Skip to main content
Log in

Using upconversion nanoparticles to improve photovoltaic properties of poly(3-hexylthiophene)–TiO2 heterojunction solar cell

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We develop an approach to improve the photovoltaic properties of polymer solar cells, by incorporating a function of light upconversion into the solar cell. We synthesize hydrophilic rhombic lanthanide-doped LiYF4 at the average length of 100 nm and breadth of 40 nm. The synthesized nanoparticles which are capable of converting long-wavelength photons into shorter ones are introduced into the poly(3-hexylthiophene)–TiO2 heterojunction solar cell. The results of the upconversion fluorescence spectra demonstrate the energy transfer from the upconversion nanoparticles to poly(3-hexylthiophene). It is revealed by using monochromatic illumination that the upconversion nanoparticles enable the devices to utilize the long-wavelength photons which are beyond the absorption of poly(3-hexylthiophene), and thus, the photovoltaic performance is enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adikaari AAD, Etchart I, Guéring P, Bréard M, Silva SRP, Cheetham AK, Curry RJ (2012) Near infrared up-conversion in organic photovoltaic devices using an efficient Yb3+:Ho3+ Co-doped Ln2BaZnO5 (Ln = Y, Gd) phosphor. J Appl Phys 111:094502. doi:10.1063/1.4704687

    Article  Google Scholar 

  • Barbara B, Giraud R, Wernsdorfer W, Mailly D, Lejay P, Tkachuk A, Suzuki H (2004) Evidence for resonant magnetic tunneling of rare-earth ions: from insulating to metallic matrix. J Magn Magn Mater 272:1024–1029. doi:10.1016/j.jmmm.2003.12.654

    Article  Google Scholar 

  • Blom PWM, Mihailetchi VD, Jan Anton Koster L, Markov DE (2007) Device physics of polymer:fullerene bulk heterojunction solar cells. Adv Mater 19(12):1551–1566. doi:10.1002/adma.200601093

    Article  CAS  Google Scholar 

  • Du YP, Zhang YW, Sun LD, Yan CH (2009) Optically active uniform potassium and lithium rare earth fluoride nanocrystals derived from metal trifluroacetate precursors. Dalton Trans 40:8574–8581. doi:10.1039/b909145a

    Article  Google Scholar 

  • Gunes S, Neügebauer H, Sariciftci NS (2007) Conjugated polymer-based organic solar cells. Chem Rev 107:1324–1338. doi:10.1021/cr050149z

    Article  Google Scholar 

  • Hore S, Vetter C, Kern R, Smit H, Hinsch A (2006) Influence of scattering layers on efficiency of dye-sensitized solar cells. Sol Energy Mater Sol Cells 90:1176–1188. doi:10.1016/j.solmat.2005.07.002

    Article  CAS  Google Scholar 

  • Khan AF, Yadav R, Mukhopadhya PK, Singh S, Dwivedi C, Dutta V, Chawla S (2011) Core–shell nanophosphor with enhanced NIR–visible upconversion as spectrum modifier for enhancement of solar cell efficiency. J Nanopart Res 13:6837–6846. doi:10.1007/s11051-011-0591-9

    Article  CAS  Google Scholar 

  • Kruefu V, Peterson E, Khantha C, Siriwong C, Phanichphant S, Carroll DL (2010) Flame-made niobium doped zinc oxide nanoparticles in bulk heterojunction solar cells. Appl Phys Lett 97:053302. doi:10.1063/1.3465866

    Article  Google Scholar 

  • Laera AM, Resta V, Ferrara MC, Schioppa M, Piscopiello E, Tapfer L (2011) Synthesis of hybrid organic-inorganic nanocomposite materials based on CdS nanocrystals for energy conversion applications. J Nanopart Res 13:5705–5717. doi:10.1007/s11051-011-0304-4

    Article  CAS  Google Scholar 

  • Lemieux RU, Von Rudloff E (1955) Periodate-permanganate oxidations I. Oxidation of olefins. Can J Chem 33:1701–1709. doi:10.1139/v55-208

    Article  CAS  Google Scholar 

  • Liu M, Lu YL, Xie ZB, Chow GM (2011) Enhancing near-infrared solar cell response using upconverting transparentceramics. Sol Energy Mater Sol Cells 95:800–803. doi:10.1016/j.solmat.2010.09.018

    Article  CAS  Google Scholar 

  • Mahalingam V, Vetrone F, Naccache R, Speghini A, Capobianco JA (2009) Colloidal Tm3+/Yb3+-doped LiYF4 nanocrystals: multiple luminescence spanning the UV to NIR regions via low-energy excitation. Adv Mater 21(40):4025–4028. doi:10.1002/adma.200901174

    Article  CAS  Google Scholar 

  • Masala S, Gobbo SD, Borriello C, Bizzarro V, La Ferrara V, Re M, Pesce E, Minarini C, De Crescenzi M, Di Luccio T (2011) Hybrid polymer-CdS solar cell active layers formed by in situ growth of CdS nanoparticles. J Nanopart Res 13:6537–6544. doi:10.1007/s11051-011-0558-x

    Article  CAS  Google Scholar 

  • Mihailetchi VD, Blom PWB, Hummelen JC, Rispens MT (2003) Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells. J Appl Phys 94:6849–6854. doi:10.1063/1.1620683

    Article  CAS  Google Scholar 

  • Mucur SP, Tumay TA, San SE, Tekin E (2012) Enhancing effects of nanoparticles on polymer OLED performances. J Nanopart Res 14:1214. doi:10.1007/s11051-012-1214-9

    Article  Google Scholar 

  • Ramsdale CM, Barker JA, Arias AC, MacKenzie JD, Friend RH, Greenham NC (2002) The origin of the open-circuit voltage in polyfluorene-based photovoltaic devices. J Appl Phys 92:4266–4270. doi:10.1063/1.1506385

    Article  CAS  Google Scholar 

  • Schilinsky P, Waldauf C, Hauch J, Brabec CJ (2004) Simulation of light intensity dependent current characteristics of polymer solar cells. J Appl Phys 95:2816–2819. doi:10.1063/1.1646435

    Article  CAS  Google Scholar 

  • Shalav A, Richards BS, Trupke T, Kramer KW, Gudel HU (2005) Application of NaYF4:Er3+ upconverting phosphors for enhanced near-infrared silicon solar cell response. Appl Phys Lett 86:013505–013507. doi:10.1063/1.1844592

    Article  Google Scholar 

  • Stergiopoulos T, Arabatzis IM, Katsaros G, Falaras P (2002) Binary polyethylene oxide/titania solid-state redox electrolyte for highly efficient nanocrystalline TiO2 photoelectrochemical cells. Nano Lett 2:1259–1261. doi:10.1021/nl025798u

    Article  CAS  Google Scholar 

  • Tian G, Gu Z, Zhou L, Yin W, Liu X, Yan L, Jin S, Ren W, Xing G, Li S, Zhao Y (2012) Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo Imaging and drug delivery. Adv Mater 24(9):1226–1231. doi:10.1002/adma.201104741

    Article  CAS  Google Scholar 

  • van der Ende BM, Aartsa L, Meijerink A (2009) Lanthanide ions as spectral converters for solar cells. Phys Chem Chem Phys 11:11081–11095. doi:10.1039/b913877c

    Article  Google Scholar 

  • Wang J, Wang F, Xu J, Wang Y, Liu YS, Che XY, Chen HY, Liu XG (2010) Lanthanide-doped LiYF4 nanoparticles: synthesis and multicolor upconversion tuning. C R Chimie 13:731–736. doi:10.1016/j.crci.2010.03.021

    Article  CAS  Google Scholar 

  • Wu WZ, Gao YC, Chang Q, Ye HA, Zheng ZR, Liu WL, Li AH, Yang YQ (2011) Upconversion luminescent characteristics and peak shift of CdSeS nanocrystals under different wavelength laser excitation. J Nanopart Res 13:1049–1061. doi:10.1007/s11051-010-0094-0

    Article  CAS  Google Scholar 

  • Wu JL, Chen FC, Chang SH, Tan KS, Tuan HY (2012) Upconversion effects on the performance of near-infrared laser-driven polymer photovoltaic devices. Org Electron 13:2104–2108. doi:10.1016/j.orgel.2012.05.057

    Article  CAS  Google Scholar 

  • Yang ZY, Ni XY (2012) Photovoltaic hybrid films with polythiophene growing on monoclinic WO3 semiconductor substrates. Langmuir 28:4829–4834. doi:10.1021/la204990d

    Article  CAS  Google Scholar 

  • Zhang J, Shen H, Guo W, Wang S, Zhu C, Xue F, Hou J, Su H, Yuan Z (2013) An upconversion NaYF4:Yb3+, Er3+/TiO2 core-shell nanoparticle photoelectrode for improved efficiencies of dye-sensitized solar cells. J Power Sources 226:47–53. doi:10.1016/j.jpowsour.2012.10.073

    Article  CAS  Google Scholar 

  • Zhao GJ, He YJ, Li YF (2010) 6.5% Efficiency of polymer solar cells based on poly(3-hexylthiophene) and indene-C60 bisadduct by device optimization. Adv Mater 22:4355–4358. doi:10.1002/adma.201001339

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by National Nature Science Foundation of China (NSFC) under Grant No. 20574011 and Shanghai Nanotechnology Promotion Center (SNPC) under Grant No. 1052nm01700.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuyuan Ni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, X., Ni, X. Using upconversion nanoparticles to improve photovoltaic properties of poly(3-hexylthiophene)–TiO2 heterojunction solar cell. J Nanopart Res 15, 1547 (2013). https://doi.org/10.1007/s11051-013-1547-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1547-z

Keywords

Navigation