem C 113:7531–7535

    Article  Google Scholar 

  • Guan X, Huang S, Zhang Q, Shen X, Sun H, Li D, Luo Y, Yu R, Meng Q (2011) Front-side illuminated CdS/CdSe quantum dots co-sensitized solar cells based on TiO2 nanotube arrays. Nanotechnology 22:465402

    Article  Google Scholar 

  • Hagfeldtt A, Grätzel M (1995) Light-induced redox reactions in nanocrys-talline systems. Chem Rev 95:49–68

    Article  Google Scholar 

  • Hossain MF, Biswas S, Zhang Z, Takahashi T (2011) Bubble-like CdSe nanoclusters sensitized TiO2 nanotube arrays for improvement in solar cell. J Photochem Photobiol A 217:68–75

    Article  Google Scholar 

  • Hsiao PT, Liou YJ, Teng H (2011) Electron transport patterns in TiO2 nanotube arrays based dye-sensitized solar cells under frontside and backside illuminations. J Phys Chem C 115:15018–15024

    Article  Google Scholar 

  • Huang D, Tian R, Zhao Y, Nie J, Cai X, Yao C (2010a) First-principles study of CuAlS2 for p-type transparent conductive materials. J Phys D Appl Phys 43:395405

    Article  Google Scholar 

  • Huang K, Wang Y, Dong R, Tsai W, Tsai K, Wang C, Chen Y, Vittal R, Lin J, Ho K (2010b) A high performance dye-sensitized solar cell with a novel nanocomposite film of PtNP/MWCNT on the counter electrode. J Mater Chem 20:4067–4073

    Article  Google Scholar 

  • Huang L, Peng F, Wang H, Yu H, Geng W, Yang J, Zhang S, Zhao H (2011a) Controlled synthesis of octahedral Cu2O on TiO2 nanotube arrays by lectrochemical deposition. Mater Chem Phys 130:316–322

    Article  Google Scholar 

  • Huang Y, Sun L, Xie K, Lai Y, Liu B, Ren B, Lin C (2011b) SERS study of Ag nanoparticles electrodeposited on patterned TiO2 nanotube films. J Raman Spectrosc 42:986–991

    Article  Google Scholar 

  • Ip AH, Thon SM, Hoogland S, Voznyy O, Zhitomirsky D, Debnath R, Levina L, Rollny LR, Carey GH, Fischer A, Kemp KW, Kramer IJ, Ning Z, Labelle AJ, Chou K, Amassian A, Sargent EH (2012) Hybrid passivated colloidal quantum dot solids. Nat Nanotechnol 7:577–582

    Article  Google Scholar 

  • Joshi P, Zhang L, Chen Q, Galipeau D, Fong H, Qiao Q (2010) Electrospun carbon nanofibers as low-cost counter electrode for dye-sensitized solar cells. ACS Appl Mater Interfaces 2:3572–3577

    Article  Google Scholar 

  • Kamat PV (2008) Semiconductor nanocrystals as light harvesters. J Phys Chem C 112:18737–18753

    Article  Google Scholar 

  • Kang Q, Liu S, Yang L, Cai Q, Grimes CA (2011a) Fabrication of PbS nanoparticle-sensitized TiO2 nanotube arrays and their photoelectrochemical properties. ACS Appl Mater Interfaces 3:746–749

    Article  Google Scholar 

  • Kang Q, Liu S, Yang L, Cai Q, Grimes CA (2011b) Fabrication of PbS nanoparticle-sensitized TiO2 nanotube arrays and their photoelectrochemical properties. ACS Appl Mater Interfaces 3:746–749

    Article  Google Scholar 

  • Kang Q, Cai Q, Yao S, Grimes CA, Ye J (2012) Fabrication of Zn x Cd1−x Se nanocrystal-sensitized TiO2 nanotube arrays and their photoelectrochemical properties. J Phys Chem C 116:16885–16892

    Article  Google Scholar 

  • Kowalski D, Albu SP, Schmuki P (2013) Current dependent formation of PEDOT inverse nanotube arrays. RSC Adv. 3:2154–2157

    Article  Google Scholar 

  • Lai Y, Zhuang H, Xie K, Gong D, Tang Y, Sun L, Lin C, Chen Z (2010) Fabrication of uniform Ag/TiO2 nanotube array structures with enhanced photoelectrochemical performance. New J Chem 34:1335–1340

    Article  Google Scholar 

  • Lai Y, Lin Z, Zheng D, Chi L, Du R, Lin C (2012) CdSe/CdS quantum dots co-sensitized TiO2 nanotube array photoelectrode for highly efficient solar cells. Electrochim Acta 79:175–181

    Article  Google Scholar 

  • Lee YL, Lo YS (2009) Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe. Adv Funct Mater 19:604–609

    Article  Google Scholar 

  • Lee HJ, Leventis HC, Moon S, Chen P, Ito S, Haque SA, Torres T, Nüesch F, Geiger T, Zakeeruddin SM, Grätzel M, Nazeeruddin MK (2009a) PbS and CdS quantum dot-sensitized solid-state solar cells: old concepts, new results. Adv Funct Mater 19:2735–2742

    Article  Google Scholar 

  • Lee K, Chen P, Hsu C, Huang J, Ho W, Chen H, Ho K (2009b) A high-performance counter electrode based on poly (3, 4-alkylenedioxythiophene) for dye-sensitized solar cells. J Power Sources 188:313–318

    Article  Google Scholar 

  • Li P, Wu J, Lin J, Huang M, Huang Y, Li Q (2009) High-performance and low platinum loading Pt/Carbon black counter electrode for dye-sensitized solar cells. Sol Energy 83:845–849

    Article  Google Scholar 

  • Li J, Yang L, Luo S, Chen B, Li J, Lin H, Cai Q, Yao S (2010) Polycyclic aromatic hydrocarbon detection by electrochemiluminescence generating Ag/TiO2 nanotubes. Anal Chem 82:7357–7361

    Article  Google Scholar 

  • Li D, Chien C, Deora S, Chang P, Moulin E, Lu J (2011a) Prototype of a scalable core–shell Cu2O/TiO2 solar cell. Chem Phys Lett 501:446–450

    Article  Google Scholar 

  • Li L, Chen Y, Wu H, Wang NS, Diau Eric W (2011b) Detachment and transfer of ordered TiO2 nanotube arrays for front-illuminated dye-sensitized solar cells. Energy Environ Sci 4:3420–3425

    Article  Google Scholar 

  • Li X, Liu H, Luo D, Li J, Huang Y, Li H, Fang Y, Xu Y, Zhu L (2012) Adsorption of CO2 on heterostructure CdS(Bi2S3)/TiO2 nanotube photocatalysts and their photocatalytic activities in the reduction of CO2 to methanol under visible light irradiation. Chem Eng J 180:151–158

    Article  Google Scholar 

  • Li Z, Yu L, Liu Y, Sun S (2014) CdS/CdSe quantum dots co-sensitized TiO2 nanowire/nanotube solar cells with enhanced efficiency. Electrochim Acta 129:379–388

    Article  Google Scholar 

  • Li Z, Yu L, Liu Y, Sun S (2015) Efficient quantum dot-sensitized solar cell based on CdS x Se1−x /Mn–CdS/TiO2 nanotube array electrode. Electrochim Acta 153:200–209

    Article  Google Scholar 

  • Liang Y, Cui Z, Zhu S, Liu Y, Yang X (2011) Silver nanoparticles supported on TiO2 nanotubes as active catalysts for ethanol oxidation. J Catal 278:276–287

    Article  Google Scholar 

  • Liao J, Lin S, Li X, Li S, Cao X, Cao Y (2012) Fabrication of free-standing TiO2 nanotube membranes with through-hole morphology. Cryst Res Technol 47:731–737

    Article  Google Scholar 

  • Lim I, Yoon SJ, Lee W, Nah YC, Shrestha NK, Ahn H, Han SH (2012) Interfacially treated dye-sensitized solar cell with in situ photopolymerized iodine doped polythiophene. ACS Appl Mater Interfaces 4:838–841

    Article  Google Scholar 

  • Lin J, Liao J, Hung T (2011) A composite counter electrode of CoS/MWCNT with high electrocatalytic activity for dye-sensitized solar cells. Electrochem Commun 13:977–980

    Article  Google Scholar 

  • Liu Y, Zhang X, Liu R, Yang R, Liu C, Cai Q (2011) Fabrication and photocatalytic activity of high-efficiency visible-light-responsive photocatalyst ZnTe/TiO2 nanotube arrays. J Solid State Chem 184:684–689

    Article  Google Scholar 

  • Liu G, Wang K, Nils H, Henrik J (2012a) Progress on free-standing and flow-through TiO2 nanotube membranes. Sol Energy Mater Sol Cells 98:24–38

    Article  Google Scholar 

  • Liu X, Jiang Y, Lan X, Zhang Y, Liu C, Li J, Wang B, Yu Y, Wang W (2012b) Improved efficiency of hybrid solar cell based on thiols-passivated CdS quantum dots and poly(3-hexythiophene). Phys Status Solidi (a) 209:1583–1587

    Article  Google Scholar 

  • Macak JM, Schmidt-Stein F, Schmuki P (2007) Efficient oxygen reduction on layers of ordered TiO2 nanotubes loaded with Au nanoparticles. Electrochem Commun 9:1783–1787

    Article  Google Scholar 

  • Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA (2006) A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications. Sol Energy Mater Sol Cells 90:2011–2075

    Article  Google Scholar 

  • Nevins JS, Coughlin KM, Watson DF (2011) Attachment of CdSe nanoparticles to TiO2 via aqueous linker-assisted assembly: influence of molecular linkers on electronic properties and interfacial electron transfer. ACS Appl Mater Interfaces 3:4242–4253

    Article  Google Scholar 

  • Nguyen D, Ito S, Inoue M, Yusa S (2012) Superstrate CuInSe2-printed solar cells on In2S3/TiO2/FTO/glass plates. Energy Sci Technol 3:10–17

    Google Scholar 

  • Paramasivam I, Macak JM, Ghicov A, Schmuki P (2007) Enhanced photochromism of Ag loaded self-organized TiO2 nanotube layers. Chem Phys Lett 445:233–237

    Article  Google Scholar 

  • Qiao J, Wang Q, Xiao Y (2014) High-efficiency photoelectrochemical performance of PbS nanoparticles sensitized TiO2 nanotube arrays. J Appl Electrochem 44:1007–1011

    Article  Google Scholar 

  • Radich JG, Dwyer R, Kamat PV (2011) Cu2S reduced graphene oxide composite for high-efficiency quantum dot solar cells. Overcoming the redox limitations of S2−/S 2−n at the counter electrode. J Phys Chem Lett 2:2453–2460

    Article  Google Scholar 

  • Ratanatawanate C, Xiong C Jr, Balkus KJ (2008) Fabrication of PbS quantum dot doped TiO2 nanotubes. ACS Nano 2:1682–1688

    Article  Google Scholar 

  • Roy P, Kim D, Paramasivam I, Schmuki P (2009) Improved efficiency of TiO2 nanotubes in dye sensitized solar cells by decoration with TiO2 nanoparticles. Electrochem Commun 11:1001–1004

    Article  Google Scholar 

  • Ruby MAE, Sohrab R (2011) Modified TiO2 nanotube arrays (TNTAs): progressive strategies towards visible light responsive photoanode, a review. Energy Environ Sci 4:1065–1086

    Article  Google Scholar 

  • Schaller RD, Klimov VI (2004) High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys Rev Lett 92:186601

    Article  Google Scholar 

  • Shankar K, Mor GK, Prakasam HE, Varghese OK, Grimes CA (2007) Self-assembled hybrid polymer-TiO2 nanotube array heterojunction solar cells. Langmuir 23:12445–12449

    Article  Google Scholar 

  • Shin K, Seok S, Im SH, Park JH (2010) CdS or CdSe decorated TiO2 nanotube arrays from spray pyrolysis deposition: use in photoelectrochemical cells. Chem Commun 46:2385–2387

    Article  Google Scholar 

  • Si H, Sun Z, Zhang H (2008) Photoelectrochemical response from CdSe-sensitized anodic oxidation TiO2 nanotubes. Colloids Surf 313:604–607

    Article  Google Scholar 

  • Smith YR, Sarma B, Mohanty SK, Misra M (2012) Light-assisted anodized TiO2 nanotube arrays. ACS Appl Mater Interfaces 4:5883–5890

    Article  Google Scholar 

  • Speirs MJ, Balazs DM, Fang HH, Lai LH, Protesescu L, Kovalenko MV, Loi MA (2015) Origin of the increased open circuit voltage in PbS–CdS core–shell quantum dot solar cells. J Mater Chem A 3:1450–1457

    Article  Google Scholar 

  • Su Z, Zhou W (2011) Formation, morphology control and applications of anodic TiO2 nanotube arrays. J Mater Chem 21:8955–8970

    Article  Google Scholar 

  • Sun W, Yu Y, Pan H, Gao X, Chen Q, Peng L (2008) CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. J Am Chem Soc 130:1124–1125

    Article  Google Scholar 

  • Sun H, Luo Y, Zhang Y, Li D, Yu Z, Li K, Meng Q (2010) In situ preparation of a flexible polyaniline/carbon composite counter electrode and its application in dye-sensitized solar cells. J Phys Chem C 114:11673–11679

    Article  Google Scholar 

  • Tachan Z, Shalom M, Hod I, Ruhle S, Tirosh S, Zaban A (2011) PbS as a highly catalytic counter electrode for polysulfide-based quantum dot solar cells. J Phys Chem C 115:6162–6166

    Article  Google Scholar 

  • Tvrdy K, Frantsuzov PA, Kamat PV (2012) Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles. PNAS 108:29–34

    Article  Google Scholar 

  • Wang H, Hu Y (2012) Graphene as a counter electrode material for dye-sensitized solar cells. Energy Environ Sci 5:8182–8188

    Article  Google Scholar 

  • Wang J, Lin Z (2009) Anodic formation of ordered TiO2 nanotube arrays: effects of electrolyte temperature and anodization potential. J Phys Chem C 113:4026–4030

    Article  Google Scholar 

  • Wang G, Lin R, Lin Y, Li X, Zhou X, Xiao X (2005) A novel high-performance counter electrode for dye-sensitized solar cells. Electrochim Acta 50:5546–5552

    Article  Google Scholar 

  • Wang Q, Yang X, Liu D, Chi L, Hou J (2012a) Ag and CdS nanoparticles co-sensitized TiO2 nanotubes for enhancing visible photoelectrochemical performance. Electrochim Acta 83:140–145

    Article  Google Scholar 

  • Wang Q, Yang X, Liu D, Zhao J (2012b) Fabrication, characterization and photocatalytic properties of Ag nanoparticles modified TiO2 NTs. J Alloys Compd 527:106–111

    Article  Google Scholar 

  • Wang W, An W, Ramalingam B, Mukherjee S, Niedzwiedzki DM, Gangopadhyay S, Biswas P (2012c) Size and structure matter: enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO2 single crystals. J Am Chem Soc 134:11276–11281

    Article  Google Scholar 

  • Wang J, Mora-Sero I, Pan Z, Zhao K, Zhang H, Feng Y, Yang G, Zhong X, Bisquert J (2013a) Core/shell colloidal quantum dot exciplex states for the development of highly efficient quantum-dot-sensitized solar cells. J Am Chem Soc 135:15913–15922

    Article  Google Scholar 

  • Wang Q, Yang X, Chi L, Cui M (2013b) Photoelectrochemical performance of CdTe sensitized TiO2 nanotube array photoelectrodes. Electrochim Acta 91:330–336

    Article  Google Scholar 

  • Wang Q, Li S, Qiao J, Jin R, Yu Y, Gao S (2015) CdS-CdSe (CdTe) core-shell quantum dots sensitized TiO2 nanotube array solar cells. Sol Energy Mater Sol Cells 132:650–654

    Article  Google Scholar 

  • Wen H, Liu Z, Yang Q, Li Y, Yu J (2011) Synthesis and electrochemical properties of CeO2 nanoparticle modified TiO2 nanotube arrays. Electrochim Acta 56:2914–2918

    Article  Google Scholar 

  • Xie K, Sun L, Wang C, Lai Y, Wang M, Chen H, Lin C (2010a) Photoelectrocatalytic properties of Ag nanoparticles loaded TiO2 nanotube arrays prepared by pulse current deposition. Electrochim Acta 55:7211–7218

    Article  Google Scholar 

  • Xie Y, Ali G, Yoo SH, Cho SO (2010b) Sonication-assisted synthesis of CdS quantum-dot-sensitized TiO2 nanotube arrays with enhanced photoelectrochemical and photocatalytic activity. ACS Appl Mater Interfaces 2:2910–2914

    Article  Google Scholar 

  • Xie H, Que W, He Z, Zhong P, Liao Y, Wang G (2013) Preparation and photocatalytic activities of Sb2S3/TiO2 nanotube coaxial heterogeneous structure arrays via an ion exchange adsorption method. J Alloys Compd 550:314–319

    Article  Google Scholar 

  • Xu J, Yang X, Yang Q, Wong T, Lee C (2012a) Cu2ZnSnS4 hierarchical microspheres as an effective counter electrode material for quantum dot sensitized solar cells. J Phys Chem C 116:19718–19723

    Article  Google Scholar 

  • Xu J, Yang X, Wong T, Lee C (2012b) Large-scale synthesis of Cu2SnS3 and Cu1.8S hierarchical microspheres as efficient counter electrode materials for quantum dot sensitized solar cells. Nanoscale 4:6537–6542

    Article  Google Scholar 

  • Yang SY, Choi W, Park H (2015) TiO2 nanotube array photoelectrocatalyst and Ni–Sb–SnO2 electrocatalyst bifacial electrodes: a new type of bifunctional hybrid platform for water treatment. ACS Appl Mater Interfaces 7:1907–1914

    Article  Google Scholar 

  • Zeng T, Gladwin E, Claus RO (2003) Self-assembled InP quantum dot-TiO2 solid grätzel solar cell. MRS Proceedings 764

  • Zhang H, Quan X, Chen S, Yu H, Ma N (2009) “Mulberry-like” CdSe nanoclusters anchored on TiO2 nanotube arrays: a novel architecture with remarkable photoelectrochemical performance. Chem Mater 21:3090–3095

    Article  Google Scholar 

  • Zhang S, Zhang S, Peng F, Zhang H, Liu H, Zhao H (2011) Electrodeposition of polyhedral Cu2O on TiO2 nanotube arrays for enhancing visible light photocatalytic performance. Electrochem Commun 13:861–864

    Article  Google Scholar 

  • Zhang Z, Zhang L, Hedhili MN, Zhang H, Wang P (2013) Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. Nano Lett 13:14–20

    Article  Google Scholar 

  • Zheng Q, Kang H, Yun J, Lee J, Park JH, Baik S (2011) Hierarchical construction of self-standing anodized titania nanotube arrays and nanoparticles for efficient and cost-effective front-illuminated dye-sensitized solar cells. ACS Nano 5:5088–5093

    Article  Google Scholar 

  • Zhong J, Wang Q, Xu X (2014) Photodeposition of CdS nanoparticles sensitized TiO2 nanotube arrays for enhanced photoelectrochemical performance. J Electrochem Soc 161:H656–H659

    Article  Google Scholar 

  • Zhou Y, Zhou W, Li M, Du Y, Wu S (2011) Hierarchical Cu2ZnSnS4 particles for a low-cost solar cell: morphology control and growth mechanism. J Phys Chem C 115:19632–19639

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (51402145), the Nanotechnology Special foundation of Shanghai (11nm0500700), and the Key Project of Natural Science Foundation of Shandong Province (ZR2013EMZ001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingyao Wang or Xiuchun Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Chen, C., Liu, W. et al. Recent progress in all-solid-state quantum dot-sensitized TiO2 nanotube array solar cells. J Nanopart Res 18, 7 (2016). https://doi.org/10.1007/s11051-015-3314-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3314-9

Keywords

Navigation