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Abstract Multi-walled carbon nanotubes (MWNTs)/

Cu-doped ZnO composite powders were prepared by

co-precipitation method, and were characterized by

X-ray diffraction, electron microscopy, fluorescence

spectrum, and ultraviolet spectrum. Experimental

results show that the MWNTs can be modified by

Cu-doped ZnO nanoparticles with hexagonal wurtzite

structure after annealed at 450 �C, and the nanopar-

ticle size is about 15 nm. Two ultraviolet (UV) peaks

and a green band centered at about 510 nm are

observed in the fluorescence spectrum of MWNTs/Cu-

doped ZnO composite powder annealed at 450 �C.

Furthermore, MWNTs and Cu doping significantly

improve the UV absorption ability of ZnO.

Keywords Carbon nanotube � Cu-doped ZnO �
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Introduction

Zinc oxide (ZnO) is a wide direct band gap (3.37 eV at

room temperature) semiconductor and possesses

superior intrinsic properties such as a large exciton

binding energy of 60 meV at room temperature, high

photocatalytic activity, low cost, and environmentally

friendly. All those features make it an excellent

candidate for ultraviolet (UV) luminescence devices,

light-emitting diodes (LEDs), gas sensors, solar cells,

photocatalysis, and biosensors. Especially, doped ZnO

with appropriate transition metals (TM) such as Co

(Liang et al. 2009), Ni (Hou et al. 2010), Mn (Rekha

et al. 2010), Fe (Xu and Li 2010), and Cu (Khan and

Ghosh 2011) has attracted much attention because of

its potential applications in the areas of photonics,

optoelectronics, spintronics, and sensors.

Among TM elements, the Cu dopants have

attracted much interest for potential applications in

semiconductor devices. Theoretical study indicates

that high concentration of Cu can be incorporated into

ZnO because of its high ionization energy and the low

formation energy of substitutional group-IB elements,

and Cu doping can significantly affect the electrical

properties, chemical properties, and surface modifica-

tion of ZnO by creating localized impurity levels and

narrowing the band gap of ZnO (Garces et al. 2002;

Yan et al. 2006; Xing et al. 2011). Furthermore, Cu

behaving as an acceptor in ZnO crystals makes it a

good candidate for creating p-type ZnO (Lupan et al.

2011). Expertical results reveal that Cu doping can
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improve the optical property of ZnO. Shi et al. (2011)

have prepared Cu/ZnO catalyst by using sol–gel auto-

combustion method, and the catalyst can applicate in

low-temperature methanol synthesis. Kanade et al.

(2007) reported that self-assembled aligned Cu-doped

ZnO nanoparticles showed excellent photocatalytic

activity under visible light irradiation. Moreover,

Wang and Lin (2011) synthesized Cu-doped ZnO

nanoparticle sheets with both violet and yellow

emissions, which are promising for white LED

applications. Although the optical property of ZnO is

significantly improved by Cu doping, the enhance-

ment is still limited for poor photon absorption of

ZnO. Thus, it is necessary to further improve the

optical properties of Cu-doped ZnO.

With the development in the improvement of the

optical property of ZnO, researches on hybrid mate-

rials of ZnO and carbon nanotubes (CNTs) have

received extensive attention (Baibarac et al. 2008; Liu

et al. 2006; Chen et al. 2006), because of the unique

internal structure, high surface area, low mass density,

remarkable chemical stability, and electronic conduc-

tivity of CNTs. As a catalyst carrier, CNTs can not

only act as photosensitizers for semiconductor ZnO,

but also hinder the recombination of electrons and

holes (Eder 2010). Moreover, CNTs have a large

surface area, and can act as a dispersing agent that

prevents ZnO nanoparticles from agglomerating,

resulting in providing a higher active surface area for

the resultant catalyst compared with the ZnO nano-

particles. At present, CNTs are widely employed to

enhance the photocatalytic activity of ZnO (Zhu et al.

2009) and TiO2 (Leary and Westwood 2011; Woan

et al. 2009). Hence, it can be foreseen that the optical

properties of Cu-doped ZnO is improved in the

presence of CNTs, and have potential applications in

optoelectronics and photocatalysis.

In our previous study, we successfully coated ZnO

nanoparticles on the surface of MWNTs through

co-precipitation method after MWNTs were modified

with concentrated ammonia and citric acid (Chen et al.

2006). In this article, a simple and efficient approach

of treated MWNTs is developed for the synthesis of

Cu-doped ZnO nanoparticles on MWNTs. MWNTs

are treated by sodium hydroxide and acid, and then

Cu-doped ZnO nanoparticles are decorated on the

surface of MWNTs. Furthermore, the optical property

of MWNTs/Cu-doped ZnO composite powder is

studied.

Experimental

Preparation and treatment of MWNTs

As-prepared MWNTs (diameters 20–50 nm) were

prepared by the chemical catalytic vapor decomposition

(CVD) process. The details of the MWNTs preparation

have been in the literature (Chen et al. 2002). In a typical

treatment, 5 g as-prepared MWNTs were dispersed in

500 mL sodium hydroxide (2 mol/L) and refluxed at

boiling for 2 h under stirring. After rinsed with deion-

ized water until the pH value of solution close to neutral,

the NaOH-treated MWNTs were dried at 80 �C. In order

to remove impurities, these NaOH-treated MWNTs

were further oxidized by immersing in a 3:1 mixture of

concentrated H2SO4 and HNO3 and refluxing for 2 h at

boiling point, subsequently suspending and refluxing in

HCl solution for 2 h at the same temperature. Finally,

the MWNTs were dried at 80 �C after being filtered and

washed with deionized water.

Preparation of MWNTs/Cu-doped ZnO composite

powder

Coating MWNTs with ZnO-based nanoparticles was

performed typically as follows: 0.439 g Zn(CH3COO)2�
2H2O and Cu(CH3COO)2�2H2O (Cu/Zn = 5 % in

molar ratio) were first dissolved in anhydrous ethanol

of 100 mL, and then 0.02 g above-treated MWNTs

were added into under sonicating for about 15 min.

Subsequently, the mixture solution, which composes of

oxalic acid and anhydrous ethanol of 100 mL, was

slowly dropped into the mixture solution of zinc acetate

and copper acetate while stirring at 60 �C, and a sol was

produced. Thirdly, the sol was maintained at 80 �C for

48 h to form the precursor. Finally, the above-prepared

precursor was annealed at 450, 550, and 650 �C,

respectively, for 2 h under the protection of nitrogen.

For comparison, the MWNTs/ZnO composite powder

was prepared under the same conditions.

Characterization

Thermogravimetric analysis (TGA) data and differen-

tial scanning calorimeter (DSC) data were recorded

with a DT-40 Shimadzu thermal analyzer in the range

of 25–1,000 �C under nitrogen flow at a rate of 10 �C

per minute. X-ray diffraction (XRD) measurements

were performed using Philips PW 1710 diffractometer
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with Cu Ka1 radiation. Scanning electron microscopy

(SEM) observations and energy dispersive X-ray

spectroscopy (EDS) were carried out with a S-4800

field emission scanning electron microscope. Trans-

mission electron microscopy (TEM) analyses were

conducted on a H800 transmission electron microscope.

UV absorption spectra of the samples in anhydrous

ethanol were recorded by TU-2550 spectrophotometer.

Fluorescence spectra measurements were characterized

for anhydrous ethanol on a Hitachi F4500 fluorescence

spectrophotometer at room temperature.

Results and discussion

TG and DSC analysis

In order to determine the optimal temperature of heat

treatment, the precursor was thermodynamically ana-

lyzed by the DSC and TG methods, and the result is

presented in Fig. 1. From the DSC curve (Fig. 1a), it

can be seen that there are two endothermic peaks at

123 and 395 �C, respectively. The endothermic peak

at 123 �C might stem from the loss of crystalloid water

and ethyl acetate, and that at 395 �C is attributed to the

decomposition of oxalic (copper oxalic and zinc

oxalic). The TG curve of the precursor reveals that

the weight of the precursor continuously reduced

below about 400 �C, while the weight of the precursor

remained constant more than 400 �C, as shown in the

Fig. 1b. These results indicate that the precursor full

converts into the crystallized oxides above 400 �C.

XRD analysis

Figure 2 shows the XRD of MWNTs/Cu-doped ZnO

composite powder subjected to heat treatment at

different temperatures. It is found that all samples

exhibit the diffraction peaks of ZnO corresponding to

(100), (002), (101), (102), (110), (103), (200), (112),

and (201) planes, respectively. All diffraction peaks of

the products are in good agreement with those of the

hexagonal wurtzite structure of ZnO (JCPDS card

36-1451). Comparison with three curves, the diffrac-

tion peaks become sharper and narrower with increas-

ing temperature of heat treatment, which indicates that

the crystallite size increases along with the rise of

temperature of heat treatment. Furthermore, no trace

of copper metal, oxides, or any binary zinc copper

phases is observed in the XRD pattern of samples

calcined at 450 and 550 �C. However, the XRD

pattern of sample calcined at 650 �C shows that there

are two new diffraction peaks at about 2h = 43.09�
and 50.43�, respectively, which are ascribed to (111)

and (200) planes of Cu metal. This result suggests that

the composite contains Cu element.
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Fig. 1 DSC (a) and TG

(b) of the precursor

Fig. 2 XRD patterns of the MWNT/Cu-doped ZnO composite

powder
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Electron microscopy studies

SEM images of different samples are shown in Fig. 3.

From the SEM image of the precursor, we can see that

the surface of the MWNTs is adopted by a layer, as

shown in Fig. 3a. After the precursor is annealed at

450 �C, the surface of MWNTs is decorated a layer

nanoparticles with the diameter ranged from 10 to

20 nm (shown in Fig. 3b). In order to confirm the

element present in sample, EDS is carried out. The

results are shown in the inset in Fig. 3b. It reveals

the presence of Zn, Cu, O, and C, which indicates that

the surfaces of MWNTs are decorated by Cu-doped

ZnO nanoparticles, consistent with the results of XRD.

Figure 3c reveals the SEM image of MWNTs/Cu-

doped ZnO composites after heat treatment of 550 �C.

It can be observed that the MWNTs are also contin-

uously coated by nanoparticles. However, the nano-

particle size increases compared with the materials

annealed at 450 �C. Figure 3d shows the SEM image

of MWNTs/Cu-doped ZnO composite powder

annealed at 650 �C. It is evident that the particle size

is larger, and many MWNTs protrude from the

particles.

TEM studies further confirm the success of the

attachment of Cu-doped ZnO nanoparticles to the

walls of MWNTs, as shown in Fig. 4. Figure 4a shows

the TEM morphology of the sample annealed at

450 �C. It is obvious that the MWNTs are uniformly

modified by Cu-doped ZnO nanoparticles with sizes

of about 10–20 nm. Figure 4b presents the TEM

image of the sample annealed at 550 �C. We can see

that the MWNTs are also modified by Cu-doped ZnO

nanoparticles with sizes of about 50–70 nm. How-

ever, the particle size of Cu-doped ZnO particles

increases to about 100 nm at 650 �C (as shown in

Fig. 4c), which further confirms the results of the

XRD and SEM.

Studies of optical properties

Figure 5 shows the room-temperature fluorescence

spectrum of MWNTs and MWNTs/ZnO composite

powder in which the wavelength of excitation is

320 nm. It is clear that there is a UV peak at about

354 nm on the spectrum of MWNTs (shown in Fig. 5a),

while the fluorescence spectrum of MWNTs/ZnO

composite powder (Fig. 5b) shows that there are four

fluorescence peaks at 354, 397, 422, and 450 nm,

respectively. The peak at about 397 nm is assigned to

UV emission originating from free excitation emission

at about 3.37 eV from the wide band gap of ZnO. The

two blue emission peaks at 422 and 450 nm are ascribed

to the Zn interstitial (Zni) and Zn vacancy (VZn) level

ba
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Fig. 3 SEM images of the

precursor (a) and MWNT/

Cu-doped ZnO composites

powder annealed at different

temperature: b 450 �C,

c 550 �C, and d 650 �C
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transition. The UV emission peak at about 354 nm is

attributed to MWNTs, which may come from the

trapping of excitation energy at defect sites of MWNTs

and containing extended ð-electronic structures in the

surface of modified MWNTs (Liang et al. 2000).

The room-temperature fluorescence spectrum of

MWNTs/Cu-doped ZnO composite powder annealed

at different temperature is shown in Fig. 6. As we can

see, all the spectra have several peaks locating at the

wavelength of *354, *380–395 and 450 nm, respec-

tively, and a green emission band centered at*495–510 nm

is observed in the spectrum of MWNTs/Cu-doped

ZnO composite powder annealed at 450 and 550 �C.

Moreover, it is very obvious that the intensity of green

emission peak decreases with increasing the temper-

atures of heat treatment.

It is generally accepted that the green emission

derives from the single ionized oxygen vacancy in the

ZnO, and the emission peak results from the radiative

recombination of electrons in singly occupied oxygen

vacancies with photoexcited holes in the valence band

(Yan et al. 2007). Cu mixes into the sublattice of ZnO,

resulting in producing more defects in ZnO (Persson

et al. 2006). Two mechanisms about Cu-doped ZnO

have been proposed. One is that copper replaces the

zinc site of ZnO lattice. When the Zn2? site is

substituted by Cu2? (Herng et al. 2007; Lupan et al.

2010), there will form a defect bond in solid state

Fig. 4 TEM images of MWNT/Cu-doped ZnO composite powder annealed at different temperature: a 450 �C, b 550 �C, and c 650 �C
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lattice of ZnO between 3d copper and 2p oxygen

orbitals, and create a single-acceptor state above

valence band Ev of ZnO, resulting in narrowing the

band gap of ZnO (Yan et al. 2006). Another is that Cu

inserts into the Zni. The lattice of ZnO is distorted after

the Cu inserts into the Zni, leading to forming oxygen

vacancies and zinc vacancies. Hence, the intensity of

green emission peak is significantly improved by Cu

doping. However, this configuration of Cu has low

thermal stability, and increased annealing temperature

leads to partial Cu outdiffusion. According to litera-

ture (Wahl et al. 2004.), when annealing temperature

is lower than 600 �C, a large fraction of Cu atoms

(60–70 %) occupy almost ideal substitutional Zn

sites, while annealing above 600 �C causes partial

Cu outdiffusion. Furthermore, the ZnO crystallite

becomes better as the temperatures of heat treatment

increase. Cu outdiffusion and better crystallite will

restore the defects and decrease the oxygen vacancy

concentration in the ZnO crystal, therefore the inten-

sity of green emission peak decreases with increasing

the temperatures of heat treatment.

Figure 7 displays the UV–Vis absorption spectrum

of MWNTs and composite powder in anhydrous

ethanol. Curve a in Fig. 7 is the UV–Vis absorption

spectrum of pure MWNTs. A very broad absorption

peak appears at about 262 nm, which originates from

the C=C structure of MWNTs. From the UV spectrum

of MWNTs/ZnO composite powder, we can see that

there are two UV absorption peaks at about 210 and

362 nm, respectively, as shown in the curve b of

Fig. 7. The two absorption peaks are attributed to

MWNTs and the characteristic peaks of ZnO, respec-

tively. The spectra of all MWNT/Cu-doped ZnO

composite powder show two sharp absorption peaks at

about 223 and 375 nm, which have a slight red shift

with respect to the MWNTs/ZnO composite powder.

Similar red shift in Cu-doped ZnO was also reported

(Ferhat et al. 2009; Bylsma et al. 1986; Reddy et al.

2011), which is attributed to the strong p-d mixing of

O and Cu. Furthermore, it is a very interesting

phenomenon that the samples of MWNT/Cu-doped

ZnO composite powder exhibit a broad absorption

bands from 200 to 400 nm, and its absorption intensity

is stronger than that of MWNT/ZnO composite

powder, indicating the effective photoabsorption

property for this doped composite powder.

From the above results, it is concluded that the UV

absorption ability of ZnO is significantly improved

through adding the MWNTs and doping Cu in ZnO,

which comes from the outstanding electronic property

of MWNTs. MWNTs have a large electron-storage
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capacity (one electron for every 32 carbon atoms), and

may accept photon-excited electrons in mixtures or

nanocomposites (Kongkanand and Kamat 2007).

Furthermore, MWNTs may play a crucial role in the

charge transport (Eder 2010). There are three pro-

cesses about the electron transport in the MWNTs/Cu-

doped ZnO composite, as shown in Fig. 8. Firstly,

when a high-energy photon excites an electron from

the valence band of the ZnO, the photogenerated

electron formed in the space-charge regions is trans-

ferred into the conduction band of the ZnO. Secondly,

MWNTs capture the photon-excited electrons from

the conduction band of the ZnO. Thirdly, the captured

electron can fast be conducted by MWNTs, leaving a

hole in the valence band of the ZnO.

Conclusion

Cu-doped ZnO nanoparticles were successfully deco-

rated onto the surface of MWNTs through the co-

precipitation method. Because of adding MWNTs and

Cu, a new UV emission peak at about 354 nm and a

green emission band at about 510 nm are observed in the

spectrum of ZnO, and the UV absorption ability of ZnO

is significantly improved, which may improve the

utilization rate of the visible light. Moreover, MWNTs

can act as photosensitizers for n-type semiconductors and

hinder the recombination of electron–hole pairs, resulting

in improving ZnO photocatalytic activity. Accordingly,

the synthetic products have a potential application in

fields of photocatalysis and optoelectronics.
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