Skip to main content

Advertisement

Log in

Merit and demerit effects of silver nanoparticles in the bioperformance of an electrodeposited hydroxyapatite: nanosilver composite coating

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

For this research, TiAlZr specimens were covered with a hydroxyapatite–silver nanoparticles composite coatings (nAg-HA) prepared by pulse electrodeposition. The morphological texture of the nAg-HA nanoparticles on TiAlZr surface was investigated with scanning electron microscopy and energy dispersive X-ray spectroscopy. Electrochemical parameters from dynamic polarization tests performed in Ringer’s solution indicate better anticorrosive properties for the TiAlZr alloy after nAg-HA electrodeposition. Bacteriological experiments performed in vitro demonstrate the efficacy of TiAlZr implants coated with nAg-HA against the growth of Escherichia coli bacteria quantified in a 98 % inhibition of Escherichia coli growth. The biocompatibility tests regarding cell adherence, proliferation, and viability of coating (also by means of Reverse Transcription Polymerase Chain Reaction—RT-PCR) completed the characterization of the coating, enabling us to discuss the merit and demerit effects of Ag nanoparticles (nAg) effects on bioperformance. Based on experimental and literature data, the coating could be considered a passive–active structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aillon KL, Xie Y, El-Gendy N, Berkland CJ, Forrest ML (2009) Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv Drug Deliv Rev 61:457–466

    Article  CAS  Google Scholar 

  • AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290

    Article  CAS  Google Scholar 

  • Balagna C, Vitale-Brovarone C, Miola M, Verne E, Canuto RA, Saracino S, Muzio G, Fucale G, Maina G (2011) Biocompatibility and antibacterial effect of silver doped 3D-glass-ceramic scaffolds for bone grafting. J Biomater Appl 25:595–617

    Article  CAS  Google Scholar 

  • Ballare J, Manjubala I, Schreiner WH, Orellano JC, Fratzl P, Cere S (2010) Improving the osteointegration and bone–implant interface by incorporation of bioactive particles in sol–gel coatings of stainless steel implants. Acta Biomater 6:1601–1609

    Article  Google Scholar 

  • Cao XL, Cheng C, Ma YL, Zhao CS (2010) Preparation of silver nanoparticles with antimicrobial activities and the researches of their biocompatibilities. J Mater Sci Mater Med 21:2861–2868

    Article  CAS  Google Scholar 

  • Chen Y, Zheng X, Xie Y, Ding C, Ruan H, Fan C (2008) Anti-bacterial and cytotoxic properties of plasma sprayed silver-containing HA coatings. J Mater Sci Mater Med 19:3603–3609

    Article  CAS  Google Scholar 

  • Chen Y, Zheng X, Xie Y, Ji H, Ding C (2009) Antibacterial properties of vacuum plasma sprayed titanium coatings after chemical treatment. Surf Coat Technol 204:685–690

    Article  CAS  Google Scholar 

  • Demetrescu I (2008) Passive and bioactive films on implant materials and their efficiency in regenerative medicine. Mol Cryst Liq Cryst 486:110–119

    Article  CAS  Google Scholar 

  • Demetrescu I, Pirvu C, Mitran V (2010) Effect of nano: topographical features of Ti/TiO2 electrode surface on cell response and electrochemical stability in artificial saliva. Bioelectrochemistry 79:122–129

    Article  CAS  Google Scholar 

  • Hoonacker AV, Englebienne P (2006) Revisiting silver nanoparticle chemical synthesis and stability by optical spectroscopy. Curr Nanosci 2:359–371

    Article  Google Scholar 

  • Hsu SH, Tseng HJ, Lin YC (2010) The biocompatibility and antibacterial properties of waterborne polyurethane-silver nanocomposites. Biomaterials 31:6796–6808

    Article  CAS  Google Scholar 

  • Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19:975–983

    Article  CAS  Google Scholar 

  • Iafisco M, Bosco R, Leeuwenburgh SCG, Van den Beucken JJJP, Jansen JA, Prat M, Roveri N (2011) Electrostatic spray deposition of biomimetic nanocrystalline apatite coatings onto titanium. Adv Eng Mater. doi:10.1002/adem.201180062

    Google Scholar 

  • Ionita D, Grecu M, Ungureanu C, Demetrescu I (2011a) Antimicrobial activity of the surface coatings on TiAlZr implant biomaterial. J Biosci Bioeng 112:6630–6634

    Article  Google Scholar 

  • Ionita D, Grecu M, Ungureanu C, Demetrescu I (2011b) Modifying the TiAlZr biomaterial surface with coating, for a better anticorrosive and antibacterial performance. Appl Surf Sci 257:9164–9168

    Article  CAS  Google Scholar 

  • Kunin CM (1987) Detection, prevention and management of urinary tract infection. Lea & Febiger, Philadelphia, PA

    Google Scholar 

  • Lubick N (2008) Nanosilver toxicity: ions, nanoparticles—or both? Environ Sci Technol 42:8617

    Article  CAS  Google Scholar 

  • Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551

    Article  CAS  Google Scholar 

  • Maury F, Mungkalasari J (2009) Chemical vapor deposition of TiO2 for photocatalytic applications and biocidal surfaces. Key Eng Mater 415:1–4

    Article  CAS  Google Scholar 

  • Moa A, Liao J, Xu W, Xian S, Li Y, Bai S (2008) Preparation and antibacterial effect of silver–hydroxyapatite/titania nanocomposite thin film on titanium. Appl Surf Sci 255:435–438

    Article  Google Scholar 

  • Morgan MLD (1998) Tetrazolium (MTT) Assay for cellular viability and activity methods. In: Mol. Biol., Polyamine protocols, Part VI, ed. Humana Press Inc. pp 179–184

  • Narayan RJ, Monteiro-Riviere NA, Brigmon RL, Pellin MJ, Elam JW (2009) Atomic layer deposition of TiO2 thin films on nanoporous alumina templates: medical applications. JOM J Miner Metall Mater 61:12–16

    Article  CAS  Google Scholar 

  • Narayanan R, Seshadri SK (2008) Point defect model and corrosion of anodic oxide coatings on Ti–6Al–4 V. Corros Sci 50:1521–1529

    Article  CAS  Google Scholar 

  • Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  Google Scholar 

  • Oliveira PT, Zalzal SF, Irie K, Nanci A (2003) Early expression of bone matrix proteins in osteogenic cell cultures. J Histochem Cytochem 51:633–641

    Article  Google Scholar 

  • Papp T, Schiffmann D, Weiss D, Castranova V, Vallyathan V, Rahman Q (2008) Human health implications of nanomaterial exposure. Nanotoxicology 2:9–27

    Article  CAS  Google Scholar 

  • Park EJ, Yi J, Kim Y, Choi K, Park K (2010) Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol In Vitro 24:872–878

    Article  CAS  Google Scholar 

  • Popa MV, Demetrescu I, Suh SH, Vasilescu E, Drob P, Ionita D, Vasilescu C (2007) Monitoring of titanium base alloys–biofluids interface. Bioelectrochemistry 71:126–134

    Article  CAS  Google Scholar 

  • Rameshbabu N, Kumar TSS, Prabhakar TG, Sastry VS, Murty KVGK, Rao KP (2007) Antibacterial nanosized silver substituted hydroxyapatite: synthesis and characterization. J Biomed Mater Res-A 80A:581–591

    Article  CAS  Google Scholar 

  • Roco MC (2004) Nanoscale science and engineering: unifying and transforming tools. AIChE J 50:890–897

    Article  CAS  Google Scholar 

  • Simchi A, Tamjid E, Pishbin F, Boccaccini AR (2011) Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications. Nanomed 7:22–39

    Article  CAS  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182

    Article  CAS  Google Scholar 

  • Sotiriou GA, Pratsinis SE (2010) Antibacterial activity of nanosilver ions and particles. Environ Sci Technol 44:5649–5654

    Article  CAS  Google Scholar 

  • Stickler DJ (2000) Biomaterials to prevent nosocomial infections: is silver the gold standard? Curr Opin Infect Dis 13:389–393

    Article  CAS  Google Scholar 

  • Stratton TR, Howarter JA, Allison BC, Applegate BM, Youngblood JP (2010) Structure–activity relationships of antibacterial and biocompatible copolymers. Biomacromolecules 11:1286–1290

    Article  CAS  Google Scholar 

  • Subramanian V, Youtie J, Porter AL, Shapira P (2010) Is there a shift to “active nanostructures”? J Nanopart Res 12:1–10

    Article  Google Scholar 

  • Sung JH, Ji JH, Park JD, Yoon JU, Kim DS, Jeon KS, Song MY, Jeong J et al (2009) Subchronic inhalation toxicity of silver nanoparticles. Toxicol Sci 108:452–461

    Article  CAS  Google Scholar 

  • Titorencu I, Jinga VV, Constantinescu E, Gafencu AV, Ciohodaru C, Manolescu I, Zaharia C, Simionescu M (2007) Proliferation, differentiation and characterization of osteoblasts from human bone marrow mesenchymal cells. Cytotherapy 9:682–696

    Article  CAS  Google Scholar 

  • Vasilescu C, Drob P, Vasilescu E, Demetrescu I, Ionita D, Prodana M, Drob SI (2011) Characterisation and corrosion resistance of the electrodeposited hydroxyapatite and bovine serum albumin/hydroxyapatite films on Ti–6Al–4 V–1Zr alloy surface. Corros Sci 53:992–999

    Article  CAS  Google Scholar 

  • Watari F (2010) Bioreactive nature of nanobiomaterials. Nanobiomedicine 1:2–8

    Google Scholar 

  • Watari F, Takashi N, Yokoyama A, Uo M, Akasaka T, Sato T, Abe S, Totsuka Tohji K (2009) Material nanosizing effect on living organisms: non-specific, biointeractive, physical size effects. J R Soc Interface 6:371–388

    Article  Google Scholar 

  • Yaser G, Melanie JC, Karin AH, Gordon WB (2012) Development of a hydroxyapatite coating containing silver for the prevention of peri-prosthetic infection. J Orthop Res 30:356–363

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by CNCSIS–UEFISCSU, project number PNII–IDEI PCCE 248/2010. The author M. Dilea wishes to thank the Sectorial Operational Programme Human Resources Development 2007–2013 of the Romanian Ministry of Labour, Family, and Social Protection through the Financial Agreement POSDRU/88/1.5/S/60203.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Demetrescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ionita, D., Dilea, M., Titorencu, I. et al. Merit and demerit effects of silver nanoparticles in the bioperformance of an electrodeposited hydroxyapatite: nanosilver composite coating. J Nanopart Res 14, 1152 (2012). https://doi.org/10.1007/s11051-012-1152-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1152-6

Keywords

Navigation