
Language recognition power and succinctness of affine automata

Marcos Villagra1 • Abuzer Yakaryılmaz2

Published online: 7 November 2017

� Springer Science+Business Media B.V. 2017

Abstract In this work we study a non-linear generalization

based on affine transformations of probabilistic and quan-

tum automata proposed recently by Dı́az-Caro and

Yakaryılmaz (in: Computer science—theory and applica-

tions, LNCS, vol 9691. Springer, pp 1–15, 2016. ArXiv:

1602.04732) referred to as affine automata. First, we pre-

sent efficient simulations of probabilistic and quantum

automata by means of affine automata which characterizes

the class of exclusive stochastic languages. Then we ini-

tiate a study on the succintness of affine automata. In

particular, we show that an infinite family of unary regular

languages can be recognized by 2-state affine automata,

whereas the number of inner states of quantum and prob-

abilistic automata cannot be bounded. Finally, we present a

characterization of all (regular) unary languages recog-

nized by two-state affine automata.

Keywords Probabilistic automata � Quantum automata �
Affine automata � State complexity � Stochastic language �
Bounded-error � One-sided error

1 Introduction

1.1 Background

Probabilistic and quantum computing are computation

models with a very rich literature. Quantum computation,

in particular, apparently violates the so-called strong

Church-Turing thesis, which states that all reasonable

models of computation can be efficiently simulated by a

probabilistic universal Turing machine. Evidence comes

from the efficient solution to certain problems believed to

be computationally hard, like factoring large composite

numbers. Much research is devoted to pinpoint the exact

source of this computational power of quantum computers.

In this paper, we continue the work initiated in Dı́az-

Caro and Yakaryılmaz (2016) on a quantum-like classical

computational model based on affine transformations. In

particular, we make emphasis in finite-state automata,

which is arguably the most simple computation model.

Affine automata are finite-state machines whose transition

operators are affine operators, hence the name.

There are several sources that apparently gives power to

quantum computers, like quantum parallelism and entan-

glement. Several researchers may agree that quantum

interference (using negative amplitudes), however, seems

to be a key component. Therefore, the reason to study

affine automata is to simplify the study of quantum inter-

ference in the context of a simple classical computation

model.

An earlier version of this paper appeared as ‘‘Villagra, M.,

Yakaryılmaz, A.: Language recognition power and succinctness of

affine automata. In: Unconventional Computation and Natural

Computation, LNCS, vol. 9726, pp. 116–129. Springer (2016)’’. The

current paper has augmented this original work by presenting full

details of all proofs. Some parts of this work was done while

Yakaryılmaz was visiting Universidad Nacional de Asunción in

September 2015.
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Probabilistic automata are computation models whose

transitions are governed by stochastic operators preserving

the ‘1-norm of a normalized vector with entries in the

continuous set of real numbers [0, 1]. Similarly, the tran-

sitions in a quantum automaton are governed by unitary

operators preserving the ‘2-norm of a normalized vector

with entries over the complex numbers C. The only

restriction that affine transformations impose over finite-

state machines is the preservation of barycenters of vectors

with entries over the real numbers R, or equivalently,

preservation of the sum of all entries in a state vector. It is

clear that any affine operator defined on non-negative real

numbers is a stochastic operator.

Since affine transformations are linear, the evolution of

an affine automaton is linear. Nonlinearity comes from a

measurement-like operator (which we call a weighting

operator) that is applied at the end of every computation to

determine the probability of observing an inner-state of the

machine. We refer the reader to Dı́az-Caro and Yakar-

yılmaz (2016) for the detailed explanations and discus-

sions. A continuation of this paper appeared in Belovs et al.

(2016).

1.2 Contributions

In this work we present the following results on affine

automata language classes. First, in Sect. 4 we show how

to simulate a probabilistic automaton using an affine

automaton (Theorem 1). Then we use that simulation to

show that any rational exclusive stochastic language can be

recognized by positive one-sided bounded-error affine

automata (Theorem 2). This fact immediately implies a

characterization of the language recognition power of

nondeterministic quantum automata by one-sided bounded-

error affine automata. In Sect. 5 we show how to simulate

an n-state quantum automaton exactly by an ðn2 þ 1Þ-state
affine automaton (Theorem 4). In Sect. 6 we study the state

complexity (succintness) of affine automata. First, we show

that the so-called unary counting problem can be computed

by some bounded-error affine automata with constant state

complexity (Theorem 5), whereas any bounded-error

quantum automaton requires at least a logarithmic number

of states. Second, we show the existence of a promise

language that is solved exactly by an affine automaton with

constant state complexity (Theorem 7), whereas any

probabilistic automaton requires exponential state com-

plexity. Finally, in Sect. 7 we give a complete characteri-

zation of all (regular) unary languages recognized by two-

state affine automata (Theorem 8).

Affine transformations are arguably simpler to under-

stand compared to unitary operators. Therefore, the char-

acterizations given in terms of affine automata of quantum

language classes present a simpler setting where to study

and research the power of interference.

2 Preliminaries

We assume the reader is familiar with the common notation

used in automata theory. For details on the models of

probabilistic and quantum automata, we recommend ref-

erences Paz (1971), Say and Yakaryılmaz (2014) and

Ambainis and Yakaryılmaz (2015).

Let R be a finite alphabet, not containing cj and $ called

the left and right end-markers, respectively. The set of all

the strings of finite length over R is denoted R�. We define

eR ¼ R [ fcj; $g and ~w ¼ cjw$ for any string w 2 R�. For
any given string w 2 R�; jwj denotes its length, jwjr is the

number of occurrences of the symbol r, and wj is the j-th

symbol of w. For a given n-dimensional vector v, |v|

denotes the ‘1-norm of v, i.e. jvj ¼ jv½1�j þ jv½2�j þ � � � þ
jv½n�j.

A probabilistic finite automaton (or PFA) (Rabin 1963)

is a 5-tuple P ¼ ðE;R; fAr j r 2 eRg; es;EaÞ, where E ¼
fe1; . . .; eng is a finite set of inner states for some n 2 Zþ,
es 2 E is the starting inner state, Ea � E is the set of accept

inner states, and Ar is the stochastic transition matrix for

the symbol r 2 eR. Any input w 2 R� is always given in the

form ~w ¼ cjw$ and it is scanned by P from left to right,

symbol by symbol.1 After scanning the j-th symbol, the

configuration state of P is vj ¼ A ~wj
vj�1 ¼ A ~wj

A ~wj�1

� � �A ~w1
v0, where 1� j� j ~wj and v0 is the s-th element of the

standard basis in Rn, referring to the initial state. The final

configuration state is denoted vf ¼ vj ~wj. The acceptance

probability of P on w is given by fPðwÞ ¼
P

ek2Ea
vf ½k�,

where vf ½k� is the k-th entry of vector vf .

A quantum finite automaton (or QFA) (Hirvensalo 2010;

Ambainis and Yakaryılmaz 2015) is a 5-tuple M ¼ ðQ;R;
fEr j r 2 eRg; qs;QaÞ, where Q ¼ fq1; . . .; qng is a finite set
of inner states for some n 2 Zþ; Er is a transition super-

operator2 for a symbol r 2 R, the inner state qs is the initial
state, and Qa � Q is a set of accept states. For any given

input w 2 R�, the computation of M on w is given by

qj ¼ E ~wj
ðqj�1Þ, where q0 ¼ jqsihqsj and 1� j� j ~wj. The

final state is denoted qf ¼ qj ~wj. The accept probability ofM

on w is given by fMðwÞ ¼
P

qj2Qa
qf ½j; j�, where qf ½j; j� is

the j-th diagonal entry of q.

1 This way of scanning an input tape is sometimes referred to as

‘‘strict realtime’’.
2 A superoperator or quantum operator is a positive-semidefinite

operation that maps density matrices to density matrices (Say and

Yakaryılmaz 2014; Ambainis and Yakaryılmaz 2015).
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The most restricted model of QFA currently known is

the so-called Moore-Crutchfield QFA (or MCQFA) (Moore

and Crutchfield 2000). An MCQFA is a 5-tuple

M ¼ ðQ;R; fUr j r 2 eRg; qs;QaÞ, where all components

are defined exactly in the same way as for QFAs except

that Ur is a unitary transition operator for a symbol r 2 R
acting on spanfjqi j q 2 Qg. Physically, M corresponds to

a closed-system based on pure states.3 For any given input

w 2 R�, the machine M is initialized in the quantum state

jv0i ¼ jqsi. Each step of a computation is given by

jvji ¼ U ~wj
jvj�1i, where 1� j� j ~wj. The final quantum state

is denoted jvf i ¼ jvj ~wji. The accept probability ofM on w is

fMðwÞ ¼
P

qj2Qa
jhqjjvf ij2. Note that the inner product

hqjjvf i gives the amplitude of qj in jvf i.
If we restrict the entries in the transitions matrices of a

PFA to zeros and ones we obtain a deterministic finite

automaton (or DFA). A DFA is always in a single inner

state during the computation and the input is accepted if

and only if the computation ends in an accept state. A

language is said to be recognized by a DFA if and only if

any member of the language is accepted by the DFA. Any

language recognized by a DFA is called a regular language

(Rabin and Scott 1959) and the class of regular languages

is denoted REG.

Let k 2 ½0; 1Þ be a real number. A language L is said to

be recognized by a PFA P with cutpoint k if and only if

L ¼ fw 2 R� j fPðwÞ[ kg. Any language recognized by a

PFA with a cutpoint is called a stochastic language (Rabin

1963) and the class of stochastic languages is denoted SL,

which is a superset of REG. As a special case, if k ¼ 0, the

PFA is also called a nondeterministic finite automaton (or

NFA). Any language recognized by an NFA is also a

regular language.

A language L is said to be recognized by P with isolated

cutpoint k if and only if there exists a positive real number

d such that fPðwÞ� kþ d for any w 2 L and fPðwÞ� k� d
for any w 62 L. When the cutpoint is required to be isolated,

PFAs are not more powerful than DFAs; that is, any lan-

guage recognized by a PFA with isolated cutpoint is reg-

ular (Rabin 1963).

Language recognition with isolated cutpoint can also be

formulated as recognition with bounded error. Let

� 2 ½0; 1
2
Þ. A language L is said to be recognized by a PFA P

with error bound � if and only if fPðwÞ� 1� � for any

w 2 L and fPðwÞ� � for any w 62 L.

As a further restriction, if fPðwÞ ¼ 1 for any w 2 L, then

we say that P recognizes L with negative one-sided

bounded error; if fPðwÞ ¼ 0 for any w 62 L, then we say that

P recognizes L with positive one-sided bounded error. If

the error bound is not specified, then we say that L is

recognized by P with [negative/positive one-sided] boun-

ded error.

A language L is an exclusive stochastic language (Paz

1971) if and only if there exists a PFA P and a cutpoint

k 2 ½0; 1� such that L ¼ fw 2 R� j fPðwÞ 6¼ kg. The class of
exclusive stochastic languages is denoted by SL 6¼. Its

complement class is denoted by SL¼ (that is L 2 SL 6¼ iff

L 2 SL¼). Note that for any language in SL6¼ we can

choose as cutpoint any value between 0 and 1, but not 0 or

1, because in that case we can only recognize regular

languages. Also notice that both SL 6¼ and SL¼ are super-

sets of REG (it is still open whether REG is a proper

subset of SL 6¼ \ SL¼).
In the case of QFAs, they recognize all and only regular

languages with bounded-error (Li et al. 2012) and

stochastic languages with cutpoint (Yakaryılmaz and Say

2009, 2011). The class of languages recognized by non-

deterministic QFAs, however, is identical to SL6¼.
For any language class C, we use CX to denote the

subclass of C when all transitions of the corresponding

model are restricted to X.

3 Affine finite automaton

In this section we define our model of finite-state machine

based on affine transformations. We refer to Dı́az-Caro and

Yakaryılmaz (2016) for the basics of affine systems. An

affine finite-state automaton, or simply AfA, is a 5-tuple

M ¼ E;R; fAr j r 2 eRg; es;Ea

� �

;

where all the components are the same as in the definition

of a PFA except that Ar is an affine transformation matrix

(the sum of each column is 1). Note that each configuration

state of M is a column vector on R where summation of the

entries is 1. On input w 2 R�, let vf be the final configu-

ration state after scanning the right end-marker $. Define

the accept probability of M as

fMðwÞ ¼
X

ek2Ea

jvf ½k�j
jvf j

2 ½0; 1�; ð1Þ

where each value contributes with its absolute value. More

specifically, when M is in the final state vf , this vector is

normalized with respect to the ‘1-norm obtaining a new

vector v0f ; thus, in order to obtain the accept probability we

project the vector v0f on the subspace spanned by the accept

inner states Ea of M and then taking the ‘1-norm again, that

is, the summation of the absolute value of each entry.

Language recognition for M is defined in the same way.

Any language recognized by an AfA with cutpoint is called
3 Pures states are vectors in a complex Hilbert space normalized with

respect to the ‘2-norm.
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an affine language. The class of affine languages is denoted

AfL. Any language recognized by an AfA with cutpoint 0

(called nondeterministic AfA or NAfA for short) is called a

nondeterministic affine language. The corresponding class

is denoted NAfL. A language is called an exclusive affine

language if and only if there exists an AfA M and a cut-

point k 2 ½0; 1� such that L ¼ fw 2 R� j fMðwÞ 6¼ kg. The
class of exclusive affine languages is denoted by AfL 6¼ and

its complement class is denoted by AfL¼. Any language

recognized by an AfA with bounded error is called a

bounded affine language. The corresponding class is

denoted BAfL. If the error is positive one-sided (all non-

members are accepted with value 0), then the corre-

sponding language class is denoted BAfL0, whereas for

negative one-sided error (all members are accepted with

value 1) the corresponding language class is denoted

BAfL1. Note that if L 2 BAfL0, then L 2 BAfL1, and vice

versa. Any language recognized by an AfA with zero-error

is called exact affine language and its corresponding lan-

guage class is EAfL.

4 Simulation of rational PFAs

In this section we present a simulation of PFAs by AfAs.

Since 1-state PFAs are trivial, we focus on PFAs with two

or more states.

Theorem 1 Any language L recognized by an n-state

rational PFA with cutpoint 1
2
can be recognized by an

ðnþ 1Þ-state integer AfA with cutpoint 1
2
.

Proof Let P ¼ ðE;R; fAr j r 2 eRg; es;EsÞ be an n-state

PFA defined with only rational numbers with n[ 1. With

the help of end-markers, we can assume with no loss of

generality that the initial state es ¼ e1 and Ea ¼ fe1g.
Moreover, for any given w 2 R�, we can assume that the

final state vector of M is always

fPðwÞ
1� fPðwÞ

0

..

.

0

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

:

Using P as defined above, we construct an AfA

MP ¼ ðE [ fenþ1g;R; fBr j r 2 eRg; e1; fe1gÞ, where

n ¼ jEj. Let d be the smallest positive integer such that for

each r 2 R the entries of the matrix dAr are integers. If v0
is the initial state of P, for any string w, we have that

dA ~wj ~wj

� �

dA ~wj ~wj�1

� �

� � � dA ~w1
ð Þv0 ¼ dj ~wj

fPðwÞ
1� fPðwÞ

0

..

.

0

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

2 Zn:

We define a new matrix A0
r for each r 2 eR as

A0
r ¼

dAr 0

1 1

� �

;

where 1 is a row vector that makes the summation of each

column under dAr equal to 1. Then, for a given string w,

we have that

v0f ¼ A0
~wj ~wj

A0
~wj ~wj�1

� � �A0
~w1

v0

0

� �

¼

dj ~wjfPðwÞ
dj ~wj 1� fPðwÞð Þ

0

..

.

0

1� dj ~wj

0

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

A

2 Znþ1:

Using the vector v0f , we can subtract the second entry from

the first one and then sum everything else on the second

entry by using an extra affine operator A00
~wj ~wj

obtaining

v00f ¼ A00
~wj ~wj

v0f ¼

dj ~wj 2fPðwÞ � 1ð Þ
1� dj ~wj 2fPðwÞ � 1ð Þ

0

..

.

0

0

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

A

2 Znþ1:

Here the entries of A00
~wj ~wj

are as follows:

where 0 is a ðn� 1; nþ 1Þ-dimensional zero matrix. The

vector v00f is our desired final state for machine MP. Thus,

for each r 2 R [ fcjg, we set Br ¼ A0
r, and, for the last

operator we set B$ ¼ A00
$A

0
$. The initial vector of MP is

u0 ¼
v0
0

� �

. Then, for any w 2 R� we have that fPðwÞ[ 1
2

if and only if fMPðwÞ[ 1
2
. h

The simulation in Theorem 1 is helpful for recognizing

rational exclusive stochastic languages with bounded-error.
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Theorem 2 SL6¼Q � BAfL0Z.

Proof Let L 2 SL 6¼Q and let P be a PFA with rational

transitions such that if w 2 L then fPðwÞ 6¼ 1
2
, and if w 62 L

then fPðwÞ ¼ 1
2
.

Based on the simulation of Theorem 1, we can construct

an AfA MP that simulates P. For non-members of L, the

first entry of the final vector is always zero and so they are

accepted with value 0 by MP; for members of L, the first

entry of the final vector can be a non-zero integer. Then,

the final vector of MP can be one of the following column

vectors

. . .;

2

�1

0

..

.

0

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

;

1

0

0

..

.

0

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

;

�1

2

0

..

.

0

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

;

�2

3

0

..

.

0

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

; . . .:

Hence, the accept value is at least 1
3
for members of L. By

executing a few copies of MP in parallel, we can increase

the accept value arbitrarily close to 1. Considering that all

non-members of L are accepted with zero value, the

recognition mode is positive one-sided bounded-error. h

The following corollary is obtained immediately from

Theorem 2.

Corollary 1 SL¼Q � BAfL1Z.

It was shown in Dı́az-Caro and Yakaryılmaz (2016) that

SL 6¼ ¼ NAfL ¼ NQAL, and therefore, our new result is

stronger (bounded-error) but for a restricted case (using

only rational numbers). One may immediately ask whether

BAfL0Q � SL 6¼Q. This follows from the simulation of a

NAfA by a NQFA given in Dı́az-Caro and Yakaryılmaz

(2016), and the a simulation of a NQFA by PFA with

exclusive cutpoint (see Yakaryılmaz and Say 2010a). Note

that all the intermediate machines can use only rational

transitions. Moreover, we can give a direct simulation of a

NAfA by a PFA using Turakainen’s technique (Tu-

rakainenn 1975).

Corollary 2 BAfL0Z ¼ BAfL0Q ¼ SL 6¼Q and BAfL1Z ¼
BAfL1Q ¼ SL¼Q.

The class SL¼Q is important because, as pointed in

Yakaryılmaz and Say (2010b), it contains many well-

known nonregular languages like UPAL ¼ fanbn j n[ 0g;
PAL ¼ fw 2 R� j w ¼ wrg; SQUARE ¼ fanbn2 j n[ 0g;
POWER ¼ fanb2n j n[ 0g, etc. Interestingly, any language

in SL6¼QðSL¼QÞ can also be recognized by two-way QFAs

with positive (negative) one-sided bounded-error. There-

fore, it is reasonable to compare AfAs with two-way QFAs.

We can provide logarithmic-space bounds for one-sided

bounded-error affine languages. We know that SL6¼Q [ SL¼Q
is in the deterministic logarithmic space class L (Macarie

1998) and PAL cannot be recognized by a probabilistic

Turing machine in sublogarithmic space (Freivalds and

Karpinski 1994). Hence, we can immediately obtain the

following result.

Corollary 3 BAfL0Q [ BAfL1Q � L and BAfL0Q [ BAfL1Q
* BSpaceðoðlog nÞÞ.

The language EQNEQ ¼ faw1 [ bw2 2 fa; bg� j w1 2
EQ and w2 2 NEQg is not in SL 6¼ [ SL¼, where EQ ¼ fw 2
fa; bg� j jwja ¼ jwjbg and NEQ is the complement of EQ

(Yakaryılmaz and Say 2010a). We know that EQ can be

recognized by an AfA with bounded-error, and hence, it is

not hard to design an AfA recognizing EQNEQ with boun-

ded-error; the error, however, must be two-sided since it is

not in SL 6¼ [ SL¼.

Theorem 3 BAfL0Q [ BAfL1Q(BAfLQ.

5 Exact simulation of QFAs

In this section, we present an exact simulation of QFAs by

AfAs. We start with the exact simulation of MCQFAs due

to its simplicity.

Lemma 1 For a given MCQFA M with n inner states

defined over R, there exists an AfA MM with ðn2 þ 1Þ inner
states that exactly simulates M.

Proof Let M ¼ ðQ;R; fUr j r 2 eRg; qs;QaÞ be an n-state

MCQFA and jv0i ¼ jqsi be the initial quantum state. All

transitions of M use only real numbers. For any given input

w 2 R�, the final quantum state is

jvf i ¼ U ~wj ~wjU ~wj ~wj�1
� � �U ~w1

jv0i:

In order to turn amplitudes into probabilities of observing

the basis states from the final vector, we can tensor jvf i
with itself (Moore and Crutchfield 2000). Thus,

jvf i 	 jvf i ¼ ðU ~wj ~wj 	 U ~wj ~wj ÞðU ~wj ~wj�1
	 U ~wj ~wj�1

Þ � � �
ðU ~w1

	 U ~w1
Þðjv0i 	 jv0iÞ:

We construct an AfA MM that simulates the computation

of M. The set of inner states is Q
 Q [ fqn2þ1g, the initial
state is ðqs; qsÞ, and there is only one accept state ðq1; q1Þ.
For any symbol r 2 R [ fcjg, the transition affine matrix Ar

is defined as
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where 1 is a row vector that makes the summation of each

column under Ur 	 Ur equal to 1. The affine transforma-

tion A$ is composed by two affine operators

where A0
$ is an affine operator to be specified later. Then,

on input w, the final affine state is

uf ¼ A0
$

vf 	 vf

1

� �

;

where 1 is equal to 1 minus the summation of the rest of the

entries in uf . The accept value of M on w can now be

calculated from the values of vf 	 vf , that is, the summa-

tion of entries corresponding to ðqj; qjÞ for all qj 2 Qa.

Similar to the simulation in the previous section, we

define A0
$ as an operation that computes the summation

over all entries corresponding to each accepting state of the

form ðqj; qjÞ and copies the result to the first entry of uf ; all

remaining values are added and copied to the second entry

of uf . (The first and second rows of A0
$ are 0-1 vectors and

all the other rows are zero vectors.) Thus, our final state is

uf ¼ ðfMðwÞ; 1� fMðwÞ; 0; . . .; 0ÞT . Finally, we have that

fMMðwÞ equals fMðwÞ and the number of inner states of MM

is n2 þ 1. h

It is known that the computation of any n-state QFA M

(defined with complex numbers) can be simulated by an

n2-state general finite-state automaton G such that fMðwÞ ¼
fGðwÞ for any w 2 R� (Yakaryılmaz and Say 2011). Then,

by adding one more state, we can design an AfA MM such

that fMðwÞ ¼ fMMðwÞ for any w 2 R�. Hence, the following
result follows immediately.

Theorem 4 For a given QFA M with n inner states, there

exists an AfA MM with ðn2 þ 1Þ inner states that exactly

simulates M.

By using this theorem, we inherit the superiority results

of QFAs over PFAs (Ambainis and Yakaryılmaz 2015) as

the superiority results of AfAs over PFAs. The only issue

we should be careful about is the quadratic increase in the

number of states, which could be significant depending on

the situation.

The simulation techniques given here can be applied to

different cases. For example, an affine circuit can be defined

similarly to a quantum circuit, using affine operators instead

of unitary operators. Then, using the above simulation(s), it

follows that any quantum circuit of width d(n) and length

s(n) can be simulated exactly by an affine circuit of width

d2ðnÞ þ 1 and length s(n) , where n is the parameter of the

input length. Therefore, we can say that the class BQP is a

subset of bounded-error affine polynomial-time defined

with circuits. Moreover, PSPACE is a trivial upper bound

for these polynomial-time affine circuits.

6 Succinctness of affine computation

6.1 Bounded-error

For any prime number p, the language MODp ¼ fajp j j� 0g,
over the unary alphabet fag, can be recognized by a

bounded-error MCQFA with OðlogðpÞÞ inner states; any

bounded-error PFA, however, requires at least p states

(Ambainis and Freivalds 1998). The MCQFA algorithm for

MODp is indeed composed by OðlogðpÞÞ copies of 2-state

MCQFAs. Since we can simulate these 2-state MCQFAs

exactly by 5-state AfAs, it follows that MODp can be rec-

ognized by bounded-error AfAs withOðlogðpÞÞ inner states.
The language COUNTn ¼ fang for any n[ 0, also known

as the (unary) counting problem, can be solved by boun-

ded-error AfAs with a constant number of states; moreover,

any DFA requires n states (Kupferman et al. 1999), which

implies that any bounded-error QFAs must have at least

Xð
ffiffiffiffiffiffiffiffiffiffiffiffiffi

logðnÞ
p

Þ states (Ambainis and Yakaryılmaz 2015).

Theorem 5 The language COUNTn can be recognized by a

2-state AfA with negative one-sided bounded-error.

Proof We use two states fe1; e2g where e1 is the initial

and only accept inner state. Over an alphabet R ¼ fag, we
define the initial configuration state v0 and Acj as

v0 ¼
1

0

� �

and Acj ¼
2n 0

1� 2n 1

� �

;

respectively. After scanning the left end-marker, the con-

figuration state is

v1 ¼
2n

1� 2n

� �

:

For each symbol a, we apply the operation

Aa ¼

1

2
0

1

2
1

0

B

@

1

C

A
:

Then, after reading j symbols, we have that

vjþ1 ¼
2n�j

1� 2n�j

� �

:

Finally, we define A$ as the identity operation. For the

single member of COUNTn, namely the string an, the final

configuration state is
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vf ¼
1

0

� �

;

and hence, it is accepted exactly. For any non-member

string of COUNTn, the final configuration state can be one of

the followings

. . .;
4

�3

� �

;
2

�1

� �

;

1

2
1

2

0

B

@

1

C

A
;

1

4
3

4

0

B

@

1

C

A
; . . .

and, in consequence, the accept value can be at most 2
3
. h

Using a few copies of the AfA of Theorem 5, the error

can be made arbitrarily close to 0 with a number of inner

states that depends only on the error bound.

6.2 Zero-error

For any k[ 0, MOD2k ¼ ð0MOD2k; 1MOD2kÞ is a promise

problem,4 where 0MOD2k ¼ faj2k j j � 0 mod 2g and

1MOD2k ¼ faj2k j j � 1 mod 2g.
It is known that MOD2k can be solved exactly by a 2-state

MCQFA (Ambainis and Yakaryılmaz 2012). Any boun-

ded-error PFA, however, requires at least 2kþ1 states

(Rashid and Yakaryılmaz 2014). Using Lemma 1 we can

obtain the following result.

Theorem 6 The promise problem MOD2k can be solved by

a 5-state AfA exactly.

In consequence, zero-error AfAs are also interesting like

MCQFAs. Now consider the promise problem MOD4k ¼
ð0MOD4k; 1MOD4kÞ where 0MOD4k ¼ faj:2k j j � 0 mod 4g
and 1MOD4k ¼ faj:2k j j � 1 mod 4g.

Theorem 7 The promise problem MOD4k can be solved

exactly by a 3-state AfA.

Proof We use the algorithm given in Ambainis and

Yakaryılmaz (2012), but there is no need to tensor it with

itself to solve MOD4k. Let Mk be a MCQFA with two inner

states defined with real numbers; additionally, Mk does not

need to use end-markers. The initial configuration state of

Mk is

v0 ¼
1

0

� �

:

After reading blocks of size ja2k j, the configuration states of
Mk change as follows:

v0 ¼
1

0

� �

�!a
2k 0

1

� �

�!a
2k �1

0

� �

�!a
2k 0

�1

� �

�!a
2k 1

0

� �

�!a
2k 0

1

� �

�!a
2k

� � �

We can simulate this computation using a 3-state AfA;

hence, an affine configuration state becomes

1

0

0

0

B

@

1

C

A
and

0

1

0

0

B

@

1

C

A

after reading the 4j-th and ð4jþ 1Þ-th blocks for j� 0. This

suffices to exactly solve MOD4k. h

Using the techniques given in Ambainis and Yakar-

yılmaz (2012), Rashid and Yakaryılmaz (2014), we can

show that any bounded-error PFA [and some other classical

automata models Geffert and Yakaryılmaz (2015)] requires

at least 2kþ1 states to solve MOD4k.

In summary, we can say that MOD2k (and so MOD4k) is a

classically expensive promise problem, but inexpensive for

quantum and affine automata. As further examples, in the

same line of research, a classically expensive generalized

version of MOD2k was defined in Gruska et al. (2015), in

which it was shown that the same expensive language can

be solved by 3-state MCQFAs exactly; furthermore, a

classically expensive function version of MOD2k was

defined in Ablayev et al. (2014), which was shown to be

solved by width-2 quantum OBDDs exactly. Trivially, all

quantum results for these families of promise problems are

inherited for affine models.

7 Unary languages recognized by affine automata
with two inner states

All of our results of the previous sections, excepting the

succintness results of Sect. 6, were obtained for languages

defined over generic alphabets. Hence, using the superi-

ority result of QFAs over PFAs given in Gainutdinova and

Yakaryılmaz (2015), it immediately follows that AfAs

computing unary languages are more powerful than unary

PFAs with bounded-error on promise problems.

In this section, we give a complete characterization of

the unary languages recognized by 2-state AfAs with cut-

point. It is known that 2-state unary PFAs can recognize

only a few regular languages, whereas 2-state unary QFAs

(with transitions defined over R) can recognize uncount-

able many languages (Paz 1971; Shur and Yakaryılmaz

2016). Here we obtain an analogous result to PFAs with the

difference that AfAs can recognize more regular languages.

Consider the following unary regular languages over

R ¼ fag; the empty language £; E ¼ fag�; LESSn ¼ fai j
i� ng for n� 0, and EVEN ¼ ðaaÞ�.

4 A promise problem L ¼ ðLyes; LnoÞ is solved by a machine M, or M

solves L, if for all w 2 Lyes; M accepts w, and for all w 2 Lno; M rejects

w.
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The complete list of languages recognized by 2-state

unary PFAs with cutpoint are E, LESSn, LESSn \ EVEN,

LESSn \ EVEN, LESSn \ EVEN, LESSn \ EVEN, and the

complement of each of these languages, with n� 0 (Shur

and Yakaryılmaz 2016).

The main result of this section is the following. Let

INTERVALk;l ¼ fai j k� i� lg for 1� k\l.

Theorem 8 The only unary regular languages recog-

nized by AfAs with 2 inner states are the languages rec-

ognized by 2-state unary PFAs with cutpoint and

additionally INTERVALk;l \ EVEN, INTERVALk;l \ EVEN;

INTERVALk;l \ EVEN , and INTERVALk;l \ EVEN.

The remaining of this section is devoted to the proof of

Theorem 8. To that end, first we will consider the com-

putation of a 2-state unary AfAM, which is inspired by a 2-

state unary PFA of Shur and Yakaryılmaz (2016). Let

fe1; e2g be the only inner states of M. With no loss of

generality, we assume that the initial and only accepting

state is e1. The affine transformations for symbols a and $

are

Aa ¼
1� q p

q 1� p

� �

and ð2Þ

A$ ¼
f1 f2

1� f1 1� f2

� �

; ð3Þ

respectively, for some real numbers p; q; f1 and f2.

Let vf ¼
x

1� x

� �

be the final configuration vector of

string ajðj� 0Þ. The accept probability of M on aj is

fMðajÞ ¼
�x

1� 2x
¼ 1

2
þ 1

4x� 2
when x\0 and x[ 1, and

fMðajÞ ¼ x when 0� x� 1 (see Fig. 1).

Lemma 2 If p ¼ q ¼ 0 in Eq. (2), then E and £ can be

recognized by AfAs with 2 states.

Proof It is clear that if p ¼ q ¼ 0, then Aa is the identity,

and hence fM is a constant function on R�. Thus, M can

recognize E and £. h

For the remaining of this section, we assume that at least

one of p or q is non-zero.

Lemma 3 There exists p 2 R satisfying pþ q ¼ 0 in

Eq. (2) such that M recognizes LESSn.

Proof Suppose that pþ q ¼ 0 in Aa. Then, we have

Aa ¼
1þ p p

�p 1� p

� �

:

If the initial state is
m

1� m

� �

, then we can obtain:

mþ p

1� m� p

� �

¼
1þ p p

�p 1� p

� �

m

1� m

� �

and then

mþ jp

1� m� jp

� �

¼
1þ p p

�p 1� p

� �j
m

1� m

� �

for j[ 1. The accept probability of M can be seen in

Fig. 1.

If we start at point m in Fig. 1, we shift either left or

right with an amount of jpj[ 0 for each scanned symbol.

In this way, it is easy to see that M can recognize LESSn for

any n� 0. h

Corollary 4 There exists p 2 R satisfying pþ q ¼ 0 in

Eq. (2) such that M recognizes LESSn.

Lemma 4 There exists p 2 R satisfying pþ q ¼ 0 such

that M recognizes INTERVALk;l with cutpoint 3 / 4.

Proof Let l� k ¼ d[ 0 and the cutpoint be 3
4
. We pick m

as 3
2
þ 3

4dþ8
ðk � 1Þ and start in state

m

1� m

� �

after read-

ing the left end-marker. We apply Aa for each symbol

where p ¼ � 3
4dþ8

. That means, on the number line in

Fig. 1, we start at m and then shift to the left with value
3

4dþ8
for each scanned symbol. We pick A$ as the identity.

After reading ðk � 1Þ symbols, the first entry of vf will be

3

2
þ 3

4d þ 8
ðk � 1Þ � ðk � 1Þ 3

4d þ 8
¼ 3

2
:

Then,

fMðak�1Þ ¼
3
2

�

�

�

�

3
2

�

�

�

�þ � 1
2

�

�

�

�

¼ 3

4
;

and so fMðajÞ� 3
4
for any j\k. After reading one more

symbol, the accept probability fMðakÞ becomes more than 3
4
.

As can be easily seen from the graph, by continuing to scan

Fig. 1 Accept probability of M
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input symbols, the accept probability may stay over 3
4
for a

while, and then it always stays below 3
4
. More specifically,

if we read ðd þ 2Þ more symbols (after reading ðk � 1Þ
symbols), the first entry of vf will be

3

2
� ðd þ 2Þ 3

4d þ 8
¼ 3

2
� 3

4
¼ 3

4
:

Thus, the accept probability hits 3
4
again for the string

ak�1þdþ2 ¼ akþl�kþ1 ¼ alþ1. Therefore, the accepting

probabilities of all strings

ak; akþ1; . . .; al

are more than 3
4
, and the accept probabilities of all other

strings are at most 3
4
. h

Corollary 5 The language INTERVALk;l can be recog-

nized by a 2-state AfA with cutpoint 3
4
.

From Lemma 4 and Corollary 5 we conclude that AfAs

with two inner states can recognize more languages than

PFAs with two inner states. Moreover, for the case of

pþ q ¼ 0, there are no more regular unary languages

recognized by AfAs with two states as shown below.

On input aj, the final configuration state is

vf ¼
f1 f2

1� f1 1� f2

� �

mþ j � p
1� m� j � p

� �

¼
mf1 þ jpf1 þ f2 � mf2 � jpf2

�1

� �

where �1 ¼ 1� ðmf1 þ jpf1 þ f2 � mf2 � jpf2Þ. If we let

F ¼ mðf1 � f2Þ þ f2 and C ¼ pf1 � pf2, then we can write

vf ¼
mðf1 � f2Þ þ f2 þ jðpf1 � pf2Þ

�1

� �

¼
F þ jC

�1

� �

For convenience, we let E ¼ F þ jC.

If C ¼ 0, then fM is a constant function and M recog-

nizes either E or £. From now on we assume that C 6¼ 0.

Let the cutpoint k\1=2.

– If E\ k
2k�1

and C is negative, then fMðxÞ[ k for all x,

and hence, M recognizes E; if C is positive, then M

recognizes INTERVALk;l for some k[ 0 and l� 0.

– If E ¼ k
2k�1

and C is negative, then M accepts all strings

except the empty string; if C is positive, then M accepts

all strings except the first j strings, for some j� 0, and

thus, M recognizes LESSn.

– If k
2k�1

\E\k, then M recognizes LESSn independent

of C.

– If E ¼ k and C is negative, then M recognizes LESSn; if

C is positive, then M accepts all strings except the

empty string.

– If E[ k and C is negative, then the first k strings are

not in the language and also all strings after the j-th

string, hence, M recognizes INTERVALk;l; if C is

positive, then M recognizes E.

Now let the cutpoint k ¼ 1=2.

– If E� k and C is negative, thenM recognizes£; if C is

positive, then M recognizes all strings except the empty

string.

– If E[ k and C is negative, then M recognizes LESSn; if

C is positive, then M recognizes E.

For the last case, we assume that k[ 1=2.

– If E� k and C is negative, thenM recognizes£; if C is

positive, M recognizes INTERVALk;l.

– If k\E\ k
2k�2

, then M recognizes LESSj independent

of C. If E ¼ k
2k�2

and C is negative, then M skips the

empty string, accepts the first j strings and omits the

rest; if C is positive, then M recognizes £.

– If E[ k
2k�2

and C is negative, then M recognizes

INTERVALk;l; if C is positive, then M recognizes £.

Lemma 5 There exists p; q 2 R satisfying pþ q 6¼ 0 such

that M recognizes all languages recognized by 2-state

unary PFAs with cutpoint and the languages

INTERVALk;l \ EVEN, INTERVALk;l \ EVEN; INTERVALk;l\
EVEN, and INTERVALk;l \ EVEN.

Proof First, we identify a fix point of Aa:

p

pþ q

q

pþ q

0

B

B

@

1

C

C

A

¼
1� q p

q 1� p

0

B

@

1

C

A

p

pþ q

q

pþ q

0

B

B

@

1

C

C

A

:

Then, we can assume that after reading the left end-marker,

we are in state

p

pþ q
þ c

q

pþ q
� c

0

B

B

@

1

C

C

A

for some real c. After applying Aa, we obtain

p

pþ q
þ cð1� p� qÞ

q

pþ q
� cð1� p� qÞ

0

B

B

@

1

C

C

A

¼
1� q p

q 1� p

0

B

@

1

C

A

p

pþ q
þ c

q

pþ q
� c

0

B

B

@

1

C

C

A

;

and after applying Aj
a
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p

pþ q
þ cð1� p� qÞj

q

pþ q
� cð1� p� qÞj

0

B

B

@

1

C

C

A

¼
1� q p

q 1� p

0

B

@

1

C

A

j p

pþ q
þ c

q

pþ q
� c

0

B

B

@

1

C

C

A

for j[ 0. Let p
pþq

¼ r and ð1� p� qÞ ¼ t 6¼ 1 (remember

that we assume pþ q 6¼ 0). Then

r þ ctj

1� r � ctj

� �

¼ Aj
a

r

1� r

� �

:

After reading the right end-marker, the final state will be

vf ¼
f1r � f2r þ f2 þ ðf1 � f2Þctj

1

0

B

@

1

C

A

¼
f1 f2

1� f1 1� f2

0

B

@

1

C

A

r þ ctj

1� r � ctj

0

B

@

1

C

A
;

where 1 ¼ 1� vf ½1�. Let F ¼ f1r � f2r þ f2 and

C ¼ ðf1 � f2Þc. Then, the first entry of vf becomes

E ¼ F þ Ctj;

which determines the accept probability. For the empty

string we have E ¼ F þ C. Another trivial case is C ¼ 0

where we have a fixed accept probability for all strings.

Assume that C 6¼ 0 in the following.

– If 0\t\1, then E converges to F from either left or

right, depending on the sign of C.

– If t[ 1, then E diverges as F þ C;F þ tC;F þt2C; . . ..
– If �1\t\0, then E converges from both sides.

– If t ¼ �1, then E ¼ F þ C for strings with even length

and E ¼ F � C for strings with odd length.

– If t\� 1, then E diverges as

F þ C;F � tC;F þ t2C;F � t3C;F þ t4C; . . ..

A careful analysis of the graph of Fig. 1 show that M

recognizes all languages recognized by 2-state unary PFAs

with cutpoint and the following languages: INTERVALk;l

\EVEN, INTERVALk;l \ EVEN, INTERVALk;l \ EVEN, and

INTERVALk;l \ EVEN. h

With Lemma 5 we conclude the proof of Theorem 8.

8 Concluding remarks

Affine computation and affine finite automata were intro-

duced in Dı́az-Caro and Yakaryılmaz (2016) with a few

initial results. For example, it was proved that AfAs can

recognize more languages than PFAs and QFAs in the

bounded and unbounded error modes, the exclusive affine

languages form a superset of the exclusive quantum and

stochastic languages, and nondeterministic AfAs and QFAs

are both equivalent to the class of exclusive stochastic

languages.

In this paper, we continued to investigate AfAs and

obtained some new and complementary results. We pre-

sented efficient simulations of PFAs and QFAs by AfAs. In

addition, we characterized the class of languages recog-

nized by positive and negative one-sided bounded-error

AfAs using rational transitions, which turn out to be equal

to the union of rational exclusive and co-exclusive

stochastic languages; this latter result improved the proof

of equivalence between nondeterministic AfAs and QFAs.

We also initiated the study of the state complexity of AfAs

and showed that they can be more succint than PFAs and

QFAs. Finally, we presented a complete characterization of

2-state unary AfAs, showing at the same time that AfAs

can recognize more languages than 2-state unary PFAs but

still only regular languages.

In recent and related works on AfAs (Belovs et al. 2016;

Ibrahimov et al. 2017), some further results on state com-

plexity are presented. (1) AfAs can separate any pair of

strings with zero-error using only two states and can sep-

arate efficiently any pair of disjoint finite sets of words with

one-sided bounded-error. Currently we do not know whe-

ther zero-error or bounded-error QFAs can have the same

efficiency. (2) Zero-error AfAs can recognize a regular

language with exponentially less states than bounded-error

QFAs and PFAs. Similarly, zero-error affine OBDDs can

solve some problems with exponentially narrow width than

bounded-error quantum and probabilistic OBDDs.

The computational powers of affine models with zero-

error was also examined for counter automata (Nakanishi

et al. 2017) and it was shown that there is a language

recognized by zero-error affine counter automata but not by

any deterministic pushdown automaton or deterministic

multi-counter automaton.

We close this paper with a few open problems that we

consider challenging.

1. It is conjectured in Dı́az-Caro and Yakaryılmaz (2016)

that affine and quantum computation can be incompa-

rable. The simulation results in this paper give the

feeling that quantum models can be simulated by their

affine counterparts but it may require a quadratic

increase in memory. It is interesting to study the

relations, particularly in the bounded-error setting,

between quantum and affine language classes.

2. Currently we are not aware of any non-trivial upper

bound for BAfLQ; recently, only a unary language was

shown not to be in BAfLQ (Hirvensalo et al. 2017).

Using the techniques of Macarie (1998) it may be

possible to prove an upper bound of logarithmic space.
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3. Considering that AfAs completely capture the power

of NQFAs, it is interesting to investigate lower bound

techniques that can exploit the simpler structure of

affine transformations (compared to unitary and pos-

itive-semidefinite operators).
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