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Abstract In ensemble (or bulk) quantum computation, all computations are performed

on an ensemble of computers rather than on a single computer. Measurements of qubits in

an individual computer cannot be performed; instead, only expectation values (over the

complete ensemble of computers) can be measured. As a result of this limitation on the

model of computation, many algorithms cannot be processed directly on such computers,

and must be modified, as the common strategy of delaying the measurements usually does

not resolve this ensemble-measurement problem. Here we present several new strategies

for resolving this problem. Based on these strategies we provide new versions of some of

the most important quantum algorithms, versions that are suitable for implementing on

ensemble quantum computers, e.g., on liquid NMR quantum computers. These algorithms

are Shor’s factorization algorithm, Grover’s search algorithm (with several marked items),

and an algorithm for quantum fault-tolerant computation. The first two algorithms are

simply modified using a randomizing and a sorting strategies. For the last algorithm, we

develop a classical-quantum hybrid strategy for removing measurements. We use it to

present a novel quantum fault-tolerant scheme. More explicitly, we present schemes for

fault-tolerant measurement-free implementation of Toffoli and r1=4
z ; as these operations

cannot be implemented ‘‘bitwise’’, and their standard fault-tolerant implementations

require measurement.
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1 Introduction

Quantum computing is a new type of computing which uses the properties of quantum

mechanics to construct fast algorithms to solve several important problems. For example,

Shor’s quantum algorithm (1997) for factoring large numbers is exponentially faster than

any known classical algorithm. Similarly, by utilizing Grover’s algorithm (1996), it is

possible to search a database of size N in time Oð
ffiffiffiffi

N
p
Þ; compared to O(N) in the classical

setting.

Nuclear Magnetic Resonance (NMR) computing, first suggested by Cory et al. (1997),

and by Gershenfeld and Chuang (1997), is currently one of the most promising imple-

mentations of quantum computing. Several quantum algorithms involving only few qubits

have been demonstrated in the laboratory setting (Cory et al. 1997; Gershenfeld and

Chuang 1997; Cory et al. 1998; Jones et al. 1998; Nielsen et al. 1998; Vandersypen et al.

2001). In such NMR systems, each molecule is used as a computer. Different qubits in the

computer are represented by spins of different nuclei. Many identical molecules (in fact, a

macroscopic number) are used in parallel; hence, there is an ensemble of quantum com-

puters. This model is called the ensemble or bulk quantum computation model. In such

bulk models, each operation is applied to each computer in the ensemble. Qubits in a single

computer cannot be measured, and only expectation values of each particular bit over all

the computers can be read out.

The impossibility of performing measurements on the particular qubits of individual

computers causes severe limitations on ensemble quantum computation. In particular, for

quantum cryptography tasks, ensemble quantum computers appear to be useless. It was

generally assumed that a rather simple strategy of delaying measurements can be used to

bypass these limitations, in order to enable the implementation of all quantum algorithms.

However, as we explain in Sect. 2 this assumption was not justified, and the delaying-the-
measurement strategy usually is insufficient.

We first provide here two novel strategies, the randomizing strategy and the sorting
strategy, that resolve the ensemble-measurement problem in most cases. These strategies

are provided along with modest modifications (see Sect. 3) of two important algorithms,

Shor’s factoring algorithm and Grover’s search of several items, to enable processing them

on ensemble quantum computers. The modifications—although modest—are important,

and furthermore, they have their price in terms of the required space (number of qubits)

and time of the algorithms.

Although, in theory, polynomial slowdown can commonly be ignored, in practical

quantum computing, where each qubit counts, the price might be extremely high. Spe-

cifically, current methods in NMR quantum computing are not scalable in the number of

qubits: An exponential scalability problem exists due to working with pseudo-pure state

and not with a real-pure state; There are also other, less severe, scalability problems, one is

due to the difficulty in addressing specific qubits and another is due to ‘‘refocusing’’—

deleting undesired unitary evolutions that happen all the time in the NMR system. As a

result, factoring, even of very small odd numbers such as 35 = 7 9 5, might be totally

impossible (for NMR quantum computers) in the next 20–30 years, unless a drastically

new approach will be used such as algorithmic cooling—see Boykin et al. (2002) and Elias
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et al. (2007). We must clarify that it is well known in number theory, that the number 15 is

an exception,1 and indeed the experiment that succeeded to factorize 15 on an NMR

quantum computer (Vandersypen et al. 2001), heavily relies on that, in order to (extre-

mely) simplify the experimental setup. Such a simplification will not be possible (Izmerly

O, private communication) for factorizing other numbers, such as 35.

Most important, we show in Sect. 4 that all these three strategies mentioned above are

insufficient for fault tolerant computation, so that a vital modification is required. We

develop in Sect. 5 a non-trivial strategy, a hybrid classical-quantum strategy for fault-

tolerant computing, that resolves the ensemble-measurement problem for that case.

The understanding we gain in Sect. 5 is actually useful also for improving conventional

(non-fault-tolerant) error correction on ensemble computers. See Sect. 6. Note however,

that in that case the modification improves the algorithms but is not essential for the

algorithms.

A remark: In this paper we restrict ourselves to issues related solely to the ensemble-
measurement problem, and the results here are vital for bulk computation. However, in

addition, the specific results obtained regarding universal and fault tolerant sets of gates

might also be important for other implementations of quantum computing devices where

delaying measurements is desired, such as the electron-spin-resonance transistor com-

puting device of Vrijen et al. (2000).

2 The measurement in ensemble quantum computation

The measurement process in quantum mechanics can be described simply as follows: To

measure the state of a qubit, say jwi ¼ aj0i þ bj1i in the computation basis (j0i; j1iÞ; one

measures the Hermitian operator (the observable)

rz ¼
1 0

0 �1

� �

to get the outcome k0 = 1 with probability jaj2 and k1 = -1 with probability jbj2: In an

NMR ensemble model, the corresponding qubit in every computer is measured simulta-

neously, resulting in the expectation value, i.e., the outcome of the measurement is a signal

of strength proportional to jaj2 � jbj2:
The inability to measure bits in individual computers precludes using measurements as a

method for resetting bits. A simple way to reset a bit is to measure it and flip it if the

outcome is j1i: Since each computer in the ensemble will have a different outcome, this is

impossible on an ensemble computer. Algorithmic cooling (Boykin et al. 2002) has been

proposed as a novel method for resetting bits in ensemble computing model, generalizing

an earlier reversible initialization technique (Schulman and Vazirani 1999), by adding the

concept of heat-bath cooling; see Boykin et al. (2002), Fernandez et al. (2004), Schulman

et al. (2007) and Elias et al. (2007).

The measurement process lies at the heart of all quantum information processing and

computing protocols and algorithms, and hence, needs to be carefully addressed in any

proposed implementation scheme. Clearly, when the outcome of a measurement is

1 We shall not explain this point here in details, but in brief, the reason that 15 is an exception is that the
‘‘order’’ r is then either 2 or 4 for any choice of a, namely ar = 1 (modulu 15); An order that is (for many
random choices of a) a power of 2 is extremely rare, and when the order satisfies this property it is easy to
factorize the number also on a classical computer.
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expected to be the same on each of the computers, the ensemble measurement is as good as

the standard (single computer) measurement. Usually, this is not the case. In fact, to the

best of our knowledge, the following two protocols cannot be implemented on an ensemble

quantum computer due to the measurement issue:

Random number generator (RNG): One can easily create an RNG using a single qubit.

To create a binomial probability distribution with parameter p, one prepares a state
ffiffiffi

p
p j0i þ

ffiffiffiffiffiffiffiffiffiffiffi

1� p
p

j1i; and measures in the computational basis to obtain the desired RNG.

This, as far as we know, cannot be done on an ensemble quantum computer, where only the

expectation value pk0 þ ð1� pÞk1 ¼ pðþ1Þ þ ð1� pÞð�1Þ ¼ 2p� 1 can be monitored.

Teleportation: Standard teleportation can easily be performed on a three qubit quantum

computer. Strictly speaking however, it cannot be performed on an ensemble quantum

computer. This is because a direct Bell-state measurement of the ensemble quan-

tum computer is computationally useless: each computer will yield a random result (of the

Bell measurement), and on average the outcome is ð1=2Þk0 þ ð1=2Þk1 for each of the two

measured qubits; hence, there is no way to decide how to rotate the third qubit in each

individual computer. Yet, a ‘‘fully-quantum teleportation’’ of the type suggested in Bras-

sard et al. (1998) can be, and has been (Nielsen et al. 1998), performed on an ensemble

quantum computer: in this fully-quantum teleportation, the measurement of an individual

computer is never monitored, and a classically-controlled rotation of the third qubit is

replaced by a quantum control operation, in which the control qubits dephase before being

used.

To better appreciate the ensemble-measurement problem it is instructive to review the

basic anatomy of a quantum computer. At a very high level, a quantum algorithm can be

described as a set of unitary transformations to be applied to an n-qubit system, followed

by a measurement of m of the qubits to obtain a classical m-bit output. The m-bit classical

output is usually one of the following:

1. The m-bit output is one of many possible ‘‘correct’’ or ‘‘good’’ answers. Suppose that

the classical post-processing (on a regular classical computer) is some many-to-one

function that leads to the same final answer, no matter which of the intermediate m-bit

answers was found by the quantum computer. [For example, Shor’s algorithm yields a

number, say c, that satisfies some conditions (with high probability), and once it

satisfies these conditions, the order can be calculated from this number c via the

continued fractions method. The order is the same for the various intermediate values

of c (with high probability).] In ensemble quantum computing, even though all the

computers do identical operations, they will have different outcomes after the

measurement process, and one cannot get one correct answer by the reading process

we described. This case was recognized and resolved in the seminal work of

Gershenfeld and Chuang (1997). The most effective scheme is to simply delay (or

even avoid, if possible) the measurements, and incorporate the post-measurement

processing step into the quantum algorithm, as a controlled operation. Then only the

final answer, which is identical on all computers, will be measured.

2. The m-bit output is either the ‘‘desired’’ or ‘‘good’’ solution or it is a spurious or ‘‘bad’’

candidate, and the whole process has to be repeated again. For example, in Shor’s

factorization algorithm the delayed-measurement process (described in the first item

above) yields an integer, which a set of classical operations can process to verify

whether it is the correct answer (i.e., the ‘‘order’’ of the input integer) or not. The

probability that the output yields the correct answer is such that one is guaranteed to

obtain such an output in a few number of repeated executions of the algorithm. As
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before, in the case of ensemble quantum computing different computers will yield

different results, and the task of identifying the correct answer (the order) needs to be

addressed. Adapting the delayed-measurement technique of Gershenfeld and Chuang

(1997) to this case means that one should also test quantumly if the resulting order on

each computer is indeed the correct order, and then somehow get rid of the bad cases

in which the result is a wrong order.

3. The m-bit output is one of many possible ‘‘correct’’ or ‘‘good’’ answers. For example, a

database search using Grover’s algorithm will return one of the entries satisfying the

query. If there are multiple possible query hits, then every time the algorithm is run, it

will return any one of the hits with equal probability. Thus, in ensemble quantum

computing, even though all the computers do identical operations, they will have

different outcomes after the measurement process, and one cannot get one correct

answer by the reading process we described, nor by the modification suggested in

Gershenfeld and Chuang (1997).

We fully resolve these last two cases in Sects. 3.1 and 3.2 via the randomizing and

sorting strategies. Let us briefly describe these two new strategies, sorting and random-

izing, that one can adopt to successfully overcome the measurement problem in ensemble

quantum computers. This in turn will allow us to point out why these approaches will not

work for the fault tolerant computing problem, addressed later on in this paper.

In case # 2 mentioned above the measurement output is processed to determine whether

it yields the ‘‘desired’’ outcome or not. After the post-processing operations, the answer is

yes or no, and all the computers with the ‘‘yes’’ answer, will have the same answer, i.e., the

desired order. However, the computers with ‘‘no’’ answers, will have different answers

after the post-measurement processing steps. In Sect. 3.1 we solve the problem posed by

the interference due to the ‘‘bad’’ candidates by replacing bad results with random data,

which will not interfere on average with the reading of the ‘‘good’’ result. (Alternatively,

one might be able to control-repeat the computation in case the classical verification part

shows that the algorithm yielded a bad output. Unfortunately, such strategy was not yet

provided, and is probably much more complicated than the approach we provide here.)

In case # 3 mentioned above the algorithm has more than one correct final outcome and

the measurement process directly yields one of the correct solution. In Sect. 3.2 we show

how the problem of the multiple search outputs can be resolved. Our solution involves

making multiple searches on the same computer and then sorting the results. This way with

high probability the computers will have the same sorted list.

If the role of measurements was restricted to only these three cases described above then

the three strategies mentioned here, delaying the measurement sorting and randomizing,

would solve the measurement problem for ensemble quantum computation. However, there

are some ‘‘hidden’’ uses of the measurement process, particularly involving error correc-

tion and fault tolerance, during the execution of the algorithm (i.e., during the part that we

broadly described as involving only unitary operations) that are a lot harder to address.

The ensemble-measurement problem is much more acute in the case of fault-tolerant

computations; Our most important result in this paper is to solve the problem of performing

fault-tolerant ensemble quantum computation.

The schemes proposed so far for quantum fault tolerant computation provide an

incomplete set of gates, i.e., a set of gates that is not universal for quantum computation. In

order to complete the set to a universal set, the schemes use interactions with ancilla qubits,

which are then measured—see Shor (1996), Knill et al. (1998) and Preskill (1998). Each

such measurement is followed by an application of a unitary operation, Uj , that depends on
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the outcome of the measurement (j). (See Sect. 4 for a review.) A direct scheme for

removing such measurements (followed by the required unitary operations Uj), and

replacing them by controlled operations, K(Uj), will not in general be realizable. This is

because, K(Uj), might not be realizable by the incomplete set of fault tolerant gates. For

example, if one attempts to remove measurements in Shor’s scheme for fault tolerant

realization of Toffoli gate (Shor 1996), then the corresponding controlled operations would

itself require Toffoli gates! Sect. 5 describes how an analysis of error propagation and a

careful usage of classical reversible circuits can allow one to delay measurements in a fault

tolerant manner, and allow for fault tolerant NMR quantum computing, via this hybrid

classical-quantum strategy.

3 Quantum algorithms

Here we study different known quantum algorithms that cannot be implemented directly on

ensemble quantum computers and we provide modifications to make them suitable for such

computers.

3.1 The factorization algorithm

In the Shor’s factorization algorithm the aim is to factor a large number n. To do so, one

uses a random number x and tries to find the least positive integer r such that xr �
1ðmod nÞ: This least r is the order of x mod n, and n can be factored with a high

probability, once r is known.

Shor’s algorithm does not yield r directly (in the quantum process). Instead, another

integer c is the actual outcome of the quantum protocol, from which the right r can

sometimes be obtained by a classical algorithm. Let us call the outcome of the classical

algorithm r 0; in at least O(1/log log n) fraction of the cases, the number r 0 is the desired r,

and whether it is the case or not is checked via a classical algorithm. Let the probability of

a correct result (on an individual computer) be pr. While the order r (for a given x and n) is

unique, the result c and the calculated r 0 are not unique. Having several good outcomes ci

does not cause a problem (as noted by in Gershenfeld and Chuang 1997), since the

quantum computer can perform a classical algorithm which calculates r from any of the

possible ci. However, this operation by itself is not sufficient, since many of the computers

(probably, most of them) give an outcome r 0 which is not the correct r. When expectation

values are measured for the jth bit, the correct result rj happens with small probability pr ,

and hence it is obscured by the wrong results r 0j.
One potential situation, which could lead to a simple resolution, is if the wrong-r results

are well distributed (e.g., totally random); in such a case, on the average these wrong-r
results will cancel out (e.g., average to yield zero) and will not obscure the correct result.

Let us show that this is not always the case, and that the bad results are not always

averaged to zero, and hence the good result sometimes is indeed obscured.

The output c of the quantum process in Shor’s algorithm is used to calculate the order r
(Shor 1997). For this, the integers d 0 and r 0 are found such that

c

q
� d0

r 0

�

�

�

�

�

�

�

�

� 1

2q

where n2\q� 2n2; and q is a power of 2. Then the fraction d0=r 0 is unique. The integer r 0

is the output of the algorithm as the desired order (which is actually r). To continue, let a(c)
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be the unique integer such that �q=2� aðcÞ� q=2 and rc � aðcÞðmod qÞ: One of the

possible situations that leads to incorrect answer is that the output c of the quantum process

satisfies the condition

c

q
� d

r

�

�

�

�

�

�

�

�

� 1

2q

and d and r are not relatively prime. Then the answer, instead of r, would be a divisor of r.

The probability that such event occurs is (see Shor 1997) approximately 4ðr �
/ðrÞÞ=ðp2rÞ: This probability can be some constant far away from zero. For example, if

r ¼ 2s3t; then /ðrÞ ¼ r=3 and the probability the algorithm provides a divisor of r is

&0.135.

Let us now present a modified factorization protocol that bypasses this ensemble-

measurement problem. The idea is to replace an additional part of the classical protocol, a

part which verifies that r is indeed the order, by a quantum one. Also, a simple (but crucial)

modification of the protocol is required. Let the register holding the result (r or r 0) be

called s1. Let us use an additional register s2 of the same number ‘ of qubits as s1. Let the

register s2 be in the state

Hj0i � Hj0i � � � � � Hj0i ¼ 1

2‘=2

X

x2f0;1g‘
jxi; ð1Þ

where Hj0i ¼ 1
ffiffi

2
p ðj0i þ j1iÞ: Now we augment the quantum factorization algorithm with

the following procedure. When the original factorization algorithm finishes, test the result

in the register s1 to see whether it gives the correct value of the order r. If the result on the

ith computer is indeed the order then nothing is to be done and the outcome r is kept in s1.

Whenever the result is an incorrect value r 0, swap the contents of the registers s1 and s2 so

the outcome r 0 is replaced by the state Hj0i � � � � � Hj0i which yields a completely

randomized outcome once it is measured. Now, a measurement of the jth bit on s1 will give

the correct result if the string holds the state r or it yields zero (on average) if the string

originally contained the wrong result r 0.
Although the strength of the good signal may be small, there are enough computers

running in parallel to read it since in the worst case, it is only logarithmically small.

3.2 The search algorithm

Certain search operations in a database can be done more efficiently on a quantum com-

puter than on a classical computer (Grover 1996). Here the search means to find some item

x in the database such that x satisfies some predefined condition T; i.e., we are looking for

the solutions of T(x) = 1. The analysis of Boyer et al. (1998) shows that if the size of the

database is N and the number of solutions are t, Grover’s algorithm, with high probability,

can find a solution in time Oð
ffiffiffiffiffiffiffiffi

N=t
p

Þ: When there is only one solution, this algorithm yields

the desired result also on an ensemble computer.

However, when several (say t� 2) different items satisfy the required condition, the

protocol will randomly yield one of them. Therefore, in this case the algorithm is not

suitable for ensemble computation. We show here how this algorithm can be modified such

that ensemble computation still provides a correct solution with high probability.

We assume t, the number of solutions, is known and constant (the general case will be

studied in the Sect. 3.2). We first consider the case t = 2. When processed on an ensemble-

measurement computer, only expectation values are obtained, and the two outcomes
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partially obscure each other to yield zero (as the average expected value) for jth bit of the

answer if the jth bits of the two solutions are different.

To solve this problem we suggest to hold several (say m) computers in one molecule.

After each computer in the molecule finishes Grover’s algorithm, the procedure is con-

tinued by sorting the outputs of different computers in an increasing order. The algorithm

then compares the first and the last results, and if they are equal then both are replaced by a

randomized data (see Eq. 1) as in the modified Shor’s algorithm. Once the first and last

computers hold different outcomes, we are promised that the small solution is always the

first, and that the large solution is always the last. Thus, we can obtain both solutions via

measurements of the expectation values of the qubits.

The probability that the first and the last solutions are the same is 1
2m; so the final

outcome is obtained with probability exponentially close to one. Even without applying the

randomization to the bad outcomes, the expected outcomes are still readable.

When t [ 2, we apply the same procedure (without randomization to the bad outcomes).

We still reorder the solutions so that the minimal solution is in the first position. However,

we might obtain different minimal solutions for different molecules. The probability of

failing to obtain the global minimum solution in the first position is ð1� 1
tÞ

m; and as long as

it is small (say less than e-k, which holds if m [ kt) the protocol can work properly. Note

that this modified algorithm still works in time Oð
ffiffiffiffiffiffiffiffi

N=t
p

Þ:
Only the smallest and largest solutions can be obtained by the above method. If one

needs the other solutions, these can easily be obtained via similar methods, once some

solutions are already known.

3.2.1 Search algorithm: the case of unknown number of solutions

Now we consider the most general case. Here we do not assume any condition on t, the

number of solutions; it can be known or unknown, large or even zero. Our method is based

on a binary search. We also utilize the following fact established in Boyer et al. (1998): Let

B be a database of size M; then the search algorithm, with high probability, starting with

the input 1
ffiffiffi

M
p
P

x2B jxi in time Oð
ffiffiffiffiffi

M
p
Þ can determine whether there is any solutions in B or

not.

Without loss of generality, we can assume that the database is represented as the

members of the unit cube V ¼ f0; 1gn: So M = 2n. For any string a ¼ ða1; . . .; akÞ 2
f0; 1gk; let Va be the subset of V consisting of all strings ða1; . . .; ak; xkþ1; . . .; xnÞ; i.e., Va

contains all strings in V that start with a. Thus jVaj ¼ 2n�k: For example,

V0 ¼ ð0; a2; . . .; anÞ : ða2; . . .; anÞ 2 f0; 1gn�1
n o

:
Our algorithm first checks whether there is a solution or not. If there is no solution then

it stops. Otherwise it runs in n stages. The output of the stage j is a database Bj of size 2n-j

which contains a solution. At the end Bn ¼ fng; where n is a solution. The algorithm starts

with the database B0 ¼ V: It checks whether there is any solution in V0. If there is a

solution then B1 ¼ V0; otherwise B1 ¼ V1: In a general stage j ? 1, the input is of the form

Bj ¼ Vaj
where aj 2 f0; 1gj; and there is a solution in Bj: Then the algorithm checks

whether there is a solution in Vaj0; if so then the output of this stage is Bjþ1 ¼ Vaj0;
otherwise the output is Bjþ1 ¼ Vaj1: This completes the description of our search algorithm.

It is easy to check that this algorithm always provides the first solution in the lexicographic

order. So we have presented a quantum search algorithm that always gives a unique output,

no matter how many solutions are there. This is an algorithm which can be implemented on

an ensemble–measurement computer. Note that the running time of this algorithm is
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O
ffiffiffiffiffi

2n
p
þ

ffiffiffiffiffiffiffiffiffi

2n�1
p

þ � � � þ
ffiffiffi

2
p� �

¼ O
ffiffiffiffiffi

M
p� �

:

4 Review of fault tolerant quantum computing

The idea of quantum fault tolerant computation (Shor 1996; Aharonov and Ben-Or 1996;

Knill et al. 1998; Kitaev 1997; Preskill 1998) can be described briefly as follows. Suppose

that we have a (noise-less) quantum circuit C which we want to simulate by a noisy quantum

computer. On the noisy quantum computer, instead of circuit C we perform a fault tolerant

circuit eC: The physical bits j0i and j1i are replaced by logical bits j0iL and j1iL;where these

are some entangled states of a block of physical qubits. While C operates on physical qubits

representing the data, in the circuit eC all operations are performed on logical qubits which are

error-correction-encoded data, i.e., each data qubit or a set of data qubits is represented as a

block of qubits that belongs to some quantum error-correcting code. Then each operation of

C performed by a gate gj is simulated by a procedure (sub-circuit) egj in the circuit eC such that

in egj each computation transforms codewords to codewords. In order to avoid accumulation

of errors, after each computation in egj a correction procedure is performed to correct any

error that is introduced in that computation. Thus, in the fault tolerant circuit eC each com-

putation step is followed by a correction step.

The operations on the encoded qubits introduce a large number of additional gates and

qubits, and, unless one is careful, it is possible that more errors are introduced than can be

corrected by the code. To avoid any such catastrophic accumulation of errors, it is desirable

that the operations in the fault tolerant circuits prevent ‘‘spreading of errors’’ by making sure

that each gate error causes at most a single error in each block. It is useful now to review how

errors propagate in quantum circuits. For example, consider the CNOT (controlled-not) gate

which performs the operation jaicjbit 7! jaicja� bit in the computation basis; for the rest of

this paper, we shall drop the subscripts c (control) and t (target) and designate the control bit

as the one on the left side. Clearly, applying the CNOT operation from one bit to many target

bits can propagate one bit error from the control bit to all the target bits. On the other hand,

applying CNOT from many control bits to one target bit can propagate one phase error from

the target bit to all the control bits. It is easy to observe this ‘‘back’’ propagation of the phase

errors: if a phase error happens on the second (target) qubit in the state ðj0i þ j1iÞ � ðj0i þ
j1iÞ and a CNOT is applied after, we will get

ðj0iþ j1iÞ� ðj0i� j1iÞ �!CNOT j0i� ðj0i� j1iÞþ j1i� ðj1i� j0iÞ ¼ ðj0i� j1iÞ� ðj0i� j1iÞ

which results in a phase error in the control qubit. Hence, fault tolerant computation

requires that this gate be applied only in the case where the control qubit jai and the target

qubit jbi belong to different blocks.

This error-propagation phenomenon is also true for other controlled operations, and this

motivated a sufficient condition for fault tolerance: only perform bit-wise or transversal2

operations on qubits within a code. It is, however, not a necessary condition for fault

2 By transversal operations, we mean operations that act on at most one qubit in any code block. For
instance, a gate applied on the first bit of one codeword and the first bit of a second codeword, and on the
second bit of one codeword and the second bit of a second codeword, and so fourth.
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tolerance, and careful constructions may allow one to apply control gates from many

control bits onto one target bit, without destroying the fault tolerant computation.

Therefore, to achieve a quantum fault tolerant computation, it is enough to show that a

universal set of quantum gates can be constructed with only bit-wise and transversal

operations on a quantum code. Quantum fault tolerant schemes usually (see, e.g., Shor

1996 and Preskill 1998) depend on measurements to ensure that the set of the operations

permissible on encoded data is actually a universal set. Recall that we cannot depend on

measurements in ensemble computers, but must still create a universal set to achieve fault

tolerance. Some of the gates in the universal set do not require measurements, e.g., the

operations H, r1=2
z ; and CNOT. [For a class of codes called CSS codes (Shor 1996), H, rz,

and CNOT can simply be achieved by performing the same gate bit-wise on the individual

qubits (e.g., H is achieved on code words via applying H on individual qubits), while the

bit-wise r1=2
z yields a r�1=2

z logical gate, hence requires an additional step of bit-wise rz, to

yield the desired logical gate.] In previous works (Shor 1996; Boykin et al. 1999, 2000) at

least one gate in the universal set requires measurements. That’s bad for ensemble com-

puters. We now present tools that will allow us to create a measurement-free universal

quantum fault tolerant set of gates.

5 Measurement-free quantum fault tolerant gates

There is always a simple scheme that potentially allows one to postpone measurements of

ancilla qubits in quantum computation. Unfortunately, the simple scheme never works in

the case of generating universal fault tolerant gates. In fault tolerant computation and error

recovery, often a measurement is followed by an operation Uj
3 if the outcome of the

measurement is 1. As explained in Sect. 2, the scheme for delaying the measurement can

be successfully implemented only if the measurement followed by a Uj operation can be

replaced by controlled-Uj (denoted K(Uj)) in the set of available measurement-free

operations; i.e., control operations which can be implemented on encoded data fault tol-

erantly and directly without using any measurements. However, in the schemes proposed

so far, the required control operations K(Uj) are not implementable in a direct fault tolerant

manner. For instance, in Shor’s fault tolerant set of gates (Shor 1996), a measurement is

required for the preparation of a Toffoli gate, but a Toffoli gate is required if we want to

delay that measurement. This is because the measurement is followed by a CNOT oper-

ation, and hence can only be replaced by a controlled-CNOT, which is a Toffoli gate. This

seems like a catch-22 situation!4

The solution comes from the vital observation that some operations need protection only

from the bit errors, and do not need to use full quantum codes: by replacing the quantum

ancilla (in a logical basis j0iL and j1iL) by a ‘‘classical ancilla’’ in a ‘‘classical’’ basis

j0i ¼ j0i � � � 0 and j1i ¼ j1i � � � 1; we can use the classical ancilla to perform K(Uj) in a

fault tolerant manner. This can be done in the two cases where the Toffoli gate is required

for Shor’s fault tolerant set of gates, and the Kðr1=2
z Þ gate required for the basis of Boykin

3 Uj can be performed fault tolerantly using the given, non-universal, set of operations.
4 Similarly, in the fault tolerant universal set of gates suggested in Boykin et al. (1999), the generation of
the r1=4

z gate without measurements leads to a catch-22 problem; a r1=2
z gate (which follows the mea-

surement) needs to be replaced by a Kðr1=2
z Þ gate, which is not available as long as the r1=4

z gate is not
available.
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et al. (1999). One can interpret the classical basis as the classical repetition code. We call

the ancilla in these states ‘‘classical’’ since we are not concerned with phase errors on these

bits. A classical error-correction code can correct bit errors in the classical ancilla. Despite

the fact that phase errors are not corrected in the classical ancilla, we found that the use of

such a classical ancilla is still good enough for our purpose.

5.1 Replacing measurements of encoded ancilla qubits

In the following, we shall replace the measurement of the quantum ancilla followed by the

operation U acting on the quantum data, by a sequence of operations: we copy the two

basis states of a quantum ancilla into a classical ancilla, we perform classical error

correction on the classical ancilla, and we use the classical ancilla as a control bit for

performing the operation K(Uj) with the quantum data as the target bit.

The measurement of the quantum ancilla in the original protocol can be done as follows

(Preskill 1998): measure each of the physical qubits, and perform a classical error cor-

rection on the outcome of this measurement to determine the state of the ancilla. For

example, if the 7-bit CSS code (Shor 1996) is used to encode data, then a measurement will

yield a (possibly corrupted) codeword of a classical 7-bit Hamming code. After classical

error correction, if the parity of the codeword is even, then the ancilla has collapsed to the

state j0iL; otherwise, it has collapsed to the state j1iL: Classical error correction is enough

to protect the output bit b, because phase errors before a measurement will not change the

outcome probabilities.

In Fig. 1, we represent a circuit that computes operation N 1 for the seven-bit CSS code,

where N 1 stands for the operator of Eq. 2 with only one bit of the classical ancilla. The

ancilla bits labeled syndrome are used to prevent the spread of one bit error from the

quantum ancilla into the classical bit. These bits are exactly the parity check of the

syndrome of the 7-bit Hamming code. Only two errors (in any of the inputs, the gates or the

time steps) shall yield an error in the classical bit.

The circuit N 1 flips the bit b if the quantum ancilla (acting here as a control bit) is j1iL;
and does nothing otherwise. This circuit operates properly as long as there is up to one bit

error in the quantum data (there can actually be an unlimited number of phase errors). Note

that phase errors in the lower part will spread to the quantum ancilla. This is of no

consequence, however, since the quantum ancilla never interacts with the quantum data in

later stages. Bit errors in the quantum ancilla are important, since the process is repeated n

Fig. 1 The operation N 1: Note that the circuit shows the generation of only one classical target bit jbi; the
operations on the last bit have to be repeated to generate multiple target bits
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times; hence, bit errors, created in the quantum ancilla at initial stage of N 1; will spread

errors into the next bits of the classical ancilla. Fortunately, bit errors are not transmitted

from the classical to quantum section, and the quantum ancilla cannot be disturbed by a bit

error in bits of the classical ancilla or the syndrome ancilla.

As a step toward removing the measurement from the original protocol, we propose a

new gate that copies an encoded quantum ancilla word onto a classical ancilla:

N :

j0iL � j0i �! j0iL � j0i;
j0iL � j1i �! j0iL � j1i;
j1iL � j0i �! j1iL � j1i;
j1iL � j1i �! j1iL � j0i:

8

>

>

<

>

>

:

ð2Þ

Let N be a unitary operation that implements the above transformation. In the next section

we show that the complete N operation can be done fault tolerantly. In Sects. 5.4 and 5.5,

the operation N will enable us to construct gates for universal fault tolerant computation,

without measurement.

5.2 The operation N : quantum-to-classical controlled-NOT

TheN operation ‘‘copies’’ the encoded quantum bit onto the encoded classical ancilla. The

repetition code can only correct bit errors in the classical ancilla, but one must be sure that

the classical ancilla can still be used to perform K(Uj) without putting the quantum data in

jeopardy. Perhaps counter-intuitively, this is not a problem, since phase errors are trans-

mitted from target bit to control bit, hence cannot be transmitted from the classical ancilla

(control) to the quantum data (target). This leads to the most interesting aspect of our

scheme: the data in the classical repetition code, or any classical function of this data, can
act as control bits in a bit-wise controlled-U operation onto quantum data.

In the complete N circuit, the N 1 computation on the bottom four bits is repeated at

most n times, where n is the number of qubits in a codeword. At each repetition stage, the

syndrome bits are discarded, and another bit bi is created (i 2 f1; . . .; ng). In principle, the

syndrome bits could be ignored, reset, or measured. These bits will not affect the operation

beyond their use as a form of error detection in the codeword. The bits bi are then corrected

(to yield the classical 0 or 1) using a majority vote.

In order to reduce the number of operations (and hence improve the fault tolerant

threshold), we only need to use a repetition code that will successfully recover from k0

errors. Once this number k0 is equal to, or greater than, the number of errors, k, that the

quantum code can correct for, we may stop. For a probability p of an error (per gate, per

input bit, and per delay line), the resulting error rate of this circuit is O(p2), as required for

fault tolerant computation. The threshold can easily be calculated by counting the potential

places for two errors, and the threshold can be much improved by enhancing the paral-

lelism, and by repeating N 1 only 2k ? 1 times (e.g., with the 7-bit quantum code, that is

n = 7, which corrects k = 1 error, it is enough to repeat the circuit 3 times, correct the

outcome using a majority vote, and then copy the result into seven bits).

Later, in Sects. 5.4 and 5.5, we show cases where, indeed, the operations between the

classical ancilla and the quantum data can be performed bit-wise, while the same opera-

tions cannot be performed bit-wise between quantum ancilla and the quantum data (as the

naive solution of delaying measurements would have suggested).

Note that the quantum data may add phase errors to the repetition code, but that is of no

concern to us, since the classical repetition code also loses phase coherence in the
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measured case. If there are t bit errors in the repetition code, it will result in t errors in the

quantum data. Fortunately, bit errors are corrected in the repetition code. Hence, the
operation N enables one to create universal bases without measurement.

5.3 Creating the special states required for fault tolerant universal computation,

without using a measurement

In Sects. 5.4 and 5.5 we describe how to construct gates to produce a universal set without

measurement. In both of those sections, we will make use of ‘‘special states’’ which enable

the construction of the gate. In this section we describe a general method to produce these

special states under general circumstances. Once presented, the descriptions in Sects. 5.4

and 5.5 become much simpler.

Assume that a quantum code of length n is used for encoding data. Suppose that

U 2 Uð2lÞ [for our purpose it is enough to consider up to three qubits (l = 3) operations],

and eU ¼ U�n is the unitary operation on the codewords obtained by applying U bit-wise.

Suppose that eU has eigenvectors j/0i and j/1i such that

eU j/0i ¼ j/0i and eU j/1i ¼ �j/1i:

Then the quantum circuit in Fig. 2 outputs the eigenvector j/0i if the input state is

aj/0i þ bj/0i for any a, b. In Fig. 2, eUflip is a unitary operation that maps j/0i on j/1i and

vice versa. The operations Kð eUÞ (i.e., the controlled- eU ), and H are applied bit-wise.

This scheme is practical if it is possible to prepare a state aj/0i þ bj/1i; where the

values of a and b do not matter. In this circuit the first line is a single parity bit, and each of

the second and third inputs are blocks of n qubits, containing the cat-states lines and the

special state lines, respectively. The third gate, the CNOT gate which we call here P, is a

parity gate which calculates the parity of the cat-state lines and puts the result in the parity

bit. This is done by a sequence of CNOTs from each control bit onto one target bit. The

figure only demonstrates the creation of one parity bit j/0i in an unprotected manner as far

as a bit error in the parity bit is concerned. The real circuit is a bit different: The operations

Kð eUÞ;H and P, are repeated n times, each time with fresh cat-states and a fresh parity bit

(but on the same special state’s lines). Then a majority vote is calculated on the parity bits,

in order to reduce the probability that an error in a cat state or in the parity bit will ruin the

result. Then the n parity results are corrected, so that the probability of two errors becomes

low [that is, of order O(p2)]. Finally, the parity result is used to control eUflip in a bit-wise

manner, so that the special state is created via a fault tolerant operation.

Fig. 2 Preparing an eigenvector
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5.4 Fault tolerant rz
1=4 without measurement

We show here a modified version of the original method for implementing rz
1=4 on

codewords (Boykin et al. 1999) which does not use measurements. Using the method

described in Sect. 5.3, we need to prepare the following state

jw0i ¼
1
ffiffiffi

2
p j0iL þ e

ip
4 j1iL

� �

:

This state can be prepared with a circuit of form given in Fig. 2. For this purpose, let
eU ¼ e

ip
4 rxrzrz

1=2 and jw1i ¼ 1
ffiffi

2
p ðj0iL � e

ip
4 jw1iLÞ: Then eU jw0i ¼ jw0i; eU jw1i ¼ �jw1i;

and Uflip ¼ rz: Finally, see that j0i ¼ 1
ffiffi

2
p ðjw0i þ jw1iÞ: Note, as required in Sect. 5.3, both

eU and Uflip are in the directly fault tolerant set. Hence we have all the requirements of the

previous section, and thus we may use that method to create jw0i:
Now we are ready to describe the fault tolerant rz

1=4 without measurement. The circuit

in Fig. 3 shows the fault tolerant implementation of rz
1=4 on a codeword jxiL: In this

circuit, N is the unitary operation defined in (2). Apart from replacing the standard

measurements by the N circuit, this figure is exactly the same as the one drawn in Boykin

et al. (1999) to implement the rz
1=4 gate. In this figure each input in fact denotes a block of

qubits, and operations are bit-wise.

5.5 Fault tolerant Toffoli without measurement

The more conventional (and more complicated) set of universal fault tolerant gates contain

the Toffoli instead of the rz
1=4: We show explicitly how to implement Toffoli on encoded

data without using any measurement. This scheme is a modified version of Shor’s original

method for implementing Toffoli on codewords (Shor 1996), and is similar to the one

applied to rz
1=4:

In Shor’s method (as in the other basis we have shown) a preparation of a special state is

required, hence we first prepare the state

jANDi ¼ 1

2
j000iL þ j010iL þ j100iL þ j111iLð Þ; ð3Þ

without using measurement, based on our scheme presented in Sect. 5.3.

To get jANDi we let U ¼ KðrzÞ � rz; and we chose

jANDi ¼ 1

2
j001iL þ j011iL þ j101iL þ j110iLð Þ:

Then eU jANDi ¼ jANDi; eU jANDi ¼ �jANDi;Uflip ¼ I � I � rx; and

Fig. 3 Fault tolerant rz
1=4 without measurement
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1
ffiffiffi

2
p jANDi þ jANDi
� 	

¼ ð eH � eH � eHÞj000iL:

Note, as required in Sect. 5.3, both eU and Uflip are in the directly fault tolerant set. Hence

we have all the requirements of the previous section, and thus we may use that method to

create jANDi:
A different solution to this step was given (independently) by Aharonov and Ben-Or

(1997) (see, especially, the Quant-ph extended version). Our procedure for constructing the

fault tolerant Toffoli gate is presented in Fig. 4. In this circuit N is the unitary operation

defined in (2); apart from replacing the standard measurements by ourN circuit, this figure

is exactly the same as the one drawn by Preskill (1998) to describe Shor’s way of obtaining

the Toffoli gate. Note that in this figure each input represents a block of qubits and

operations on these blocks are defined in the natural way. Also note that the first three top

outputs of this circuit are in a tensor product with the rest of the outputs.

6 Error recovery in the error correction process

Standard error correction can be viewed as a computation with more than one good answer,

and thus belongs to case (1) discussed in Sect. 2. On different computers in the ensemble

the syndrome of the error will be different, and thus is not unique. In the standard error

correction prescription, measurement is used to collapse the ancilla qubits containing the

information as to which error occurred (the syndrome). Then these syndrome bits are

processed by a classical reversible algorithm to determine the errors, and a unitary oper-

ation to correct the error is applied to the data qubits by the output bits of the classical

algorithm. In the measurement-free case, the ancilla qubits need not be measured, and the

classical subroutine (following the measurement) could be incorporated into the original

quantum algorithm.

Fig. 4 Fault tolerant Toffoli without measurement
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The standard error correction operations require the use of a universal set of classical

gates (e.g. NOT, CNOT, Toffoli). As in Sect. 5, for the classical part of the computation we

do not care about phase errors, and as such we do not need the full power of quantum fault

tolerance in this part of the computation. Hence, the techniques of Sect. 5 can be applied so

that the classical subroutine is carried out on a classical code. The state of the ancilla qubits

can be first copied onto a classical repetition code using the N gate. Now classical

reversible computation can be performed on the repetition code and then a control oper-

ation can be performed on the quantum data to correct the errors.

Since phase errors from the classical sub-circuit will not propagate to the quantum data,

using repetition codes to correct any bit errors in the sub-circuit is sufficient. The obser-

vation that phase errors cannot propagate from the ‘‘classical’’ part of the computation

allows one to fault tolerantly replace quantum Toffoli gates by classical ones in the error

recovery process.

7 Concluding remarks

To summarize, various conventional algorithms cannot run on ensemble (bulk) computers,

such as NMR quantum computers, since individual qubit measurement is not available. We

explained in details why running various algorithms on ensemble computers is not always

straightforward. We modified Shor’s algorithm, Grover’s algorithm (in the case of more than

one solution), and fault tolerance protocols so that they can run on ensemble computers.

A very preliminary version of this work appears in the Los-Alamos archive, quant-ph/

9907067. A partial version describing the algorithm for fault-tolerant quantum computing

appears in the DSN’04 conference proceedings (Boykin et al. 2004).

In a prior work, addressing fault tolerant computation, Aharonov and Ben–Or (1996)

have observed that the measurements required for fault tolerant computation can be

substituted by reversible classical circuits performing controlled operations. D. Aharonov

also sent us a manuscript (Aharonov D, private communication) with results regarding

Toffoli gate which are very similar to those obtained here. Knill et al. (1996) followed a

different approach that potentially does not require measurements. However, to the best of

our knowledge, a proof of universal fault tolerant computation via their approach is not

available. In particular, a measurement-free implementation of the Hadamard gate using

that approach has not been demonstrated. Finally, Peres (1998) also discusses the possi-

bility of measurement-free encoding and decoding procedures in quantum error-correction.

However, in his scheme the quantum information is transformed to a single qubit, and his

method is not suitable for fault tolerant computation.
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