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Abstract This paper is dedicated to the study of robust stability and controller synthe-
sis for discrete linear repetitive processes with polytopic uncertainty. In the robust control
domain, conditions based on parameter dependent Lyapunov functions are proposed in order
to reduce the conservatism related to uncertainty problems. The solution is a class of Lya-
punov functions that depends in a polytopic way on the uncertain parameters and that can be
derived from linear matrix inequality conditions. Nevertheless, in many cases in practice, the
frequency range of reference signals, noises and disturbances are known beforehand. There-
fore, performing controller synthesis in the full frequency range is not practically suited and
may introduce conservatism to some extent. Based on generalized Kalman–Yakubovich–
Popov Lemma, a finite frequency controller is derived for uncertain discrete linear repetitive
processes which are the most investigated class of 2D systems. Hence, the designer can
specify a frequency range where the prescribed control performance is required, where, for
example, this range could be determined by inspection of frequency spectrums of the available
signals.
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1 Introduction

In the recent years, a considerable amount of attention has been paid to stability and stabiliza-
tion of linear systems. Numerous results have been presented, many of them being formulated
in terms of linear matrix inequalities (LMIs) (see Boyd et al. 1994; El Ghaoui and Niculescu
1999 and the references therein for example). The LMI techniques have become the center
of attention of the control community for several reasons. Firstly, the solution to the problem
formulated in the LMI fashion can be solved through efficient numerical techniques based
on convex optimization (Boyd et al. 1994). Secondly, the basic control problem like sta-
bility and stabilization can be relatively easily extended to involve robustness analysis and
more control performance specifications using H2 and H∞ norms. Therefore, in the domain
of robust analysis and robust control synthesis for uncertain linear systems, most of the results
have an LMI characterization. However, the most direct approach to derive LMI form of the
robust control problem is to use a common Lyapunov matrix over the whole uncertainty
domain. This obviously can lead to quite conservative results in many practical problems.
Hence, to reduce the conservatism inherent to this approach the parameter-dependent Lya-
punov functions (PDLFs) have been successfully applied—see (Gahinet et al. 1996; Peaucelle
and Arzelier 2001; Ramos and Peres 2001; Trofino 1999) for background in using PDLFs
for solving robust control problems.

Unfortunately, the main focus in using PDLFs is on classical, i.e.1D, systems and there
is only a little number of results in the area of 2D linear systems (Hmamed et al. 2008) and
linear repetitive processes (LRPs) (Cichy et al. 2011; Rogers et al. 2007). The importance
of providing those results in the domain of LRPs is motivated by wide range of applications
for modeling, analysis and synthesis with the LRPs framework (Azevedo-Perdicoulis and
Jank 2012; Rabenstein and Steffen 2012; Wu et al. 2011), especially for long-wall coal
cutting, metal rolling (Rogers et al. 2007), interconnected systems (Cichy 2008) and designing
of iterative learning control (ILC) schemes (Bristow et al. 2006; Cichy et al. 2011; Rogers et
al. 2007). This is mostly why LRPs are the most investigated class of 2D systems.

According to the importance of LRPs, the paper provides the required results. Particulary,
it is shown that robust stability analysis and controller synthesis via PDLFs of discrete LRPs
becomes possible through efficient numerical techniques based on LMIs. Also sometimes
the frequency ranges of signals are known beforehand so that, for these cases, analysis and
controller design in a full frequency range may introduce conservatism to some extent. There-
fore, due to those practical requirements, we will develop the approach for direct treatment
of multiple frequency domain specifications on the controlled LRP in various frequency
ranges. The presented approach is based on applying the generalized Kalman–Yakubovich–
Popov (KYP) lemma that allows us to establish the equivalence between frequency domain
inequalities (FDIs) for a transfer-function and an LMI defined in terms of its state space
realization (Iwasaki and Hara 2005). Note that there is one result which can be considered
as an extension of the generalized KYP to the context of nD models (Bachelier et al. 2008)
but this work is not specifically adapted for LRPs.

In particular, the main contribution of the paper is to provide the LMI characterization
for stability along the pass and then extend it to include finite frequency specifications and
PDLFs. The key tool is based on applying extended LMI characterizations of considered
problems. In particular, we make extensive use of projection lemma (Gahinet and Apkarian
1994) as it is done in recently published papers (Feng et al. 2010; Pipeleers et al. 2009).
We can find results for LRPs in Paszke and Bachelier (2009), where the solution is given
for quite conservative case only. The motivation behind extended LMI characterization is
the possibility to introduce extra matrix variables which allows us to separate the Lyapunov
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matrices from the LRP state-space model matrices. Also, these new matrix variables can
decrease the degree of conservatism in some practical cases.

The paper is organized as follows. Section 2 gives the background in discrete LRP stability
anaysis and provides LMI conditions for stability along the pass over the finite frequency
range via KYP lemma. Section 3 presents the result on controller design for LRPs that is
then extended to the case of uncertainty in Sect. 4. Section 5 gives an example to illustrate
the effectiveness of the proposed method. Finally, conclusions are given in Sect. 6.

Throughout this paper, the null matrix and the identity matrix with appropriate dimensions
are denoted by 0 and I , respectively. Moreover, matrix inequalities are considered in sense
of Löwner, i.e. the notation X � Y (respectively X � Y ) means that the matrix X − Y
is positive semi-definite (respectively, positive definite). In large matrix expressions, the
symbol (�) replaces terms that are induced by symmetry. Expression sym{M} stands for
the symmetric matrix M + MT and ρ(·) denotes the spectral radius of its matrix argument.
Finally, the superscript ∗ denotes the complex conjugate transpose of a matrix.

Extensive use is made of the following result, known as Elimination Lemma or Projection
Lemma the proof of which can be found in Gahinet and Apkarian (1994).

Lemma 1 Given a symmetric matrix Γ ∈ R
m×m and two matrices �, � of column dimension

m, there exists a matrix W such that the following LMI holds

Γ + sym{�T W�} ≺ 0, (1)

if and only if the following two projection inequalities are satisfied

�⊥T
Γ �⊥ ≺ 0, �⊥T

Γ �⊥ ≺ 0. (2)

In addition, to derive the new set of LMI conditions for analysis and synthesis of LRPs we
apply the following result of Iwasaki and Hara (2007).

Lemma 2 For a discrete linear time-invariant system with transfer-function matrix G(z)
and frequency response matrix

G(e jθ )=C(e jθ I − A)−1 B+D,

the following inequalities are equivalent:

i) the frequency domain inequality
[
G(e jθ )

I

]∗
�

[
G(e jθ )

I

]
≺ 0, ∀θ ∈ 	, (3)

where � is a given real symmetric matrix that describes some properties of G(z), e.g.
bounded realness or positive realness, and 	 denotes the following frequency ranges

low frequency range middle frequency range high frequency range
	 |θ | ≤ θl θ1 ≤ θ ≤ θ2 |θ | ≥ θh

ii) the LMI

[
A B
I 0

]T




[
A B
I 0

]
+
[
C D
0 I

]T

�

[
C D
0 I

]
≺0, (4)

123



730 Multidim Syst Sign Process (2013) 24:727–745

where Q � 0, P is a symmetric matrix and the matrix 
 is partitioned as


 =
[

11 
12


∗
12 
22

]
, (5)

and specified as follows:

• for the low frequency range


 =
[

11 
12


∗
12 
22

]
=
[−P Q

Q P−2 cos(θl)Q

]
, (6)

• for the middle frequency range


 =
[

11 
12


∗
12 
22

]
=
[ −P e j (θ1+θ2)/2 Q
e− j (θ1+θ2)/2 Q P−(2 cos((θ2−θ1)/2))Q

]
, (7)

• and for the high frequency range


 =
[

11 
12


∗
12 
22

]
=
[−P −Q
−Q P+2 cos(θh)Q

]
. (8)

2 Linear repetitive processes and their stability

LRPs are one of the most important classes of 2D linear systems of both industrial and
algorithmic interest. The essential unique characteristic of such processes is a series of sweeps,
termed passes, through a set of dynamics defined over a fixed finite duration known as the pass
length and here denoted by α. On each pass an output, termed the pass profile, is produced
which acts as a forcing function on, and hence contributes to, the next pass profile. This
characteristic shows that LRPs have clear 2D system structure and hence it is natural to
exploit links between 2D linear systems and LRPs.

Following (Rogers et al. 2007), the state-space model of a discrete LRP has the following
form over 0 ≤ p ≤ α − 1, k ≥ 0

xk+1(p+1) = Axk+1(p) + B0 yk(p) + Buk+1(p),

yk+1(p) = Cxk+1(p) + D0 yk(p) + Duk+1(p), (9)

where α < +∞ denotes the pass length, and on pass k ≥ 0 xk(p) ∈ R
n is the state vector,

uk ∈ R
r is the control signal vector and finally yk(p) ∈ R

m is the pass profile vector (output).
To complete the process description, it is necessary to specify the boundary conditions,

that is, the state initial vector on each pass and the initial pass profile. In the forthcoming
analysis, no loss of generality arises from assuming that xk+1(0) = 0, k ≥ 0, and y0(p) =
f (p), 0 ≤ p ≤ α − 1, where the entries in the vector f (p) ∈ R

m are known functions. For
ease of presentation, no further explicit reference is made to the boundary conditions in this
paper.

Several sets of necessary and sufficient conditions for stability of discrete LRPs of the
form considered here are known (Rogers et al. 2007). From the practical point of view, the
most important are those which guarantee asymptotic stability or stability along the pass.
Asymptotic stability guarantees a bounded sequence of pass profiles (output signals) for
a bounded initial pass profile over the finite and fixed pass length α, whereas stability along
the pass is stronger since it requires this property uniformly, that is, for all possible values of
the pass length and hence, it is not surprising that asymptotic stability is a necessary condition
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for stability along the pass. According to the strong structural links between 2D systems and
LRPs, extensively used conditions are those for stability along the pass given in terms of the
corresponding 2D characteristic polynomial defined as

C (z1, z2) = det

([
I − z1 A −z2 B0

−z1C I − z2 D0

])
, (10)

where z1, z2 ∈ C are the reciprocals of z-transform variables in the along the pass and pass-
to-pass directions respectively, see (Rogers et al. 2007) again for the details concerning these
transform variables and, in particular, how to avoid technicalities associated with the finite
pass length, which define a 2D transfer-function matrix for these processes. Then, it is known
that stability along the pass holds if, and only if,

C (z1, z2) �= 0 : (z1, z2) ∈ U
2
,

where U
2 = {(z1, z2) : |z1| ≥ 1, |z2| ≥ 1}. The difficulty with this condition lies in verifying

them for a given example since it is necessary to work with a polynomial in two indeterminates
z1 and z2. The computational difficulties can be simplified by applying the results of Huang
(1972) where it is shown that the stability condition given by the above lemma is equivalent
to checking the conditions involving one-variable polynomials only. Then, using the results
of Boland and Owens (1980), we can formulate the necessary and sufficient condition for
stability along the pass in the following form.

Lemma 3 (Rogers et al. 2007) A discrete LRP of (9) is stable along the pass if, and only if,

i) ρ(D0) < 1,
ii) ρ(A) < 1,

iii) all eigenvalues of G(z1) = C(z1 I − A)−1 B0+D0 have modulus strictly less than unity
∀|z1| = 1.

In terms of checking the conditions of the above result, the first two pose no problems. How-
ever, the third requires eigenvalue computation for all points on the unit circle in the complex
plane. One way of avoiding the computational load generated is to use tests that only require
computation for a subset of points on the unit circle, termed gridding, but the resulting test is
sufficient but not necessary. However, this can be avoided by applying KYP lemma, as it was
shown in Paszke et al. (2009), Paszke et al. (2011). In particular, the condition iii) of Lemma 3
can be rewritten in view of KYP lemma because this condition is recognized as bounded real-
ness property of the transfer function G(z1). Hence, we can obtain the corresponding LMI
characterization of stability along the pass.

Lemma 4 (Paszke et al. 2012) A discrete LRP described by (9) is stable along the pass if (if
and only if in the SISO case) there exist matrices R � 0, S � 0, Q � 0 such that the following
LMIs are feasible

DT
0 RD0 − R ≺ 0, (11)

AT S A − S ≺ 0, (12)

⎡
⎢⎢⎣

−Q Q AT QCT 0
AQ −Q 0 B0

C Q 0 −I D0

0 BT
0 DT

0 −I

⎤
⎥⎥⎦ ≺ 0. (13)
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It should be noted that each LMI in the system (11)–(13) has its own interpretation in view
of engineering practice. Namely, the LMI (11) is the asymptotic stability condition. The
LMI (12) is the requirement that the first pass profile is uniformly bounded with respect to
the pass length. Finally, the LMI (13) means that each frequency component of the initial
pass profile is attenuated from pass to pass. Hence, this result is preferred as the base in
solving various engineering control problems in contrary to the most popular result in LRPs
community, where the following Lyapunov function candidate

V (k, p) = xT
k+1(p)P1xk+1(p) + yT

k (p)P2 yk(p),

is used to formulate the stability along the pass (P1 � 0 and P2 � 0 are the matrices to be
found). For more details on this technique applied in stability test and controller design for
LRPs, see Rogers et al. (2007) and references therein.

Even if the result of Lemma 4 seems to be efficient in checking stability along the pass, in
practice, the initial pass profiles have finite frequency spectra rather than in entire frequency
domain. Hence the development of stability and stabilization conditions in finite frequency
domain is significative for practical applications of LRPs.

The objective is now to develop new stability condition which gives us a possibility
to extend it to design procedures with finite frequency range specifications for control
of uncertain LRPs.

2.1 Stability along the pass over the finite frequency range

In this section we give a very important result which formulates a new condition for stability
along the pass of LRPs over the finite frequency range and it will be a basis for the development
of our main result. To proceed, it is routine to show that since we choose the matrix � in (3)
and (4) as

� =
[

I 0
0 −I

]
, (14)

then ∀θ ∈ 	, i.e. for considered frequency range defined as in Lemma 2, we have

G(e jθ )
∗
G(e jθ ) < I, ∀θ ∈ 	,

which is just

σ
(

G(e jθ )
)

< 1, ∀θ ∈ 	, (15)

where σ(·) denotes the maximum singular value and G(e jθ ) = C(e jθ I − A)−1 B0 + D0 is
a frequency response matrix of (9). According to the known fact that σ(·) provides the upper
bound for the eigenvalues of a matrix, we have

ρ
(

G(e jθ )
)

≤ σ
(

G(e jθ )
)
,

where equality occurs for SISO systems only since G(e jθ ) is then a scalar function. This
means that in this case only the resulting stability test can be a necessary and sufficient one and
otherwise sufficiency is only guaranteed. Based on the above inequality, we can reformulate
the condition i i i) of Lemma 3 over finite frequency ranges to obtain an approach that is more
practically relevant and can be applied for our purposes.
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Making use of Lemma 2 for specific frequency range 	, inequality (3) with (14) is directly
converted into (see Iwasaki and Hara 2005 for more details)

[
A B0

I 0

]T




[
A B0

I 0

]
+
[
C D0

0 I

]T

�

[
C D0

0 I

]
≺0, (16)

where the matrix 
 is given by (5) and it is the only matrix which the blocks of depend on
chosen frequency range, i.e. low, middle or high frequency range, as it is given by (6), (7)
and (8) respectively. Also, Lemma 2 shows that the blocks of 
 involve terms with Q � 0
and a symmetric matrix P . Hence, the inequality (16) cannot be directly exploited to for
control law design because it can involve product terms involving P or Q and the controlled
LRP state-space model matrices A and B0 for any frequency range. The following result
establishes the required transformation.

Theorem 1 A discrete LRP of the form (9) is stable along the pass over a finite frequency
range θ ∈ 	 if there exist matrices S � 0, Q � 0, P � 0 and W such that the following
LMIs are feasible

AT S A − S ≺ 0, (17)

⎡
⎢⎢⎣


11 
12−W 0 0

∗

12−W T 
22+ AT W +W T A W T B0 CT

0 BT
0 W −I DT

0
0 C D0 −I

⎤
⎥⎥⎦≺0, (18)

where according to Lemma 2, the matrices 
11, 
12, 
22 form a matrix 
 of the form (5) and
are chosen according to the specific frequency range 	, i.e. for low, middle or high frequency
range, as it is given by (6), (7) and (8) respectively.

Proof To prove the above theorem, it is required to show that if LMIs (17) and (18) are found
feasible then LMIs (11)–(13) hold too. First of all, in view of LMI (18), it is straightforward
to see that condition (11) is redundant and hence can be removed due to the fact that LMI (18)
implies [−I DT

0
D0 −I

]
≺ 0,

which is immediately equivalent to DT
0 D0 − I ≺ 0. Obviously, this last inequality guarantees

that ρ(D0) < 1 and hence it is equivalent to LMI (11). Next, the first LMI in the above theorem
are the same as (12) in Lemma 4 and follow immediately from classical Lyapunov stability
theory for discrete linear systems. To obtain the inequality (18), i.e. to separate the matrix 


from the LRP process model matrices, observe that for the finite frequency range, i.e. when
the matrix 
 has form as in (5), the inequality (16) can be converted into

[
AT I 0
BT

0 0 I

]⎡
⎣
11 
12 0

∗

12 
22+CT C CT D0

0 DT
0 C DT

0 D0− I

⎤
⎦
⎡
⎣A B0

I 0
0 I

⎤
⎦≺0, (19)

which is of the form of the first inequality in (2) on introducing the notation

�⊥ =
⎡
⎣A B0

I 0
0 I

⎤
⎦ , Γ =

⎡
⎣
11 
12 0

∗

12 
22+CT C CT D0

0 DT
0 C DT

0 D0− I

⎤
⎦. (20)

123



734 Multidim Syst Sign Process (2013) 24:727–745

Obviously, taking �⊥ as it is defined in (20), we immediately get � = [−I A B0
]
. Conse-

quently, in order to use the result of Lemma 1 we have to find a matrix �⊥ that satisfies
the second inequality of (2). It can be seen that by taking � = [0 I 0] we get

�⊥ =
⎡
⎣I 0

0 0
0 I

⎤
⎦ ,

and the second inequality in (2) becomes

�⊥T
Γ �⊥ =

[

11 0

0 DT
0 D0 − I

]
≺ 0.

Indeed, by Lemma 2 we see that for all considered frequency ranges 
11 = −P and hence it
is easy to find a symmetric matrix P that satisfies −P ≺ 0. Hence, it requires P � 0. Also, it
is obvious that DT

0 D0 − I ≺ 0 holds since (18) is satisfied. Application of Lemma 1 implies
that (19) is feasible if and only if⎡

⎣
11 
12 0

∗

12 
22+CT C CT D0

0 DT
0 C DT

0 D0− I

⎤
⎦+ sym

{
�T W�

}
≺0, (21)

holds. Finally, after application of Schur’s complement formula, the inequality (21) is trans-
formed into (18) and the proof is completed.

Remark 1 It has to be pointed out that the generalized KYP lemma given in Lemma 2 requires
the matrix P to be only symmetric. Hence there is no constraint on the sign definiteness of
P . This is due to the fact that the generalized KYP lemma does not invoke stability. In other
words, we can have a FDI which does not induce stability and therefore P can be non-positive
(see Bachelier et al. 2004; Bachelier and Mehdi 2006 for more details on this issue). However,
it can be easily shown that the LMI (18) in the above lemma is in fact a constraint on H∞
norm and hence we have to impose stability because H∞-norm is defined (and makes sense)
for stable transfer functions only. Therefore we need to have P � 0.

Furthermore, as it was indicated, these conditions become necessary and sufficient for
SISO processes (i.e. when D0 in (9) is a scalar) and therefore in this case they eliminate the
conservatism of already known stability conditions. Also, the relevance of LMI (18) can be
illustrated by plotting the eigenvalue loci generated by eigenvalues of G(e jθ ) per frequency
θ and ensuring that no curve intersects the unit circle.

2.2 Extended LMI characterization for stability along the pass

In this section we propose possible extensions to Theorem 1 by applying Lemma 1. The
main aim is to provide an additional degree of freedom by introducing the auxiliary slack
variables and by keeping the process matrices independent of the Lyapunov matrix. The
impact is mostly on controller synthesis procedures for uncertain processes where PDLFs
can be used to reduce conservatism in comparison with the currently used standard LMI based
synthesis procedures. Among presented conditions, we choose only one, i.e. the extension
2, for further developments because it seems to be the best suited for our problem where the
common auxiliary matrix variable is used for both considered LMIs. However, we cannot
conclude that the LMI extension used in this paper is definitely better than the others for all
practical cases, and therefore we introduce some alternative conditions which may actually
achieve better performance in some circumstances.
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To proceed, we first focus on LMI (17) which can be rewritten as

[
A
I

]T [
S 0
0 −S

] [
A
I

]
≺ 0, (22)

and where S � 0. On the other side, by Schur complement formula followed by congruence
transformation and taking U = S−1 in the resulting inequality, LMI (17) is equivalent to

[−U U AT

AU −U

]
≺ 0, (23)

where U � 0.

2.2.1 Extension 1

This paragraph is to be connected to Geromel et al. (1998), Peaucelle et al. (2000).
To introduce extra degree of freedom (by means of additional auxiliary slack variables)
we reformulate (22) by application of Lemma 1. To proceed, note that (22) is of the form
of the first inequality in (2) where

Γ =
[

S 0
0 −S

]
, �⊥ =

[
A
I

]
, (24)

then obviously � = [−I A
]
. Furthermore, by taking � = I the second inequality in (2)

vanishes. Now, by invoking Lemma 1 we immediately obtain that LMI (17) is equivalent to

[
S 0
0 −S

]
+ sym

{[−I
AT

] [
G1 G2

]} ≺ 0, (25)

where G1 and G2 are additional matrix variables which introduce extra degree of freedom.
Because in the above LMI the Lyapunov matrix S is separated from the LRP matrix A, this
result is particularly useful in the robust context to introduce PDLFs.

2.2.2 Extension 2

This paragraph is to be connected to de Oliveira et al. (1999).
Applying the same tools as it has been done for obtaining (25) but with � = [I 0] give us

�⊥T = [0 I ].

Hence, taking matrix Γ as in (24) again, we get �⊥T
Γ �⊥ = −S ≺ 0. Then, by virtue

of Lemma 1, LMI (17) is equivalent to

[
S 0
0 −S

]
+ sym

{[−I
AT

] [
G1 0

]} ≺ 0, (26)

where G1 is the additional matrix variable. When comparing (26) with (25), we see that
enforcing G2 = 0 in (25) does not introduce any additional conservatism (in the nominal
case i.e. without uncertainty).
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2.2.3 Extension 3

Since for arbitrary chosen real numbers ρ1 and ρ2 satisfying ρ2
1 −ρ2

2 < 0, the following LMI

[
ρ1 I ρ2 I

]T[S 0
0 −S

][
ρ1 I
ρ2 I

]
= (ρ2

1 − ρ2
2 )S ≺0,

holds for S � 0. Introduce now

�⊥ =
[
ρ1 I
ρ2 I

]
,

and hence we get � = [−ρ2 I ρ1 I ]. Also, recall the notation of (24) and then an obvious
application of Lemma 1 gives that (17) (or equivalently (22)) is feasible when

[
S 0
0 −S

]
+ sym

{[−I
AT

]
G
[−ρ2 I ρ1 I

]} ≺ 0, (27)

is solvable for an additional matrix variable G.

2.2.4 Extension 4

Following the idea presented in Nachidi et al. (2008), let us start with rewriting LMI (23) as

[−U U AT

AU −U

]
=
[
I 0 0.5I
0 I −A

]⎡
⎣ 0 0 −U

0 −U 0
−U 0 0

⎤
⎦
⎡
⎣ I 0

0 I
0.5I −AT

⎤
⎦ ≺ 0.

Again, note that the above inequality is of the form of the first inequality in (2) where

Γ =
⎡
⎣ 0 0 −U

0 −U 0
−U 0 0

⎤
⎦ , �⊥ =

⎡
⎣ I 0

0 I
0.5I −AT

⎤
⎦ ,

then it is obvious that � = [0.5I − AT − I ]. Next, taking � = [−I 0 I ] we get

�⊥ =
⎡
⎣I 0

0 I
I 0

⎤
⎦ ,

means that the second inequality in (2) is

�⊥T
Γ �⊥ =

[−2U 0
0 −U

]
≺ 0,

and obviously always holds for U � 0. Applying Lemma 1 we immediately obtain that
LMI (23) holds if, and only if,

⎡
⎣ 0 0 −U

0 −U 0
−U 0 0

⎤
⎦+ sym

⎧⎨
⎩
⎡
⎣0.5I
−AT

−I

⎤
⎦G

[−I 0 I
]
⎫⎬
⎭ ≺ 0. (28)

and where the matrix G is an auxiliary slack variable.
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3 Stabilization of nominal LRP

Assume that model (9) is subject to the static state feedback control law described by

uk+1(p) = [ K1 K2
] [ xk+1(p)

yk(p)

]
, (29)

where K1 and K2 are appropriately dimensioned matrices to be computed. This control law
uses feedback of the current state vector (which is assumed to be available for use) and
‘feedforward’ of the previous pass profile vector. Note that in repetitive processes, the term
‘feedforward’ is used to describe the case where state or pass profile information from
the previous pass (or passes) is used as (part of) the input to a control law applied on the current
pass, i.e. to information which is propagated in the pass-to-pass (k) direction. The induced
closed-loop model becomes

xk+1(p + 1) = (A + BK1)xk+1(p) + (B0 + BK2)yk(p),

yk+1(p) = (C + DK1)xk+1(p) + (D0 + DK2)yk(p). (30)

Assuming that the open-loop process (9) is unstable along the pass, the question is to know
if there exists some control law complying with (29) that makes model (30) become stable
along the pass. To provide the required result, recall that (26) is the equivalent characterization
of (17). Furthermore, LMI (26) can be rewritten as[

S−GT
1−G1 GT

1 A
AT G1 −S

]
≺ 0.

Since the above LMI is feasible then obviously S −GT
1 −G1 ≺ 0. This together with S �

0 implies that G1 is nonsingular and thus invertible. Post- and pre-multiplying the above
inequality by

[
G−1

1 0
0 G−1

1

]
,

and its transpose, respectively, leads to
[

Ŝ−ĜT−Ĝ AĜ
ĜT AT −Ŝ

]
≺ 0, (31)

where Ĝ = G−1
1 and Ŝ = ĜT SĜ. Next, for matrices 
11, 
12, 
22 which form a matrix 


as in (5), define


̂11 = ĜT 
11Ĝ, 
̂12 = ĜT 
12Ĝ, 
̂22 = ĜT 
22Ĝ, (32)

which implies that matrices P and Q in (6)–(8) have to be replaced with P̂ and Q̂ respectively,
where

P̂ = ĜT PĜ, Q̂ = ĜT QĜ. (33)

Now, along the notation (32) and (33) we have the following sufficient condition for the
existence of controller (29) for discrete LRPs.

Theorem 2 Suppose that a discrete LRP as decribed by (9) is subject to a control law of the
form (29). Then the resulting closed-loop LRP (30) is stable along the pass over a finite
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frequency range θ ∈ 	 if there exist matrices Ŝ � 0, P̂ � 0, Q̂ � 0, N1, N2 and Ĝ such
that the following LMIs

[
Ŝ − ĜT − Ĝ AĜ+B N1

ĜT AT + N T
1 BT −Ŝ

]
≺ 0, (34)

⎡
⎢⎢⎣


̂11 
̂12 − ĜT 0 0

̂∗

12 − Ĝ 
̂22 + sym
{

AĜ + B N1
}

B0 + B N2 ĜT CT + N T
1 DT

0 BT
0 + N T

2 BT −I DT
0 + N T

2 DT

0 CĜ + DN1 D0 + DN2 −I

⎤
⎥⎥⎦≺0, (35)

hold and where matrices 
̂11, 
̂12, 
̂22 are defined in (32) and chosen according to the specific
frequency range 	 by the same manner as in Theorem 1. Also, if LMIs (31) and (35) are
feasible, the required control law matrices K1 and K2 of (29) can be computed using

K1 = N1Ĝ−1, K2 = N2. (36)

Proof In view of Theorem 1 it can be shown that the closed-loop LRP (30) is stable along
the pass if the following inequalities are satisfied

(A+BK1)
T S(A+BK1) − S ≺ 0, (37)

⎡
⎢⎢⎣


11 
12−W 0 0

∗

12−W T 
22 + sym
{
W T (A+BK1)

}
W T (B0+BK2) (C+DK1)

T

0 (B0+BK2)
T W −I (D0+DK2)

T

0 C+DK1 D0+DK2 −I

⎤
⎥⎥⎦≺0, (38)

for S � 0, P � 0, Q � 0 and W . Then, according to the developed results, take (31) as
the equivalence to (37) where A is replaced with A + BK1. Next, setting N1 = K1Ĝ in the
resulting inequality we directly obtain (34). Furthermore, rewrite (38) with W = Ĝ−1 and
apply the congruence transformation with diag

{
Ĝ, Ĝ, I, I

}
. It yields the LMI (35) where

N2 = K2.

Remark 2 Some level of conservatism can be introduced by taking W = Ĝ−1, i.e. by choos-
ing the same auxiliary slack variable in both LMIs (34) and (35).

Remark 3 The LMI (34) can be replaced by another LMI obtained from different LMI
extensions presented in the previous section.

It is interesting to note that the matrices K1 and K2 are separated from Lyapunov matrices
which bring additional flexibility, reducing conservatism, especially in the uncertain case.

4 Robust stability and stabilization of LRPs

As it has been indicated in Introduction, the interest in introducing auxiliary slack variables
is not only to bring flexibility in the design but also to enable the implicit involvement of
PDLFs when the model is itself parameter-dependent.
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Indeed, assume that the state-space model matrices of (9) involve unknown but fixed uncer-
tainties described by polytopies. This means that all process matrices are actually dependent
on a real parameter vector ξ with a polytopic dependency:

[
A B0 B
C D0 D

]
∈ � :=

{[
A(ξ) B0(ξ) B(ξ)

C(ξ) D0(ξ) D(ξ)

]
=

N∑
i=1

ξi

[
Ai B0i Bi

Ci D0i Di

]
, ξ ∈ D

}
, (39)

where

D =

⎧⎪⎨
⎪⎩ξ =

⎡
⎢⎣

ξ1
...

ξN

⎤
⎥⎦ : ξi ≥ 0,

N∑
i=1

ξi = 1

⎫⎪⎬
⎪⎭. (40)

It means that the various matrices Ai , B0i , Bi , Ci , D0i , Di define the vertices of a polytope
in which the actual matrices A, B0, B, C , D0 and D lie.

Definition 1 The discrete LRP described by (9) where the process matrices are subject to
uncertainty as in (39) and (40) is robustly stable along the pass if, and only if, it is stable
along a pass for any value of ξ in D .

Now assume that matrix functions P(ξ), Q(ξ) and S(ξ), which are to be determined, are
expected to have the following forms

P(ξ) =
N∑

i=1

ξi Pi , Q(ξ) =
N∑

i=1

ξi Qi , S(ξ) =
N∑

i=1

ξi Si , (41)

and are positive definite for all values of ξ such that[
A B0 B
C D0 D

]
∈ �.

The matrices defined in (41) are PDLFs and can take N different values corresponding to the
vertices of the polytope �. According to PDLFs P(ξ) and Q(ξ) of the form (41), matrices

11, 
12, 
22 which form a matrix 
 as in (5) have affine form


11(ξ) =
N∑

i=1

ξi
11i , 
12(ξ) =
N∑

i=1

ξi
12i , 
22(ξ) =
N∑

i=1

ξi
22i . (42)

Along the above notation, we have the following result.

Theorem 3 Suppose that a discrete LRP of the form (9) is subject to uncertainty structure
modeled by (39) and (40). Then this LRP is stable along the pass over a finite frequency
range θ ∈ 	 for all admissible uncertainties if there exist matrices Si � 0, Qi � 0, Pi � 0,
W and G1 such that the following LMIs are feasible[

Si −GT
1−G1 GT

1 Ai

AT
i G1 −Si

]
≺ 0, (43)

⎡
⎢⎢⎣


11i 
12i −W 0 0

12

∗
i −W T 
22i + AT

i W +W T Ai W T B0i CT
i

0 BT
0i W −I DT

0i
0 Ci D0i −I

⎤
⎥⎥⎦≺0, (44)
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for all i = 1, . . . , N, and where according to Lemma 2 and notation (42) the matrices 
11i ,

12i , 
22i are chosen according to the specific frequency range 	, i.e. for low, middle or
high frequency range, respectively.

The most interesting aspect of the above stability condition is that it can be easily exploited
to cope with the problem of state feedback robust stabilization where we are interested to
find matrices K1 and K2 of (29) such that the closed-loop process is robustly stable along the
pass over a finite frequency range θ ∈ 	. To proceed, observe that by introducing PDLFs
in (41) the matrices defined in (32) and (33) also become parameter-dependent, i.e.

P̂(ξ) =
N∑

i=1

ξi P̂i , Q̂(ξ) =
N∑

i=1

ξi Q̂i , Ŝ(ξ) =
N∑

i=1

ξi Ŝi , (45)

and hence


̂11(ξ) =
N∑

i=1

ξi 
̂11i , 
̂12(ξ) =
N∑

i=1

ξi 
̂12i , 
̂22(ξ) =
N∑

i=1

ξi 
̂22i . (46)

Now, we have the following result which gives the sufficient condition for a discrete LRP to
be robustly stable along the pass under control law of (29).

Theorem 4 Suppose that the control law of the form (29) is applied to a discrete LRP (9)
with associated uncertainty structure (39) and (40). Then the resulting closed-loop LRP (30)
is robustly stable along the pass over a finite frequency range θ ∈ 	 if there exist matrices
Ŝi � 0, P̂i � 0, Q̂i � 0, N1, N2 and Ĝ such that the following LMIs[

Ŝi − ĜT − Ĝ Ai Ĝ + B N1

ĜT AT
i + N T

1 BT −Ŝi

]
≺ 0, (47)

⎡
⎢⎢⎣


̂11i 
̂12i − ĜT 0 0

̂∗

12i − Ĝ 
̂22i + sym
{

Ai Ĝ + Bi N1
}

B0i + Bi N2 ĜT CT
i + N T

1 DT
i

0 BT
0i + N T

2 BT
i −I DT

0i + N T
2 DT

i
0 Ci Ĝ + Di N1 D0i + Di N2 −I

⎤
⎥⎥⎦≺0, (48)

hold for all i = 1, . . . , N and where the matrices 
̂11i , 
̂12i , 
̂22i are defined by (46) and
chosen according to the specific frequency range 	 by the same manner as in Theorem 1.
Also, if LMIs (31) and (35) are feasible, the required control law matrices K1 and K2 of (29)
can be calculated using (36).

Proof The proof can be completed in an identical manner to the proof of Theorem 2 where
we use PDLFs defined in (45) and (46).

5 Numerical example

To illustrate our result, consider the robust stabilization problem for a metal rolling process
using the approach given in Theorem 4.

It is known that metal rolling is an extremely common industrial process where, in essence,
deformation of the workpiece takes place between two rolls with parallel axes revolving in
opposite directions. The metal strip is to be rolled to a pre-specified thickness by passing it
through a series of rolls for successive reductions. In practice, a number of models of this
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process can be developed depending on the assumptions made on the underlying dynamics
and the particular mode of operation under consideration. Here, however, we will restrict
attention to a linearized model of the dynamics adopted from Cichy et al. (2011) presented
as the discrete LRP with uncertainty structure of (39) and (40) where

[
A1 B01 B1

C1 D01 D1

]
=
⎡
⎣ 0.9377 187.5361 0.0144 −0.0866
−3.116 · 10−4 0.9377 7.1907 · 10−5 −4.3278 · 10−4

0.9377 187.5361 0.7836 −0.0866

⎤
⎦,

[
A2 B02 B2

C2 D02 D2

]
=
⎡
⎣ 0.7676 153.5191 0.0536 −0.0709
−1.162 · 10−3 0.7676 2.6816 · 10−4 −3.5427 · 10−4

0.7676 153.5191 0.8229 −0.0709

⎤
⎦,

[
A3 B03 B3

C3 D03 D3

]
=
⎡
⎣ 0.8574 171.481 0.0823 −0.198
−7.1297 · 10−4 0.8574 4.1172 · 10−4 −9.9024 · 10−4

0.8574 171.481 0.5049 −0.198

⎤
⎦,

[
A4 B04 B4

C4 D04 D4

]
=
⎡
⎣ 0.925 185.0033 4.6328 · 10−3 −0.0229
−3.7492 · 10−4 0.925 2.32 · 10−5 −1.143 · 10−4

0.925 185.0033 0.9428 −0.0229

⎤
⎦.

The above model has been obtained from differential LRP model given in Bochniak et al.
(2008) after discretization procedure with sampling time T = 0.2 s. Then performing the
design procedure of Theorem 4 in Matlab for low frequency range where θl = 0.3770
(recall that θl = 2πωT and we take ω = 0.3 Hz) gives the corresponding controller matrices
of (29) as

K1 = [2.4693 1408.0368
]
, K2 = 1.7531.

It is easy to show that the eigenvalues of (Ai + Bi K1) and D0i + Di K2 for i = 1, 2, 3, 4
are located within the unit circle. Also, it can be checked that for the considered frequency
range from 0 to 0.3 Hz the controlled processes at each vertex of polytope (called Process1,
Process2, Process3 and Process4 for N = 1, 2, 3, 4 respectively) are stable along the pass.
To confirm it, it is sufficient to plot singular value plot—see Fig. 1, to see the frequency
response of controlled processes are less than 1 (0 dB) for frequencies from 0 to 0.3 Hz.
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Fig. 1 Singular value plots for the controlled processes

123



742 Multidim Syst Sign Process (2013) 24:727–745

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
0 dB

−20 dB

−10 dB

−6 dB

−4 dB−2 dB

20 dB

10 dB

6 dB

4 dB
2 dB

Nyquist Diagram

Real Axis

Im
ag

in
ar

y 
A

xi
s

Process1
Process2
Process3
Process4
Unit circle

Fig. 2 Nyquist plots for the controlled processes

Also, due to the fact that the considered processes are SISO then stability along the pass of
controlled processes over considered frequency range can be confirmed with Nyquist plots -
see Fig. 2.

When comparing the obtained result with those presented in Cichy et al. (2011), we see
that controller gain matrices computed over entire frequency range have more large gains
than these obtained here over finite frequency range only and therefore presented approach
gives some practical implementation advantages. Also, it should be emphasized that due to
polynomial time complexity of the considered LMI problems, the efficient solution to the
considered controller design problem can be even maintained for higher problem dimensions.
In particular, the overall number of decision variables in (47) and (48) is

3N
n(n + 1)

2
+ n2 + mn + mr,

where according to (9) n denotes the number of states, m is the number of outputs, r is
the number of inputs and N is the vertices number of the polytope. This means that the
considered examples involve computations with 43 decision variables and this is more than
corresponding result of Cichy et al. (2011). The difference is mostly caused by using 2 more
parameter dependent matrix variables in LMIs (47) and (48).

6 Conclusions

This paper has developed substantial new results on the relatively open problem of robust
control of LRPs which are a distinct class of 2D linear systems of both systems theoretic and
applications interest. Particularly, it has been shown that it is possible to introduce an extra
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matrix variable which allows us to separate the Lyapunov matrices from the process matrices
and then give us a way to derive LMI conditions based on parameter dependent Lyapunov
functions. Also it has been shown that this analysis and controller design procedures can
be extended to the case of a finite frequency domain. These results have great practical
potential and can be used for many engineering applications. The theoretical findings have
been illustrated by the numerical example. It would be interesting to extend the results of this
paper to the cases of the dynamic pass profile synthesis. Another obvious extension would
be to consider the LRPs model with time-varying polytopic uncertainties such as in Daafouz
and Bernussou (2001), more sophisticated uncertainty structures (such as norm-bounded
Linear Implicit Fractional Representations (ILFR) as in Sari et al. (2011)) or also to use more
complex PDLFs (Chesi et al. 2005, 2007; Olivieira et al. 2008; Olivieira and Peres 2006).
This could be investigated in a near future.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which
permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source
are credited.
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