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Abstract This paper focuses on Kalman–Yakubovich–Popov lemma for multidimensional
systems described by Roesser model that possibly includes both continuous and discrete
dynamics. It is shown that, similarly to the standard 1-D case, this lemma can be studied
through the lens of S-procedure. Furthermore, by virtue of this lemma, we will examine
robust stability, bounded and positive realness of multidimensional systems.

Keywords KYP lemma · Hybrid n-D Roesser model · S-procedure · Polynomial matrix
∂D-regularity · LMI

1 Introduction

In the past three decades, a large attention has been paid to the study of multidimensional
(n-D) systems (Bose 1982, 1985; Gałkowski and Wood 2001; Kaczorek 1985). These systems
are characterized by rational functions, or matrices of several independent variables which
can represent different space coordinates or mixed time and space variables. This is a result
of information propagation in more than one independent direction which is the essential
difference from the classical, or one-dimensional (1-D) case, where information propagates
only in one direction.
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The interest in n-D systems has predominantly been motivated by a wide variety of
applications, arising in both theory and practical applications. Particular applications include
n-D filtering (Basu 2002; Lu and Antoniou 1992), n-D coding and decoding (Shi and Zhang
2002), image processing (Bracewell 1995), and multidimensional signal processing (Dud-
geon and Merserau 1984). n-D systems theory also successfully applies for analysis and
synthesis of processes with repetitive dynamics, see for example Rogers et al. (2007) and the
references therein.

Two basic state-space models for n-D systems have been developed. The first is credited
to Roesser (1975) and clearly has a first order structure. In what follows, the state vector
is partitioned into sub-vectors—one for each of n directions of information propagation.
Another commonly used state-space model for n-D systems has been proposed by Fornasini
and Marchesini (1978). Note, however, that these models are not fully independent and it is
possible to transform one into the other.

The unquestioned popularity of the state-space methods in n-D system theory stems from
the fact that they are well understood and efficient numerical linear algebra routines exist
(required when manipulating state-space models). In what follows, the stability problem,
which is a main requirement for n-D systems, can be solved within Lyapunov’s framework
(Gałkowski et al. 2003b; Hinamoto 1993; Kaczorek 1985; Lu 1994), which is naturally per-
formed in the state space. The most important fact associated with such an approach is that an
n-D system stability condition can be recast into a linear matrix inequality (LMI) feasibility
problem (Boyd et al. 1994) i.e. finite dimensional convex optimization problem involving
LMI constraints. It has to be mentioned that most of the proposed LMI stability conditions,
when tractable, are only sufficient. Recently, some preliminary results on formulating nec-
essary and sufficient stability condition have been proposed in Ebihara et al. (2006), Fu et al.
(2006). However, these conditions are only formulated for 2-D discrete system case and
cannot be easily extended to controller design case.

However, the most known conditions relevant to the stability of n-D systems are expressed
in terms of characteristic polynomial root-clustering (Jury 1978). In this framework, it
becomes of interest to derive theoretical results on polynomial matrices (Šebek 1988). Once
again, convex optimization techniques over LMI constraints have turned to be a good tool
to tackle some problems induced by polynomial matrices, especially D-stability analysis
(Henrion et al. 2001). This paper lies in this framework.

The connection between the polynomial, or, in a more restrictive way, frequency approach,
and the matrix inequalities is quite well established in the context of 1-D systems. The
strongest result is the celebrated Kalman–Yakubovich–Popov (KYP) lemma (Rantzer 1996;
Iwasaki and Hara 2005) which gives equivalences between crucial frequency domain inequal-
ities and LMIs.

To date, no work has been reported on a solution to this problem in terms of n-D systems
and therefore it is a natural question to ask if it is possible to provide a version of the KYP
lemma which can be exploited in the realm of n-D systems. Recently, much effort has been
dedicated to establishing KYP lemma for n-D systems. Although few special instances of
the KYP lemma have been implicitly addressed for 2-D models (Xu et al. 2003, 2005), no
real general result has been provided yet. This paper aims at filling this gap.

The paper is organized as follows. After this introduction, Sect. 2 provides the preliminary
background. It recalls the Roesser model and shortly highlights its various extensions. These
models are very popular to describe the behaviour of multidimensional systems. Besides, it
exploits some descriptions (encountered in the literature) of regions of the complex plane
as well as the notion of ∂D-regularity for multivariate matrix functions. Section 3 states the
main result which is some extension of the generalized KYP lemma. In Sect. 4, this lemma
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is applied to analyze the behaviour of n-D systems described with Roesser model introduced
in Sect. 2. Some numerical illustration is provided in Sect. 5 to highlight the relevance of
the approach. Finally, results are summarized and conclusions are stated in Sect. 6, where a
particular emphasis is put on possible further investigations.

The following notation will be used throughout the paper. M ′ denotes the transpose con-
jugate of a matrix M . Hence, λ′ is the conjugate of complex number λ. ||M ||2 is the matrix
2-norm (the maximum singular value) induced by the Euclidean vector norm. In is the iden-
tity matrix of dimension n and I (resp. 0) is the identity (resp. a null) matrix of appropriate
dimensions. Matrix inequalities are considered in the sense of Löwner, i.e. > 0 (resp. < 0)
means positive (resp. negative) definite and ≥ 0 (resp. ≤ 0) means positive (resp. negative)
semi-definite. The notation Hn stands for the set of Hermitian matrices of dimension n.
H+

n ⊂ Hn is the subset of positive definite matrices and H−
n ⊂ Hn that of negative definite

matrices. Also let the following notations be defined:

k⊕
i=1

Mi = diag
i=1,...k

{Mi }.

For a given subset S of the set X , the set SC is the complementary set of S such that
S ∪ SC = X & S ∩ SC = ∅. At last, the sets of indices are denoted as follows:

I(q) := {1, . . . , q}, q ∈ IN.

2 Preliminaries

This section introduces some preliminaries, some of them being borrowed from the literature.
The first part is dedicated to the presentation of the Roesser models and to some associated
stability conditions. The second provides the description of a class of regions of the “mul-
tidimensional” complex plane which will be used in the next section. The third part briefly
introduces the notion of ∂D-regularity of a multivariate matrix function, inspired from the
concept of matrix ∂D-regularity.

2.1 Hybrid Roesser model

One of the most commonly used model for n-D discrete systems is the Roesser model (RM)
that has been originally introduced in Roesser (1975). One of the key features of this model
is that the state vector is partitioned into horizontal and vertical components.

Furthermore, it is also possible to define the continuous or hybrid versions of Roesser
model. The general version of the hybrid Roesser model for n-D systems takes the following
form (Bochniak 2005)
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂
∂t1

x1(t1, . . . , tr , jr+1, . . . , jk)
...

∂
∂tr

xr (t1, . . . , tr , jr+1, . . . , jk)

xr+1(t1, . . . , tr , jr+1 + 1, . . . , jk)
...

xk(t1, . . . , tr , jr+1, . . . , jk + 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[

A11 A12

A21 A22

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1(t1, . . . , tr , jr+1, . . . , jk)
...

xr (t1, . . . , tr , jr+1, . . . , jk)
xr+1(t1, . . . , tr , jr+1, . . . , jk)

...

xk(t1, . . . , tr , jr+1, . . . , jk)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
[

B1

B2

]
u(t1, . . . , tr , jr+1, . . . , jk)
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y(t1, . . . , tr , jr+1, . . . , jk) = [
C1 C2

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1(t1, . . . , tr , jr+1, . . . , jk)
...

xr (t1, . . . , tr , jr+1, . . . , jk)
xr+1(t1, . . . , tr , jr+1, . . . , jk)

...

xk(t1, . . . , tr , jr+1, . . . , jk)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ Du(t1, . . . , tr , jr+1, . . . , jk) (1)

where
∑k

i=1 ni = n.

The vectors xi (t1, . . . , tr , jr+1, . . . , jk) ∈ IRni , i = 1, .., k, u(t1, . . . , tr , jr+1, . . . , jk) ∈
IRm and y(t1, . . . , tr , jr+1, . . . , jk) ∈ IRp are the local state subvectors, the input vector and
the output vector respectively. The matrices

A =
[

A11 A12

A21 A22

]
∈ IRn×n, B =

[
B1

B2

]
∈ IRn×m,

C = [
C1 C2

] ∈ IRp×n, D ∈ IRp×m

are the state, control, observation and direct transfer matrices respectively. Obviously, the
systems represented by the above model have continuous dynamics along r dimensions and
discrete dynamics along (k −r) dimensions. If r = 0, then it reduces to the classical Roesser
model (1975) whereas if r = k then one gets its continuous counterpart. At last, if r = 1
and k = 2, then the obtained 2-D model is particularly suitable to describe the differential
repetitive processes (Gałkowski et al. 2003c).

Note that relationships between polynomial matrix theory and state-space description are
very strong in the n-D linear case. By applying the Laplace transform and the Z-transform,
the following frequency characterization of the system (1) is obtained

Y (λ) = G(λ)U (λ),

where

G(λ) = C(H(λ) − A)−1 B + D, H(λ) := k⊕
i=1

λi Ini . (2)

Now let the function c(λ, A) be defined by

c(λ, A) := det(H(λ) − A). (3)

We begin with presenting the stability condition for n-D systems, which is just a reformulation
of a proposition in Bochniak (2005).

Lemma 1 Consider a multidimensional system represented by (1). Then, such a system is
asymptotically stable if and only if

c(λ, A) 
= 0 ∀λ ∈ SC , (4)

where c(. , .) is defined by (3) and where SC , the complementary set of the “asymptotic
stability region”, is defined by

SC =

⎧⎪⎨
⎪⎩

λ =
⎡
⎢⎣

λ1
...

λk

⎤
⎥⎦ ∈ lC k : Re(λi ) ≥ 0, i = 1, . . . , r&|λi | ≥ 1, i = r + 1, . . . , k

⎫⎪⎬
⎪⎭

. (5)
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It can be seen that the above lemma covers the existing results for both discrete and con-
tinuous n-D systems. Obviously, if r = 0, then the condition for the stability of a discrete
Roesser model proposed in Agathoklis (1988), Jury (1978) is recovered. Furthermore, by
taking r = k the result of Piekarski (1977) is obtained.

In Lemma 1, the stability condition is expressed in terms of polynomial root-clustering
which generally does not lead to computationally feasible conditions. One of the ways to
obtain stability conditions that result in a significant reduction in computational complexity
is to formulate them as convex optimization problems involving LMIs. Therefore, the next
part provides some preliminaries on point-clustering in order to prepare the derivation of
some LMI-based conditions in the next section.

2.2 Point-clustering

Unlike the 1-D system case, zeros of n-D system characteristic polynomial (i.e. system poles)
are not isolated and generally they cannot be a finite set. Furthermore, it is accompanied by
difficulties in applying the pole placement technique for n-D systems, since there is no
link between pole location and the dynamic response of n-D system. Therefore, it becomes
clear that, as clustering regions, only the imaginary axis and the unit circle, which are the
boundaries of SC defined in (5), can be considered.

To proceed, consider the following matrices
[

Ri11 R′
i10

Ri10 Ri00

]
∈ lC 2×2. (6)

Let the sets ∂Di be described by

∂Di := {s ∈ lC : FRi (s) = 0, ∀i ∈ I(k)} (7)

where the functions FRi (s) are defined by

FRi (s) :=
[

s I
I

]′
Ri

[
s I
I

]
∀i ∈ I(k). (8)

Due to the fact that the only meaningful sets are lines or circles we limit our consideration
to sets described by the equalities FRi (s) = 0.

Now define the “k-region” ∂D as

∂D := ∂D1 × ∂D2 × · · · × ∂Dk . (9)

In the remaining part of the paper, we shall restrict the study to matrices that comply with

Ri =
[

0 1
1 0

]
∀i ∈ I(r) and

[
1 0
0 −1

]
∀i ∈ {r + 1, . . . , k}, (10)

meaning that, respectively, only the imaginary axis and the unit circle are considered as
instances of ∂Di . Indeed, as it has been mentioned, they are the ones of practical interest
for the study of nD models. More precisely, with such a choice, ∂D is the boundary of SC

defined in (5). But note that another work considering a much larger class of regions has been
completed in a technical report which is available upon request to the authors.

Let λ be a complex vector that can be written

λ :=
⎡
⎢⎣

λ1
...

λk

⎤
⎥⎦ ∈ lC k . (11)
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In the sequel, define the following matrices

� := k⊕
i=1

λi ;

R :=
⎡
⎢⎣

k⊕
i=1

Ri11

k⊕
i=1

R′
i10

k⊕
i=1

Ri10

k⊕
i=1

Ri00

⎤
⎥⎦ ;

to obtain

λ ∈ ∂D ⇔
[

�

Ik

]′
R

[
�

Ik

]
= 0. (12)

Before proceeding further, we give the following lemma which will be useful in the sequel.

Lemma 2 Let a k-region ∂D be defined as in (9) with (6)–(8), (10) and λ ∈ lC k comply with
(11). The two following statements are equivalent.

(i)

λ ∈ ∂D (13)

(ii)

[
H(λ)

I

]′
R(P)

[
H(λ)

I

]
= 0 ∀P ∈ H (14)

where H = {Hn1 × · · · × Hnk }, H(λ) is defined in (2) and R(P) stands for

R(P) :=
⎡
⎢⎣

k⊕
i=1

Pi Ri11

k⊕
i=1

Pi R′
i10

k⊕
i=1

Pi Ri10

k⊕
i=1

Pi Ri00

⎤
⎥⎦ , (15)

and with Pni ∈ Hni , ∀i ∈ I(k).

Proof (i) ⇒ (ii): if λ ∈ ∂D then the equality in (12) holds or equivalently

k⊕
i=1

FRi (λi ) = 0,

leading to

k⊕
i=1

FRi (λi )Pi = 0, (16)

with considering any set P of k matrices Pi ∈ Hni , i ∈ I(k), one gets
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[
H(λ)

I

]′
R(P)

[
H(λ)

I

]
= 0. (17)

(ii) ⇒ (i): Assume that (14) holds. Let a vector z comply with

z =
⎡
⎢⎣

z1
...

zk

⎤
⎥⎦ with zi ∈ lC ni , ∀i ∈ I(k). (18)

Left and right multiplying (14) by z′ and z respectively yields

k∑
i=1

((z′
i Pi zi )FRi (λi )) = 0. (19)

The above inequality holds for any set P meaning that z′
i Pi zi can take any value. Thus, it is

clear that FRi (λi ) = 0 ∀i ∈ I(k). ��

2.3 Multivariate matrix ∂D-regularity

To conclude this section, the definition of the ∂D-regularity of a multivariate matrix function
is proposed, accompanied by a short discussion.

Definition 1 Let ∂D be a subset of lC k and λ ∈ lC k comply with (11). Also consider a
k-variate matrix function A(λ). Then, A(λ) is said to be

• ∂D-regular if {λ ∈ lC k : det(A(λ)) = 0} ∩ ∂D = ∅;
• ∂D-singular if {λ ∈ lC k : det(A(λ)) = 0} ∩ ∂D 
= ∅.

In Sect. 4, a particular attention will be paid to the k-D polynomial matrix of the form

A(λ) := E H(λ) − A. (20)

In this case, and if E = I , one gets det(A(λ)) = c(λ, A) which corresponds to the character-
istic polynomial of Roesser model (1). Thus, from Lemma 1, it can be seen that the asymptotic
stability of (1) is a special instance of the ∂D-regularity of A(λ) as defined in (20). More
precisely, for (1) to be asymptotically stable, it is necessary that A(λ) be ∂D-regular with
(6)–(10).

In such a case, the difference between ∂D-regularity and asymptotic stability lies in the
distribution of the roots of c(λ, A) with respect to ∂D. More generally, D-stability requires
∂D-regularity when ∂D is the boundary of the region D.

For the classical 1-D case (r = k = 1 or k = k − r = 1), then A(λ) can be written
A(λ) = (λE − A) and, if E = I , Definition 1 becomes equivalent to the definition of the
∂D-regularity of a matrix A proposed in Bachelier et al. (2004). If E 
= I , then the definition
in Bachelier et al. (2004) can be directly extended to the notion of ∂D-regularity of the pencil
(E, A).

3 A version of the KYP lemma

This section is devoted to the derivation of the main result which is some sort of k-D version
of the celebrated KYP-lemma. This version will only provide a sufficient condition but the
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necessity will be briefly discussed with the help of the so-called generalized S-procedure.
A large reference is made to the seminal paper (Iwasaki and Hara 2005) where generalized
KYP lemma for 1-D linear models and the generalized S-procedure are presented in a very
elegant way.

Before stating the result, let us introduce the following notation useful for a further analysis
(note that various notations are borrowed from Iwasaki and Hara 2005).

Consider some matrix F ∈ lC (n+m)×(n+m) and let another matrix � belong to Hn+m .
Next, let the set P be made up by k matrices Pi ∈ Hni , ∀i ∈ I(k). With each set P and with
a set ∂D given by (9) with (6)–(8) and (10), one can associate a matrix R(P), as in Lemma
2, defined by (15). The set M is the set of all complex matrices M associated with F and
R(P) in the following way:

M := {M ∈ Hn+m : M = F ′R(P)F}. (21)

From the above formulation, the subset M̃ is defined as

M̃ := {M ∈ M : (M + �) ∈ H−
n+m}. (22)

At last, for a complex vector λ defined as in (11), the matrices �(λ) and N (λ) are defined by

�(λ) := [
I −H(λ)

]
and Span(N (λ)) := Ker(�(λ)F),

respectively.
Now, the main result, which can be considered as some extension of the KYP lemma in

its “strict inequality” version (Rantzer 1996) is stated.

Theorem 1 With the notations and assumptions detailed above, consider the two following
statements:

(i)

N ′(λ)�N (λ) ∈ H−
m ∀λ ∈ ∂D; (23)

(ii)

M̃ 
= ∅. (24)

Then (ii) is sufficient for (i).

Before giving the proof to the above theorem, some comments on the two conditions are pro-
vided. The first statement corresponds to some property to be checked such as robust stability,
H∞ performance level, and others (see subsection 4.1.1 to understand how a suitable choice
of � can link N (λ) and � to a property to be satisfied by the system transfer matrix). The
second statement corresponds to some numerically tractable condition which simply means
that there exists some set P (which is usually seen as a set of Lyapunov matrices), such that

M + � < 0. (25)

The idea is then to handle inequality (25) rather than directly tackle the original property (i)
which cannot be easily exploited from a numerical point of view.

Proof Firstly, observe that (24), as mentioned above, means that there exists a set P such
that (25) holds. Further, based on the definition of N (λ), it can be seen that

�(λ)F N (λ) = 0, ∀λ ∈ ∂D. (26)
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Next, inequality (25) implies that

N ′(λ)(M + �)N (λ) < 0, ∀λ ∈ ∂D, (27)

and hence

N ′(λ)F ′R(P)F N (λ) + N ′(λ)�N (λ) < 0, ∀λ ∈ ∂D. (28)

Moreover, we can see from (26) that Span (F N (λ)) is completely characterized by the
relation

Span(F N (λ)) = Span

([
H(λ)

I

]
X

)
, (29)

where X is any full rank matrix. Thus, inequality (28) can be equivalently written as

X ′
[

H(�)

I

]′
R(P)

[
H(�)

I

]
X + X ′N ′(λ)�N (λ)X < 0, ∀λ ∈ ∂D. (30)

Finally, taking the result of Lemma 2 into account, it is clear that the first term of the left
handside member of inequality (30) is zero when λ ∈ ∂D. Hence, the second term is negative
definite which is equivalent to (i). This completes the proof. ��

The important point to note is that the 1-D version of KYP lemma is known to provide a
necessary and sufficient condition whereas Theorem 1 only proposes a sufficient condition
(ii) for property (i) to hold. More than proving Theorem 1, it is important to emphasize why
condition (ii) might not be necessary. The 1-D version of KYP lemma (Rantzer 1996) can
be proven through the so-called S-procedure (Yakubovich 1971) in its generalized form (see
Iwasaki and Hara (2005) and the references therein). In the remaining part of the section,
Theorem 1 is studied through the lens of S-procedure, which is now recalled in its generalized
strict inequality version.

Lemma 3 (S-procedure, from Iwasaki and Hara 2005) Let � be an Hermitian matrix and
M be an arbitrary subset of Hq . Moreover let M̃ ⊂ M be defined by

M̃ := {M ∈ M : (M + �) ∈ H−
q }, (31)

and the set S be defined by

S := {S ∈ Hq : S 
= 0, rank(S) = 1, S ≥ 0, tr(M S) ≥ 0 ∀M ∈ M}. (32)

Consider the two following statements:

(a)

tr(�S) < 0, ∀S ∈ S; (33)

(b)

M̃ 
= ∅. (34)

Then (b) is sufficient for (a) and if the set M is rank-one separable (see the definition in
Iwasaki and Hara 2005) then (b) is also necessary and the S-procedure is said lossless.

A possible approach to understand why Theorem 1 only provides a sufficient condition unlike
the classical KYP lemma is to try to see why S-procedure is either useless or is simply not
lossless when applied to the assumptions of Theorem 1. According to the used notations, it
is clear that the idea is to compare the sets M and M̃ defined, on one hand, in Theorem 1 and,
on the other hand, in Lemma 3 with q = n + m, and then to address two issues.
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1. Is it possible to exhibit a set S = Sa from the assumptions of Theorem 1 that could match
the set S = Sb in Lemma 3 (this would enable ones to apply the S-procedure, at least in
the sense b) ⇒ a))?

2. If so, is the S-procedure lossless (this would enable ones to apply the S-procedure in the
sense a) ⇒ b))?

Firstly, it can be seen that the statement (i) in Theorem 1 is equivalent to

y′N ′(λ)�N (λ)y < 0, ∀y 
= 0, ∀λ ∈ ∂D. (35)

Next, substitute ξ = N (λ)y into (35) to obtain

tr(�S) < 0, ∀S ∈ Sa := {S = ξξ ′ : ξ 
= 0, �(λ)Fξ = 0, λ ∈ ∂D}. (36)

With the change η = Fξ , it is easy to see that η complies with

η =
[

H(λ)

I

]
z, z 
= 0, (37)

and hence the set Sa can be written

Sa =
{
ξξ ′ : ξ 
= 0, η = Fξ =

[
H(λ)

I

]
z, λ ∈ ∂D

}
. (38)

In the following, based on Lemma 2, it can be deduced that

Sa =
{
ξξ ′ : ξ 
= 0, η = Fξ =

[
H(λ)

I

]
z,

[
H(λ)

I

]′
R(P)

[
H(λ)

I

]
= 0 ∀P ∈ H

}
. (39)

⇔ Sa =
{
ξξ ′ : ξ 
= 0, η = Fξ =

[
H(λ)

I

]
z,

q ′
[

H(λ)

I

]′
R(P)

[
H(λ)

I

]
q = 0 ∀{P; q} ∈ H × lC n

}
. (40)

so, it is possible to express (i) as (a) with � = � and with S matching Sa as described above.
Secondly, the condition (ii) in Theorem 1 can be expressed as (b) in Lemma 3 with � = �

and with the set M as defined in (21). Next, application of Lemma 3 yields

tr(�S) < 0, ∀S ∈ Sb := {S = ξξ ′ : ξ 
= 0, tr(Mξξ ′) ≥ 0 ∀M ∈ M},
where Sb can also be written as

Sb = {S = ξξ ′ : ξ 
= 0, ξ ′F ′R(P)Fξ ≥ 0 ∀P ∈ H}. (41)

Now, since P is any set in H then the inequality involved in the above description of Sb holds
for any choice P+ = {Pi } ∈ H as well as for any choice P− = {−Pi } ∈ H. In the following,
observe that R(P) is linear with respect to various matrices Pi and therefore the description
of Sb can be modified as follows

Sb = {S = ξξ ′ : ξ 
= 0, ξ ′F ′R(P)Fξ = 0 ∀P ∈ H}. (42)
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Now, the issue 1 mentioned above is to compare Sa in (40) and Sb in (42). Sa can be written

⇔ Sa =
{
ξξ ′ : ξ 
= 0 : η = Fξ =

[
H(λ)

I

]
z,

q ′
[

H(λ)

I

]′
R(P)

[
H(λ)

I

]
q = 0 ∀{P; q} ∈ H × lC n

}
.

which, with q = Xz, also writes (X being any full rank matrix)

⇔ Sa =
{
ξξ ′ : ξ 
= 0 : η = Fξ =

[
H(λ)

I

]
z,

z′ X ′
[

H(λ)

I

]′
R(P)

[
H(λ)

I

]
Xz = 0 ∀{P; X : det(X) 
= 0} ∈ H × Hn

}
.

Now, assume that k = 1 which corresponds to the 1-D system case, then, with no loss of
generality, the matrix P1 can be substituted with X−1 P1 X−1 and Sa can then be described by

⇔ Sa =
{
ξξ ′ : ξ 
= 0 : η = Fξ =

[
H(λ)

I

]
z,

z′
[

H(λ)

I

]′
R(P)

[
H(λ)

I

]
z = 0 ∀P ∈ H

}
,

which is simplified in

⇔ Sa =
{
ξξ ′ : ξ 
= 0 : η = Fξ =

[
H(λ)

I

]
z, η′R(P)η = 0 ∀P ∈ H

}
.

or equivalently in Sb. But this equality Sa = Sb holds when k = 1. It means that the
S-procedure can be directly applied from (ii) to (i) to prove Theorem 1 only when one comes
back to the 1-D case. In this case only, shall one ask the question of necessity i.e. of the
losslessness of the S-procedure. So it is lossless if the set M defined in (21) is rank-one
separable. Actually this set is the one studied in Iwasaki and Hara (2005) so the answer is
yes, it is rank-one separable.

As a summary of the above discussion, here are three points:

• Theorem 1 provides a sufficient condition that is generally not necessary.
• Sa ⊂ Sb, so (b) is clearly more constraining than (a); Thus, (b) ⇒ (a). But it is not

a direct application of the S-procedure. However (ii) ⇔ (b) with S = Sb ⇒ (b) with

S = Sa
S-procedure⇒ (a) with S = Sa ⇔ (i). Hence, (ii) ⇒ (i).

• At last, when k = 1 (1-D case), then S = Sa = Sb which enables ones to directly apply
the S-procedure. Moreover, it has been proven that it is lossless in this case so (ii) ⇔ (i).
One recovers the classical KYP lemma (Rantzer 1996).

4 Application to the analysis of Roesser models

In this section, the relevance of Theorem 1 for the study of multidimensional hybrid state-
space Roesser model (1) is emphasized. The idea is simply to make a suitable choice of
matrices F and θ . Matrix F is chosen as follows:

F :=
[

A B
E 0

]
∈ IRn×n, (43)
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where the matrices A, B are those involved in (1). The only restriction in this section is that
E is blockdiagonal, i.e. E = ⊕k

i=1 Ei with Ei ∈ IRni ×ni . It can be noticed that matrix F is
here real which also corresponds to a special case of Theorem 1. Condition (i) in Theorem
1 must be considered as a performance level or a property of (1) to be tested. In the sequel,
three properties are considered, depending on the choice of �.

4.1 Robust ∂D-regularity against an LFT-based uncertainty

This part is devoted to the analysis of the ∂D-regularity of the uncertain k-variate polynomial
matrix described by

A(λ) = A(λ) − Ā = E H(λ) − Ac, (44)

where A(λ) is given by (20), where A, B, C , and E have the same dimensions as those
involved in (1), where Ac = A + Ā and where Ā, given by

Ā = B	̄C, (45)

is an uncertain matrix complying with the so-called Linear Fractional Transform (LFT)-based
structure:

	̄ = 	(Ip − D	)−1, det(Ip − D	) 
= 0. (46)

The above full rank assumption is referred to as the well posedness of the uncertainty. Matrix
	 is the actual uncertainty matrix which belongs to B(ρ), the ball of complex matrices 	

verifying ||	||2 ≤ ρ.

4.1.1 Complex ∂D-regularity radius

Nominal matrix A(λ) is assumed to be ∂D-regular with ∂D as defined by (9) with (6)–(8)
and (10). The purpose is here to derive what can be called the complex ∂D-regularity radius
�∂D , which is the largest value of the radius ρ such that the uncertain polynomial matrix
A(λ) defined by (44) remains ∂D-regular over B(ρ). To reach such a goal, � is chosen as
follows:

� :=
[

C ′C C ′ D
D′C D′ D − γ I

]
, γ = ρ−1/2. (47)

Corollary 1 Let an uncertain k-variate matrix A(λ) be defined as in (44) and a set ∂D be
defined by (9) with (6)–(8) and (10). A(λ) is robustly ∂D-regular against B(ρ) if there exists
a set P ∈ H such that (25) holds with M defined as in (21), R(P) defined by (15), F given
by (43) and � given by (47).

Proof It consists in applying Theorem 1. With the choice (47), the property (i) in Theorem 1
can be expressed

||G(λ)||2 <
√

γ ∀λ ∈ ∂D, (48)

(with G(λ) given by (2)), by noting that the choice of F proposed in (43) leads to

Span(N (λ)) = Span

([
(E H(λ) − A)−1 B

I

])
, (49)
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since E is blockdiagonal. Then, inequality (48) can be written as

{ sup
λ∈∂D

σ̄ (G(λ))}−1 > ρ. (50)

Simple arguments on singular values show that

σ̄ (G(λ)) = µ lC (G(λ)) (51)

where µ lC (.) denotes the celebrated complex structured singular value. Then it comes

{ sup
λ∈∂D

µ lC (G(λ))}−1 > ρ. (52)

Taking the fact that

µ lC (G(λ)) =
[

inf
	

{σ̄ (	) : det(I − G(λ)	) = 0}
]−1

(53)

into account, one gets

inf
λ∈∂D

{
inf
	

{σ̄ (	) : det(I − G(λ)	) = 0}
}

> ρ. (54)

Besides,

det(I − G(λ)	) = 0

⇔ det(I − C(E H(λ) − A)−1 B	 − D	) = 0

⇔ det(I − C(E H(λ) − A)−1 B	(Ip − D	)−1) det(Ip − D	) = 0.

From the well posedness assumption, det(Ip − D	) 
= 0, the above equality is equivalent to

det(I − C(E H(λ) − A)−1 B	̄) = 0

⇔ det(I − (E H(λ) − A)−1 B	̄C) = 0

⇔ det((E H(λ) − A)−1) det(E H(λ) − A − B	̄C) = 0.

Since, for 	 = 0, A(λ) = A(λ) is implicitly assumed to be ∂D-regular (otherwise why
testing robust ∂D-regularity?), the left factor of the left handside member is non zero so it
follows that

det(E H(λ) − A − Ā) = 0. (55)

From (54) and (55), it can be deduced that

inf
λ∈∂D

{
inf
	

{σ̄ (	) : det(A(λ)) = 0}
}

> ρ, (56)

which proves that A(λ) remains ∂D-regular against B(ρ). ��

It is clear that ρ�, the maximum value of ρ = γ −1/2 obtained by computing P proving
(24), is a lower bound of �∂D . If k = 1, then ρ� = �∂D . Note, however, that matrix 	 is here
assumed to be complex. In practice, it would be interesting to take its possible realness into
account.

In the remaining part of the article, it will be assumed that

E = I ⇒ F =
[

A B
I 0

]
, (57)

in order to apply this quite general corollary to the analysis of the actual model (1).
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4.1.2 Application to asymptotic stability analysis of hybrid Roesser model

In this part, the model (1) is considered in association with the uncertainty structure defined
by the feedback equation

u(t1, . . . , tr , jr+1, . . . , jk) = 	y(t1, . . . , tr , jr+1, . . . , jk), 	 ∈ B(ρ) ∩ IRm×p, (58)

The above equation corresponds to the LFT formalism mentioned in the previous subsection.
Application of (58)–(1) yields the closed-loop state matrix

Ac = A + Ā, (59)

where Ā is given by (45)–(46).
Before to study various performance levels in the next subsection, the main property is

considered, namely asymptotic stability. Applying Corollary 1 with E = I enables ones to
test, with conservatism, if matrix A(λ) = H(λ) − Ac is robustly ∂D-regular against B(ρ).
As mentioned at the end of subsection 2.3, asymptotic stability of Roesser model (1) depends
on the root-clustering of polynomial c(λ, A). Thus, robust stability of the uncertain hybrid
Roesser model described by (1) and (58) against B(ρ) depends on the root-clustering of
c(λ, Ac) = det(A(λ)). More precisely, for c(λ, Ac) to match the robust stability conditions
induced by Lemma 1, it is necessary that A(λ) be at least ∂D-regular with the choice (10).
Following this idea, the next theorem is stated

Theorem 2 Suppose that a multidimensional hybrid system of the form described by (1) is
subject to uncertainty (58). Then the resulting uncertain system is robustly asymptotically
stable against B(ρ) if there exists a set P of k matrices Pi ∈ H+

ni
, i = 1, . . . , k, such that the

following LMI holds

F ′R(P)F + � < 0 (60)

where F is given by (57), R(P) is given by (15) with (10), and � is given by (47).

Proof Based on Corollary 1, we conclude that the LMI (60) implies that A(λ) is robustly
∂D-regular against B(ρ) with ∂D characterized by (10). But it is not just another corollary.
Since the matrices Pi are assumed to be positive definite, then the first block in (60), which is

[
A
I

]′
R(P)

[
A
I

]
+ C ′C < 0 ⇒

[
A
I

]′
R(P)

[
A
I

]
< 0,

proves asymptotic stability of the nominal system (1). To see this, note that the columns of
[

A
In

]
,

span the kernel of
[
In −A

]
, (61)

and, in the sequel, invoke the matrix elimination procedure (Boyd et al. 1994) to observe that
there exists a matrix G = G ′ such that

N = R(P) +
[

In

−A′
]

G
[

In −A
]

< 0. (62)
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Further, let a vector λ (as introduced in (11)) comply with c(λ, A) = 0. It will be proven
that λ cannot lie in SC defined as in (5). Indeed, if c(λ, A) = 0, there exists a vector v ∈ lC n

such that

A(λ)v = 0. (63)

Let the vector q be defined by

q =
[

H(λ)

In

]
v.

Note that, if v is written

v =
⎡
⎢⎣

v1
...

vk

⎤
⎥⎦ , with vi ∈ lC ni ∀i ∈ I(k),

then q becomes

q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1v1
...

λkvk

v1
...

vk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Now, based on (62), it can be deduced that

q ′Nq < 0,

which can be rewritten as

k∑
i=1

(
v′

i PiviFRi (λi )
) + v′A′(λ)GA(λ)v < 0. (64)

From (63), it can be seen that the second term in the above inequality is zero. Moreover,
the set SC can be defined (with the choice (10)), by FRi ≥ 0. Thus, if λ belongs to SC ,
then the first term in (64) is positive or zero, which contradicts (64). Hence, λ cannot belong
to SC . Then c(λ, A) = det(A(λ)) satisfies the condition of Lemma 1, implying nominal
stability. It is clear that c(λ, Ac) = det(A(λ)) also satisfies the condition of Lemma 1 for any
	 otherwise, by continuity of λ with respect to 	, A(λ) would becomes ∂D-singular. Hence,
(1) with (58) is robustly asymptotically stable against B(ρ). ��

It can be noted again that the maximum value of ρ while satisfying LMI (60), denoted by
ρ�, is a lower bound of the complex stability radius.

The strong difference between ∂D-regularity and asymptotic stability lies in the distribu-
tion of the roots of c(λ, Ac) with respect to ∂D. Basically, Theorem 2 ensures robust ∂D-
regularity. However, if nominal k-variate polynomial matrix is “stable”, meaning that c(λ, A)

fills the conditions given by Lemma 1 or equivalently that (1) is asymptotically stable, then
this property is obviously preserved when 	 describes B(ρ) if A(λ) remains ∂D-regular. Nev-
ertheless, if, for some 	, matrix A(λ) becomes ∂D-singular, it does not necessarily imply
instability. Thus, the conservatism of Theorem 2 is due both to this reason and to the fact that
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Corollary 1 also proposes a sufficient condition. Another reason is that the realness of 	 is
not taken into account.

In the 1-D case, only this last reason induces conservatism. Indeed, in this case, not only
Theorem 1 and thus Corollary 1 provide a necessary and sufficient condition but moreover,
∂D-singularity implies instability.

4.2 Positive realness of hybrid Roesser model

Since the work of Popov on hyperstability, positive realness (Anderson 1968) of transfer
matrices have been widely investigated, especially for classical 1-D systems, noting that, for
such models, positive realness means passivity and enables the designer to include sector-
bounded nonlinearities. For multidimensional linear models, few contributions exist. How-
ever, the 2-D discrete Roesser models are considered from the viewpoint of positive realness
in Xu et al. (2003). Hence, we make an attempt to extend those results to investigate positive
realness of hybrid Roesser models.

We will first state the following definition.

Definition 2 Let the set ∂D be defined by (9) with (6)–(8) and (10). The model (1) is said
to be strictly positive real over ∂D if

G(λ) + G ′(λ) > 0 ∀λ ∈ ∂D. (65)

Following this idea, the next corollary is proposed.

Corollary 2 Consider a hybrid Roesser model and the set ∂D be described by (1) and (9)
with (6)–(8) and (10) respectively. Suppose also that M is defined in (21), R(P) is defined
by (15), F is given by (57) and

� :=
[

0 −C ′
−C −D − D′

]
. (66)

Then, the model (1) is strictly positive real over ∂D if there exists a set P ∈ H such that (25)
holds.

Proof It follows immediately form Theorem 1 that with (66), the expression 23 corresponds
to (65). ��

It is clear that the notion of strict positive realness over ∂D might not be appropriate to
appreciate the performances of a nD-model and one can come back to the more particular
but classical notion of strict positive realness.

Definition 3 The model (1) is strictly positive real if G(λ) is analytic on SC defined by (5)
and if inequality

G(λ) + G ′(λ) > 0 (67)

hold on SC .

Theorem 3 Consider a multidimensional hybrid system described by Roesser model (1).
Suppose also that F is given by (57), R(P) is given by (15) with (10) and � is given by
(66). Then, the hybrid n-D system is strictly positive real if there exists a set P of k matrices
Pi ∈ H+

ni
, i = 1, . . . , k, such that LMI (60) holds.

Proof This follows immediately from the result of Corollary 2 except that the matrices Pi

are assumed to be positive definite in order to guarantee asymptotic stability as in the proof
of Theorem 2. ��
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It is significant to note that Theorem 3 can be seen as an extension of the LMI version of
the classical positive real lemma (see Boyd et al. 1994 for example).

4.3 Bounded realness of hybrid Roesser model

The idea is about the same as in the above subsection but the performance to be considered is
the so-called H∞-level. As some extension of the H∞-norm proposed in Du and Xie (2002)
for the 2-D discrete Roesser models, the following definition introduces the L∞-norm of
model (1) with respect to ∂D.

Definition 4 Let a hybrid Roesser model and the set ∂D be described by (1) and (9) with
(6)–(8) and (10) respectively. Then, the L∞-norm of (1) with respect to ∂D is defined by

||G||∞ = sup
λ∈∂D

||G(λ)||2. (68)

From this definition and from Theorem 1, the next corollary is stated.

Corollary 3 Let the hybrid Roesser model and the set ∂D be described by (1) and (9) with
(6)–(8) and (10) respectively. The L∞-norm of (1) with respect to ∂D is strictly lower than√

γ if there exists a set P ∈ H such that (25) holds with M defined as in (21), R(P) defined
by (15), F given by (57) and � given by (47).

Proof Direct from the discussion in subsection 4.1.1 and especially inequality (48). ��

Assuming that (1) is asymptotically stable (i.e. G(λ) is analytic on SC ), then the L∞-norm
becomes the so-called H∞-norm.

Definition 5 Let the hybrid Roesser model (1) comply with Lemma 1. Its H∞-norm is
defined by (68) with (9) and (6)–(8) together with (10).

This H∞-norm actually equals the so-called L2-gain but this connection is not detailed
here for the sake of conciseness.

From the above definition, the next corollary is formulated.

Theorem 4 Let the hybrid Roesser model be described by (1). It is asymptotically stable
and its H∞-norm is strictly lower than

√
γ if there exists a set P of k matrices Pi ∈ H+

ni
,

i = 1, . . . , k, such that LMI (60) holds, where F is given by (57), R(P) is given by (15) with
(10) and � is given by (47).

Proof The proof follows immediately from the result of Corollary 3 combined with (10) and
under assumption that the matrices Pi are positive definite to ensure asymptotic stability. ��

Theorem 4 can be seen as an extension of the classical LMI version of the Bounded real
lemma (Gahinet and Apkarian 1994) to hybrid Roesser models. It has to be mentioned that
the H∞-control design is considered in Xu et al. (2005) through an equivalent approach.

Remark 1 Corollaries 1 and 3 actually involve the same conditions. The same for Theorems 2
and 4. In Corollary 1 (resp. Theorem 2), robust ∂D-regularity (resp. robust stability) is con-
cerned whereas in Corollary 3 (resp. Theorem 4), L∞-norm on ∂D (resp. H∞ performance
level) is addressed. This connection between the L∞ or H∞-norm of a system and the qua-
dratic stability against an LFT-based uncertainty is already well known in the 1-D system
case (Khargonekar et al. 1990).
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5 Numerical example

In this section, the results developed above are illustrated by one numerical example.
One focuses on the computation of a minimum upper bound of the H∞ norm of a model

describing the behavior of a metal rolling process. This can be done by using control theory
for differential linear repetitive processes. To proceed, a differential linear repetitive state-
space model for that metal rolling process has to be developed. This model is obtained in, for
example, Rogers et al. (2007), where the resulting state-space equations involve the following
matrices:

A =
[−0.0050 −5.8077

1 −0.0050

]
, B0 =

[
0
0.0494

]
,

C = [
1 0

]
, D0 = 0.7692, B1 =

[
0.9
0.2

]
, D1 = 0.6

(see Rogers et al. 2007 for the details, especially the meaning of the above matrices). It turns
out that the above process is not stable. Application of a static controller design procedure
(which it is no use to detailing here) results in a stable closed-loop differential linear repetitive
process the state-space model of which is associated to the next matrices:

Acl =
[−0.3650 −10.3077

0.9200 −1.0050

]
, Bcl

0 =
[−0.2700

−0.0106

]
,

Ccl = [
0.7600 −3.0000

]
, Dcl

0 = 0.5892.

What is important here is that, based on transformations shown in Rogers et al. (2007), the
above model takes the hybrid 2-D state-space model structure (1) with r = 2 (it means
that the system has continuous dynamics along two of three dimensions) and the associated
matrices are given by

A =
[Acl Bcl

0
Ccl Dcl

0

]
, B =

[ B1

D1

]

C = [
0 0 1

]
, D = 0

Now, the result of Theorem 4 allows us to compute the minimum upper bound on H∞ norm
of the system described by the above matrices.

With computations performed owing to Lmi Control Toolbox (Gahinet et al. 1995),
it is verified that this system is asymptotically stable and the minimum H∞ performance
level ρ = √

γ is 2.0790. Furthermore, the matrices that solve the LMI (60) are

P1 =
[

6.6991 −4.1148
−4.1148 67.1344

]
, P2 = 2.0349

Indeed, in this case, P2 is a scalar. Following Remark 1, it also means that ρ is a lower bound
of the complex stability radius.
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6 Conclusion

6.1 Summary

In this paper, a KYP-like theorem has been proposed with a purpose of application to the
very general hybrid state-space Roesser models. As a special instance of the result, the KYP
lemma for classical 1-D linear models is recovered. Unlike for this 1-D case, for multidi-
mensional models, some conservatism appears. This is due to the nature of Roesser models
themselves. The origin of this conservatism has been highlighted.

Some possibilities of exploiting this new theorem in terms of robust stability, positive real-
ness and H∞-analysis of hybrid Roesser models have been emphasized. The authors hope
that this point of view will be seen as an attempt to unify numerous contributions dealing
with LMI approach applied to n-D models. But they also hope that it will arouse many other
contributions relevant to n-D KYP lemma through alternative approaches. In that sense, the
next discussion aims at proposing possible tracks for further investigations.

6.2 Discussion about perspectives

The present work is clearly a contribution to the analysis of n-D models. No design tech-
nique is proposed. However, the authors would like to stress the link between some existing
synthesis LMI conditions, such as those in Gałkowski et al. (2003a,b,c), Xu et al. (2003) for
example, and the framework presented here. Actually, control conditions provided in the
above references are based upon analytical conditions that can be subsumed to the present
version of n-D KYP lemma. For this reason, the authors think that Theorem 1 is more than
likely to generate design conditions, possibly (or probably) with additional conservatism,
especially with state feedback controller or maybe dynamic output feedback controller with
the same order as the plant. For static output feedback design or reduced order dynamic
output feedback design, the exploitation of condition (ii) in Theorem 1 is a far more difficult
challenge, keeping in mind that even for the 1-D case, this kind of problem is still widely
open. So, clearly, this approach, though here presented in an analytical context, can be seen
as a starting point to address design problems.

In the present contribution, Theorem 1 was proved owing to the well known S-procedure,
using the formalism proposed in Iwasaki and Hara (2005). Exploiting the S-procedure to
derive KYP-like conditions has now become rather traditional. Indeed, the kinship between
the KYP lemma and the S-procedure is nearly historical and was very well highlighted in
Gusev and Likhtarnikov (2006). Thus, the authors of the present article were quite naturally
led to follow this traditional way to solve their problem. It has the advantage to introduce
conditions in which “Lyapunov matrices” Pi (in a very large sense) are involved, follow-
ing the existing background on LMI conditions for analysis and control of n-D models.
However, there are other approaches to the derivation of KYP-like inequalities, such as
dissipative systems (Willems 1972a,b), Integral quadratic constraints (IQC) (Megretski and
Rantzer 1997), well-posedness of feedback systems (Safonov 1980), and so on... Actually,
the problem considered in the present paper is to test condition (i) in Theorem 1 (with the
constraint λ ∈ ∂D) which equivalently consists in testing the nonnegativity a polynomial
matrix over ∂D. Theorem 1 (here referred to as the n-D KYP lemma) can be seen as a way to
transform the nonnegativity of this n-D polynomial matrix into a matrix inequality problem
(preferably an LMI), i.e. a condition which is numerically tractable. The great success of the
KYP lemma lies in the fact that this relaxation, in the 1-D case, induces no conservatism. The
lossless S-procedure simply appears a possible means to achieve this relaxation. Thanks to
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an anonymous reviewer, the authors are now aware that it is far from being the only one. For
instance, if one considers the problem of testing condition (i) in Theorem 1 with the lens of
optimization theory, some relaxations could be found by using Lagrange duality theory. 1-D
KYP lemma can be subsumed to this theory (see Scherer 2006 and the references therein) and
in that case, the duality gap can be proved to vanish. More generally (n-D case for example),
the problem would be to find relaxations of the original condition for which the duality gap
is weak and, if possible, vanishes.

Among the possible relaxations are the so-called Sum-Of-Squares (SOS)-descriptions.
More precisely, it is known that testing the nonnegativity of a multivariate polynomial is in
general NP-hard and a sufficient condition is that this polynomial has a SOS-description.
Besides, the problem of the existence of a SOS-description can be converted into a semi-
definite program of possibly high dimension (Lasserre 2001; Parrilo 2003). So, asserting the
feasibility of such a program is a way to guarantee the nonnegativity of a polynomial. The S-
procedure can serve the same purpose. Actually, the strong link between SOS formulation and
S-procedure was well highlighted in de Oliveira (2005). In the same fashion, 1-D KYP lemma
can be seen as the equivalence between nonnegativity of a univariate polynomial matrix (over
a curve ∂D) and an LMI corresponding to the existence of a SOS-formulation of this matrix
(Genin et al. 2002, 2003). The expression in the condition (i) of Theorem 1 involves an n-var-
iate polynomial matrix (with variables in a specified region). Again, a sufficient condition for
such a matrix to be nonnegative is the existence of a SOS-description. With the recent exten-
sions of Hol and Scherer (2004, 2005), Kojima (2003), this latter test could be relaxed under
an LMI problem the dimension of which might be high to guarantee the non conservatism of
the relaxation. Moreover, a recent paper (Henrion and Lasserre 2006) showed the interest in
using the moment interpretation of matrix SOS-decomposition not only to reduce the size of
the LMI relaxation but also to extract the optimizers. Therefore, not only the LMI problem
to be solved is of lower dimension but also, the possibility to extract optimizers could reveal
as very useful in a design context to derive the controller. Indeed, the authors of Henrion and
Lasserre (2006) illustrated the relevance of their approach, in the 1-D case, to solve problems
which are basically associated with the crucial static output feedback control. Consequently,
their work might be a starting point for the design of control laws for n-D models.

At last, another topic which is adressed in the present article is the robust stability of
Roesser models. Theorem 2 gives a sufficient condition for model (1) with E = I to be
robustly asymptotically stable against an LFT uncertainty. This condition ensures that the
characteristic polynomial c(λ, Ac) matches the stability conditions given in Lemma 1. It is
important to notice that these stability conditions, in the purely continuous case, correspond
to what is referred to as strict sense stability of a n-variate polynomial in Kharitonov and
Torres Muñoz (1999). In this reference, Kharitonov and Torres Muñoz explain that this prop-
erty is not sufficient enough in the robust context since some very small deflection of one
coefficient might not preserve strict sense stability. This is why they propose a new kind of
stability (see Kharitonov and Torres Muñoz 1999, Theorem 13). It means that, if condition
(60) is satisfied with E = I and r = k, then (1) is robustly strict sense stable against (59) with
(45)–(46) but any other uncertainty on the Roesser model, not included in this LFT-structure,
might induce a destabilizing deflection in the coefficients of the characteristic polynomial.
In a practical context, it might be reasonable to take this fragility into account. Actually, it is
quite easy to see that part of the properties required for a polynomial to be stable in the sense
of Kharitonov and Torres Muñoz (1999, Theorem 13) are verified and it would be interesting
to work on that topic in order to (perhaps?) prove that the uncertain characteristic polyno-
mial, with its particular structure, is stable in the sense of Kharitonov and Torres Muñoz
(1999, Theorem 13) when it is strict sense stable.
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The authors confess that they are not familiar with all the technical details that would
arise from the suggested perspectives but they hope that this discussion will be fruitful for
the study of n-D systems.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial
License which permits any noncommercial use, distribution, and reproduction in any medium, provided the
original author(s) and source are credited.
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