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Abstract In this work a new formulation for flexible multibody systems is presented based
on the floating frame formulation. In this method, the absolute interface coordinates are used
as degrees of freedom. To this end, a coordinate transformation is established from the abso-
lute floating frame coordinates and the local interface coordinates to the absolute interface
coordinates. This is done by assuming linear theory of elasticity for a body’s local elastic
deformation and by using the Craig–Bampton interface modes as local shape functions. In
order to put this new method into perspective, relevant relations between inertial frame, coro-
tational frame and floating frame formulations are explained. As such, this work provides a
clear overview of how these three well-known and apparently different flexible multibody
methods are related. An advantage of the method presented in this work is that the result-
ing equations of motion are of the differential rather than the differential-algebraic type. At
the same time, it is possible to use well-developed model order reduction techniques on the
flexible bodies locally. Hence, the method can be employed to construct superelements from
arbitrarily shaped three dimensional elastic bodies, which can be used in a flexible multi-
body dynamics simulation. The method is validated by simulating the static and dynamic
behavior of a number of flexible systems.

Keywords Flexible multibody dynamics · Floating frame formulation · Corotational frame
formulation · Inertial frame formulation · Craig–Bampton method · Model order reduction

1 Introduction

Flexible multibody dynamics is concerned with the study of machines and mechanisms that
consist of multiple deformable bodies. Although the elastic deformation within a single body
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Fig. 1 Graphical representation of a single flexible body using three different formulations. The inertial
frame formulation is expressed in the absolute nodal coordinates (left). The corotational formulation uses a
corotational frame for each element (center). The floating frame formulation uses a floating frame for each
body (right). Figure was made using InkScape

can often be considered as small, the large rigid body rotations between different bodies
make the problem to be of a geometrically nonlinear nature.

The kinematics of a body can be described by the motion of a set of coordinate frames,
each frame being rigidly attached to a material point on the body. Connections between
bodies are introduced by kinematic constraints. These relate the motions of the coordinate
frames of the so-called interface points located at different bodies.

Three essentially different commonly used descriptions are available for flexible multi-
body systems: the inertial frame formulations, the corotational frame formulations and the
floating frame formulations. These formulations are significantly different in the way they
describe a body’s elastic behavior. Hence, there are important differences in the choice of
the degrees of freedom and consequently in the way kinematic constraints between bodies
are enforced. Figure 1 gives a graphical interpretation of each formulation. A comprehensive
overview of these formulations, their background and particularities can be found in [1].

The inertial frame formulation is essentially a nonlinear finite element formulation of
which the details can be found in standard textbooks, such as [2]. Elastic deformations are
described using the nonlinear Green–Lagrange strain definition, which describes large rigid
body rotations correctly. In this formulation, each body is discretized using a set of global
interpolation functions. The degrees of freedom are the absolute positions and orientations
of the coordinate frames located at the nodes of the finite element mesh. Constraints between
bodies can be simply enforced by directly equating the appropriate degrees of freedom of
the nodes that both bodies have in common at a certain interface point. For applications
to flexible multibody systems, the geometrically exact beam theory is a commonly used
example of an inertial frame formulation [3]. However, difficulties in frame invariance may
arise due to the interpolation of the large rotations [4, 5].

The corotational frame formulation can be interpreted as the geometrically nonlinear ex-
tension of a linear finite element formulation [6, 7]. A corotational frame describes the large
rigid body motion of an element with respect to the inertial frame. Small elastic deforma-
tions within the element are superimposed using the linear finite element matrices, based on
the Cauchy strain definition. The nonlinear finite element model is obtained from the linear
finite element model by simply pre- and post-multiplying the mass and stiffness matrices
with the rotation matrices corresponding to the corotational frames. Note that the formula-
tion is still able to geometrically describe geometrical nonlinear elastic deformations within
a single body due to the fact that each element is given its own corotational frame. That is,
provided that the small strain assumption within an element holds.

Similar to the inertial frame formulation, the corotational frame formulation uses the ab-
solute nodal coordinates as degrees of freedom. Consequently, both methods also enforce
constrains in the same way. However, in order to arrive at this formulation, a unique kine-
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matic relation must be established that expresses the coordinates of an element’s corota-
tional frame in terms of the element’s absolute nodal coordinates. For a variety of standard
elements, this is commonly done by locating the corotational frame in one of the element’s
nodes or by expressing the corotational frame coordinates as a certain weighted average of
the element’s nodal coordinates. Alternatively, it is possible to define the orientation of each
corotational frame by demanding zero elastic deformation at its location [8]. A drawback of
standard corotational frame formulations is that they do not distinguish between rigid and
flexible bodies. That is, rigid bodies are modeled as flexible bodies with a large stiffness,
resulting in a less efficient formulation for multibody systems that contain both rigid and
flexible bodies.

The floating frame formulation can be interpreted as the flexible extension of a rigid
multibody formulation. A floating frame describes the large rigid body motion of a body
with respect to the inertial frame. When linear theory of elasticity is used to describe the
flexible behavior locally, mass and stiffness matrices are obtained from a body’s linear finite
element model. These system matrices can be reduced using a wide variety of comprehen-
sive well-developed model order reduction techniques, such as the Craig–Bampton method
[9, 10].

In the floating frame formulation, the degrees of freedom thus consist of the absolute co-
ordinates of the floating frame and a set of local generalized coordinates used to describe the
body’s local linear elastic behavior. Because the absolute interface coordinates are not part
of the degrees of freedom, the kinematic constraints are typically highly nonlinear equations
in terms of many degrees of freedom. As no analytical solution of these equations might be
found, the constraints are commonly enforced using Lagrange multipliers, increasing the
total number of unknowns. The resulting equations of motion are combined differential-
algebraic equations [11, 12].

The possibility of using well-developed model order reduction techniques to reduce com-
putational cost makes the floating frame formulations the preferred formulation in many
situations in which the elastic deformation within a body can be considered small. The dis-
advantage of this formulation in satisfying kinematic constraints could be eliminated if it is
possible to express the floating frame coordinates and the local elastic deformation directly
in terms of the interface coordinates. The search for such a kinematic coordinate transfor-
mation has led to the development of superelements in flexible multibody formulations.
Methods have been developed in which the floating frame is located at an interface point
[13] or expressed as the weighted average of the interface coordinates [14]. The first op-
tion introduces an unwanted discrimination between the interface points, which makes the
results dependent on the interface point chosen. Moreover, in general a better accuracy is
obtained when the floating frame is close to the body’s center of mass. In the second option
the motion of the floating frame cannot be interpreted as the motion of a material point, but
only as the body’s average rigid body motion.

In this paper, a new method is presented, with which it is possible to obtain a floating
frame formulation in terms of interface coordinates only, that does not suffer from the dis-
advantages mentioned above. The method offers the combined advantage of being able to
enforce constraints without the use of Lagrange multipliers and still have the possibility
to use Craig–Bampton based model order reduction techniques on the bodies’ linear finite
element models. In fact, the method demonstrates the interchangeability of the absolute in-
terface coordinates and the combination of the floating frame coordinates and local elastic
coordinates corresponding to these Craig–Bampton modes. It will be shown that in the dy-
namic equations local coordinates can be substituted by global coordinates, and vice versa.

Essential for the method presented here is the fact that the Craig–Bampton modes are able
to describe rigid body motions. In the floating frame formulation, these rigid body modes
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must be eliminated in order to describe the system’s motion uniquely. However, in this work
this property of the Craig–Bampton modes is used to eliminate the floating frame coordi-
nates and express the local elastic degrees of freedom solely in terms of the global motion
of the interface points. This is done by demanding that the elastic body has no deformation
at the location of the floating frame. This requirement is met without the need to locate the
floating frame in an interface point.

The subsequent sections are organized as follows: In Sect. 2, the kinematic description
of a coordinate system attached to a material point of a flexible body is introduced using a
position vector and a rotation matrix. In Sect. 3, the kinematics of the floating frame for-
mulation are introduced. A relation is developed that expresses the local coordinates of a
material point on a flexible body as the difference between the absolute coordinates of that
material point and the floating frame coordinates. Section 4 introduces the static Craig–
Bampton modes to describe a body’s local linear elastic displacement field. It is shown that
the generalized coordinates corresponding to these modes can be expressed in terms of the
absolute interface coordinates and the floating frame coordinates. In Sect. 5, the floating
frame coordinates are expressed in terms of the absolute interface coordinates by demand-
ing zero deformation at the location of the floating frame. In Sect. 6, the obtained coordinate
transformations are applied to the standard equation of motion of the floating frame formu-
lation. At this point, the kinematic constraint equations are applied without using Lagrange
multipliers. The resulting equations of motion can be solved incrementally using numerical
time integration. Section 7 demonstrates the new method on a number of test cases. The
most important conclusions finalize the paper.

2 Kinematics of a material point on a flexible body

Consider a flexible body with a material point Pj . A coordinate frame Ej is rigidly attached
to this material point such that the pair {Pj ,Ej } defines a Euclidean coordinate system. As
{Pj ,Ej } defines both the location and orientation of the frame attached to Pj , the pair will
be referred to as the generalized position, or simply the position of Pj . This position can
be expressed relative to another position {Pi,Ei} by the (3 × 1) position vector ri,i

j and the

(3×3) rotation matrix Ri
j . The position vector ri,i

j defines the position of Pj (lower index j )
relative to Pi (second upper index i) and its components are expressed in the coordinate sys-
tem {Pi,Ei} (first upper index i). The rotation matrix Ri

j defines the orientation of Ej (lower
index j ) relative to Ei (upper index i) expressed in {Pi,Ei}. Figure 2 shows a graphical rep-
resentation of the position of a material point using the position vector and rotation matrix.
The two notations {Pj ,Ej } and {ri,i

j ,Ri
j } will both be used throughout this work, depending

on the context, to identify a position.

Fig. 2 The position of Pj with
respect to Pi using a position
vector and rotation matrix. Figure
was made using InkScape
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Ri
j also defines a coordinate transformation that can be used to transform a vector that

is expressed in coordinate system j to a vector that is expressed in coordinate system i. For
example, the components of the position vector of Pj with respect to Pi in frames {Pi,Ei}
and {Pj ,Ej } are related as:

ri,i
j = Ri

j rj,i

j , (2.1)

where it is seen that in this notation the first upper index has changed. The rotation matrix
is an orthogonal matrix of the proper kind, which means that its determinant equals +1 and
its transpose equals its inverse, which also represents the inverse coordinate transformation
such that

(
Ri

j

)−1 = Rj

i , Ri
j Rj

i = I, (2.2)

with I the (3 × 3) unity matrix. Differentiating (2.2), it can be shown that the time derivative
of the rotation matrix equals a skew symmetric matrix times the rotation matrix itself. This
can be written as

Ṙi
j = ω̃i,i

j Ri
j , (2.3)

in which the tilde operator is introduced such that when applied on a (3 × 1) vector a, it
yields a skew symmetric (3 × 3) matrix ã:

ã =
⎡

⎣
0 −a3 a2

a3 0 −a1

−a2 a1 0

⎤

⎦ . (2.4)

In (2.3), the tilde operator is applied on the vector ωi,i
j , which is the angular velocity vector

of frame {Pj ,Ej } with respect to {Pi,Ei} with its components expressed in {Pi,Ei}. The
linear velocity of {Pj ,Ej } with respect to {Pi,Ei} expressed in {Pi,Ei} is simply denoted
by ṙi,i

j . The linear and angular velocities can be combined in the (6 × 1) velocity vector vi,i
j

as follows:

vi,i
j ≡

[
ṙi,i
j

ωi,i
j

]

. (2.5)

To make a clear distinction between the inertial reference frame and any other coordinate
system, {PO,EO} is used to denote the inertial frame. In this case {rO,O

j ,RO
j } defines the

absolute position of material point Pj and vO,O
j defines its absolute velocity.

3 Kinematics of a material point using the floating frame formulation

Figure 3 shows a flexible body to which a floating frame is attached in material point Pj .
The absolute position of the floating frame with respect to the inertial frame located in PO

is denoted by {rO,O
j ,RO

j }. The position of another material point Pk relative to the floating

frame is denoted by {rj,j

k ,Rj

k}. For the rotation from Pk to PO holds:

RO
k = RO

j Rj

k . (3.1)

The position of Pk in the inertial frame can be expressed in terms of its relative position and
the absolute position of the floating frame as

rO,O
k = rO,O

j + RO
j rj,j

k . (3.2)



198 M. Ellenbroek, J. Schilder

Fig. 3 The position of material
point Pk relative to PO using
floating frame Pj . Figure was
made using InkScape

The absolute linear velocity of Pk in the inertial frame is found by taking the time derivative
of (3.2):

ṙO,O
k = ṙO,O

j + ω̃O,O
j RO

j rj,j

k + RO
j ṙj,j

k . (3.3)

For the absolute angular velocity of Pk we get

ωO,O
k = ωO,O

j + RO
j ω

j,j

k . (3.4)

Equations (3.3) and (3.4) can be rewritten and combined to

[
ṙO,O
k

ωO,O
k

]

=
[

RO
j 0

0 RO
j

][
I −r̃j,j

k

0 I

][
Rj

O 0

0 Rj

O

][
ṙO,O
j

ωO,O
j

]

+
[

RO
j 0

0 RO
j

][
ṙj,j

k

ω
j,j

k

]

.

(3.5)

For this, several relevant properties of skew symmetric matrices are used. A convenient
overview of these properties is given in [11]. Equation (3.5) can be written in compact form
using the definition of the velocity vector (2.5):

vO,O
k = [

RO
j

][−r̃j,j

k

][
Rj

O

]
vO,O

j + [
RO

j

]
vj,j

k . (3.6)

Here the notations [RO
j ] and [−r̃j,j

k ] are introduced to simplify and shorten the notation.
They represent the (6 × 6) compound rotation matrix and (6 × 6) compound position ma-
trices in Eq. (3.5), respectively. The velocity vj,j

k is the local velocity of Pk caused by the
elastic deformation of the body expressed in the floating frame. Equation (3.6) can be refor-
mulated as

vj,j

k = [
Rj

O

]
vO,O

k − [−r̃j,j

k

][
Rj

O

]
vO,O

j . (3.7)

Equation (3.7) shows that the relative velocity of the elastic deformation in the floating frame
is defined by the difference of the absolute velocities in Pk and Pj .

4 Relation between the local elastic velocities and absolute velocities

It is assumed that the kinematics of a flexible body in a floating frame can be described with
linear finite element models. The material behavior satisfies Hooke’s law and the strains
are approximated with the linear Cauchy strain tensor [15, 16]. Based on this model, the
dynamic behavior of a flexible body is fully described in the floating frame {Pj ,Ej } by a
constant mass matrix Mj and stiffness matrix Kj . Model order reduction techniques can
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be applied by assuming that the deformation of a body is a linear combination of selected
modes. Here the static Craig–Bampton modes (also known as interface modes or boundary
modes) will be used as a reduction basis. The generalized coordinates qj,j

k corresponding
with these modes are the small elastic displacements uj,j

k and rotations θ
j,j

k of the interface
points Pk on the body:

qj,j

k =
[

θ
j,j

k

uj,j

k

]

. (4.1)

The position vector rj,j

k is the relative location of interface point Pk in the body reference
frame {Pj ,Ej } and can be expressed as

rj,j

k = xj,j

k + uj,j

k

(
xj,j

k

)
, (4.2)

where the position vector xj,j

k is the location of Pk on the undeformed body, which is con-
stant. Using (2.2) in rewriting (4.2), the elastic displacement uj,j

k can be expressed in terms
of the absolute position of Pk and the absolute position of the floating frame Pj :

uj,j

k = rj,j

k − xj,j

k = Rj

O

(
rO,O
k − rO,O

j

) − xj,j

k . (4.3)

For small deformations, the rotation matrix Rj

k can be related to the nodal rotations θ
j,j

k

directly, since within the framework of linear theory all parameterizations of Rj

k yield the
same results. To this end, consider the Taylor expansion of Rj

k at t = t0 + �t around the
undeformed configuration and use the exponential map [17] to approximate the rotation
matrix as:

Rj

k

(
θ

j,j

k + �tω
j,j

k

) = exp
(̃
θ

j,j

k + �tω̃
j,j

k

) ≈ I + θ̃
j,j

k + �tω̃
j,j

k . (4.4)

Since the vector ω
j,j

k defines the local angular velocity at t = t0, Eq. (4.4) holds for small �t .
With this relation, it follows that the nodal rotations θ

j,j

k at t = t0 can be derived from the
rotation matrix as

θ̃
j,j

k ≈ 1

2

(
Rj

k − RjT

k

)
. (4.5)

Moreover, the time derivative of θ
j,j

k at t = t0 is approximately the angular velocity vec-
tor ω

j,j

k . This gives a relation between the relative velocity and the generalized coordinates
corresponding to the Craig–Bampton modes:

q̇j,j

k =
[

θ̇
j,j

k

u̇j,j

k

]

≈
[

ω
j,j

k

u̇j,j

k

]

= vj,j

k . (4.6)

This relation, in combination with (3.7) shows that it is possible to relate the relative velocity
of a material point q̇j,j

k to the absolute velocities vO,O
k and vO,O

j :

q̇j,j

k = [
Rj

O

]
vO,O

k − [−r̃j,j

k

][
Rj

O

]
vO,O

j . (4.7)

Using a floating frame formulation, the dynamic equations contain the absolute coordinates
of the floating frame, as well as the relative coordinates of the interface points. With result
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(4.7), it is possible to eliminate the local elastic velocities from the dynamic equations and
replace them by the absolute velocities of the floating frame and interface points [18]. At this
point, the bodies can be coupled directly and Lagrange multipliers are no longer required to
enforce constraints.

Because in this work the floating frame is not located at an interface point, the Craig–
Bampton modes can still describe six rigid body motions. As the rigid body motion is al-
ready described by the floating frame, including both makes the system singular. Six addi-
tional constraints should be imposed on the Craig–Bampton modes in order to remove this
singularity. These additional constraints enable the possibility to express the motion of the
floating frame in terms of the motion of the interface points Pk only. This yields a multibody
formulation solely in terms of the absolute coordinates of the interface points.

5 Elimination of the floating frame from the kinematic description

Figure 4 shows a flexible body with floating frame Pj and two interface points Pk and Pl .
The relative positions of the interface points with respect to the floating frame depend on
the Craig–Bampton degrees of freedom qj,j

k and qj,j

l . In the floating frame formulation,
the equations of motion are expressed in terms of the absolute floating frame coordinates
{rO,O

j ,RO
j } and the relative coordinates qj,j

k and qj,j

l (dashed arrows). The idea is to refor-
mulate the equations of motion by replacing these coordinates by the absolute motion of the

interface points, defined by {rO,O
k ,RO

k } and {rO,O
l ,RO

l } (solid arrows).
Suppose that the body has N interface points and that Pj is not an interface point. The

deformation of Pj due to the Craig–Bampton modes related to interface point Pk are col-
lected in the (6 × 6) modes matrix Φ

j

k . The elastic deformation qj,j

j in point Pj is then a

superposition of Φ
j

k and the generalized coordinates qj,j

k in the interface points:

qj,j

j =
N∑

k=1

Φ
j

kqj,j

k . (5.1)

In order to remove the 6 rigid body modes from the set of Craig–Bampton modes, the re-
quirement is made that the elastic body has no elastic deformation in Pj . Unfortunately,
since the relation between the relative position of the interface points and the absolute posi-
tions of the interface points and the floating frame is nonlinear, these additional constraints
cannot be solved explicitly on the position level. However, this can be done on the velocity

Fig. 4 Local position of the
interface coordinates in the
floating frame (dashed arrows)
and absolute position of the
interface coordinates in the
inertial frame (solid arrows).
Figure was made using InkScape
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level. To this end, Eq. (4.7) is substituted in the time derivative of (5.1). It follows from the
requirement of zero elastic deformation that this must also be zero:

q̇j,j

j =
N∑

k=1

Φ
j

k

([
Rj

O

]
vO,O

k − [−r̃j,j

k

][
Rj

O

]
vO,O

j

) = 0. (5.2)

Rewriting yields a relation between the velocity of the floating frame and the absolute ve-
locities of the interface points:

[
Qj

][
Rj

O

]
vO,O

j =
N∑

k=1

Φ
j

k

[
Rj

O

]
vO,O

k ,
[
Qj

] ≡
N∑

k=1

Φ
j

k

[−r̃j,j

k

]
. (5.3)

The (6 × 6) matrix [Qj ] consists of 6 elastic displacement vectors defined by the sum of the
Craig–Bampton modes multiplied with the local positions [−r̃j,j

k ] of the interface points.
The matrices [−r̃j,j

k ] define the 6 rigid body modes of the deformed body in the interface
points calculated relative to Pj . When the body is undeformed, the position vectors rj,j

k equal
the position vectors xj,j

k and the resulting displacements in [Qj ] become unit displacements
and so it equals the unity matrix I. Since rj,j

k equals xj,j

k on leading order, [Qj ] can be
assumed regular in all cases and can be inverted. Hence, (5.3) can be solved for the absolute
velocity of the floating frame:

vO,O
j = [

RO
j

][
Qj

]−1
N∑

k=1

Φ
j

k

[
Rj

O

]
vO,O

k . (5.4)

This can be written in compact matrix–vector notation as follows:

vO,O
j = [

RO
j

][Zj ]
[
R

j

O

]
vO,O. (5.5)

Here the (6N × 1) vector vO,O contains the absolute velocities of all interface points and the

(6N × 6N ) rotation matrix [Rj

O ] is assembled from the (6 × 6) rotation matrix [Rj

O ]:

vO,O ≡

⎡

⎢
⎢
⎣

vO,O
1
...

vO,O
N

⎤

⎥
⎥
⎦ ,

[
R

j

O

] ≡

⎡

⎢
⎢
⎣

[Rj

O ]
. . .

[Rj

O ]

⎤

⎥
⎥
⎦ . (5.6)

Moreover, the (6 × 6N ) matrix [Zj ] is defined using a (6 × 6N ) matrix [Φj

CB ] as follows:

[
Zj

] ≡ [
Qj

]−1[
Φ

j

CB

]
,

[
Φ

j

CB

] ≡ [
Φ

j

1 . . . Φ
j

N

]
. (5.7)

Upon substitution of (5.5) into (4.7), it is possible to express the local velocities of the
deformed body in terms of the absolute velocities of the interface points, which can be
written compactly as

q̇j,j =
[
[Φj

rig] I
][−[Zj ]

I

]
[
R

j

O

]
vO,O. (5.8)
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Here the (6N × 1) vector q̇j,j contains the relative velocities of all interface points due to
elastic deformations of the body expressed in the floating frame and the (6N × 6) matrix
[Φj

rig], which is the matrix of rigid body modes, is defined as

q̇j,j ≡

⎡

⎢
⎢
⎣

q̇j,j

1
...

q̇j,j

N

⎤

⎥
⎥
⎦ ,

[
Φ

j
rig

] ≡

⎡

⎢
⎢
⎣

[−r̃j,j

1 ]
...

[−r̃j,j

N ]

⎤

⎥
⎥
⎦ . (5.9)

In short, (5.8) can be written as

q̇j,j = [
Tj

][
R

j

O

]
vO,O,

[
Tj

] ≡
[
[Φj

rig] I
]
[−[Zj ]

I

]

= I − [
Φ

j
rig

][
Zj

]
. (5.10)

The combination of Eqs. (5.5) and (5.10) makes it possible to rewrite the dynamic equa-
tions of motion in floating frame formulation to a formulation in terms of the inertial frame
formulation. This is demonstrated in the next section.

6 The equations of motion in absolute interface coordinates

The derivation of the equations of motion in terms of the absolute interface coordinates are
derived based on the equations of motion in the floating frame formulation. For each flexible
body in a multibody system, the standard equations of motion can be written as

Mq̈ + Qv + Kq = Qe + Qc. (6.1)

Here M and K are the mass and stiffness matrices, respectively. The vector of generalized
coordinates q is the set of the floating frame coordinates and the local elastic coordinates
corresponding to the Craig–Bampton modes. Qv is the vector of quadratic velocity inertia
forces, Qe is the vector of externally applied forces and Qc is the vector of constraint forces.
A detailed derivation of Eq. (6.1), based on the principle of virtual work, can be found in
standard textbooks on multibody dynamics, e.g., [12]. Equation (6.1) can be partitioned as
follows:

[
Mrr Mrf

Mf r Mff

][
aO,O

j

q̈j,j

]

+
[

Qv,r

Qv,f

]

+
[

0 0

0 Kff

][
0

qj,j

]

=
[

Qe,r

Qe,f

]

+
[

Qc,r

Qc,f

]

. (6.2)

Here the subscripts r and f refer to the rigid and flexible partitions of the matrices and
vectors, respectively. aO,O

j is the absolute acceleration of the floating frame. The matrices
Mff and Kff are directly obtained from the linear finite element model of the body on
which the Craig–Bampton reduction is applied.

In order to rewrite Eq. (6.2) in terms of the absolute interface coordinates, a coordinate
transformation is used. On the velocity level, this coordinate transformation is obtained from
combining Eqs. (5.5) and (5.10):

[
vO,O

j

q̇j,j

]

=
⎡

⎣
[RO

j ][Zj ][Rj

O ]
[Tj ][Rj

O]

⎤

⎦vO,O = AvO,O, (6.3)
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where A shortly denotes the coordinate transformation matrix. Differentiating (6.3) with
respect to time yields the coordinate transformation on the acceleration level. By means
of the product rule, this transformation consists of a transformation of the accelerations
themselves and a squared velocity term containing the time derivative of the transformation
matrix:

[
aO,O

j

q̈j,j

]

= AaO,O + ȦvO,O. (6.4)

Substituting this coordinate transformation into (6.2) yields the equation of motion in terms
of the absolute interface coordinates. By direct computation of the matrix multiplications
concerned with this coordinate transformation, it is found that the resulting equation of
motion can be written in the following form:

[
R

O

j

][Mff ][Rj

O

]
aO,O + QO

v + [
R

O

j

][
Tj

]T [Kff ]qj,j = QO
j . (6.5)

Here the main inertia term can be recognized as the body’s local Craig–Bampton mass ma-
trix rotated to the global frame multiplied with the absolute accelerations of the interface
points. Other inertia forces that result from the coordinate transformation (6.4) are quadratic
in the velocity and are therefore combined with the quadratic velocity inertia terms in the
original equation of motion and represented by QO

v . This term is not taken into account
in standard corotational formulations. The procedure as explained here could be used to in-
clude these additional inertia effects in the corotational formulation as well. However, taking
this term into account is only significant in case of systems operating at high velocities. In
the elastic term, the Craig–Bampton stiffness matrix is multiplied with the local elastic co-
ordinates. The pre-multiplication with [Tj ]T can be interpreted as an operation that extracts
the elastic deformations from the absolute interface coordinates by eliminating the rigid
body component, see also the definition of [Tj ] in Eq. (5.10). The resulting elastic forces
are transformed to the global frame by the rotation matrix. QO

j contain the forces applied on
the interface points expressed in the global frame. The constraint forces are also included
simply in QO

j , because the constraints are enforced at the location of the interface points.
As explained in Sect. 5, it is not possible to construct an explicit coordinate transforma-

tion between the floating frame coordinates, local interface coordinates and absolute inter-
face coordinates on the position level. Hence, due to the elastic term the equation of motion
(6.5) is not entirely formulated in terms of the absolute interface coordinates. However, when
numerically integrating in time, the equation of motion does not need to be solved for the
large absolute position of the interface points. Instead, it is only solved for the small incre-
ment in the interface coordinates that occurs during the time increment. The time-discretized
equations are linear in this position increment and tangent to the current configuration space.
For that reason, the same coordinate transformation matrix as in (6.3) can be applied on this
position increment. In this way, the problem that needs to be solved at every time step is
formulated completely in terms of the absolute interface coordinates.

The location of the floating frame at the next time step can be determined from integrating
(5.5). Theoretically, however, the numerical error may cause the floating frame to drift. For
that reason, the location of the floating frame is determined from the absolute interface
coordinates on the position level using a Newton–Raphson procedure. As an initial estimate,
the floating frame position of the current time step is used. In practice, only few Newton–
Raphson iterations are required as the time steps are sufficiently small. With the absolute
position of the interface coordinates and the floating frame determined, the local elastic
deformation can be determined directly.
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The presented method can also be used to solve large deformation, static problems. By
simplifying (6.5) for this case, the equilibrium equations for one body are obtained:

[
R

O

j

][Tj ]T [Kj ]qj,j = QO
j . (6.6)

These equations are nonlinear in the elastic deformations qj,j as both [RO

j ] and [Tj ] depend
on them. However, these equations can be solved incrementally using a standard updated
Lagrangian approach. In this way, equations are obtained in terms of the position increment,
which can be rewritten in terms of the absolute interface coordinates, similarly as discussed
for the dynamic case.

7 Validation

In order to validate the method presented in this work, its solution to four problems is com-
pared with that of other standard software. These validation problems consist of a static
cantilever beam subjected to a large vertical tip force, a 2D and 3D slider–crank mechanism
with a flexible connector and a 3D spinning beam on a spherical joint. The solution of the
static problem is compared with Spacar and Ansys. The solutions of the dynamic problems
are compared with Spacar and MSC/Adams. Spacar is a finite element based multibody soft-
ware that uses the corotational formulation [19]. Ansys uses an inertial frame formulation
for their nonlinear finite element analyses. MSC/Adams uses a floating frame of reference
formulation.

For the static problem, a cantilever beam with circular cross section was modeled with
10 bodies. The total length of the beam is 1 m. The outer radius of the cross-section is
0.01 m has a wall thickness of 0.001 m. The Young’s modulus is 70.0E9 Pa. The beam
was incrementally loaded starting at 100 N and increasing to 10000 N. Results have been
obtained with the new method, Spacar and Ansys. The computed deformed beam shapes are
shown in Fig. 5 for applied loads of 100, 500, 2000, and 10000 N. The figures show good
agreement between the new code and both Spacar and Ansys.

The dynamic 2D slider–crank problem is adopted from [20] and shown in Fig. 6. The
rigid crank with length of 0.15 m is rotating with a constant angular velocity of 150 rad/s.
The flexible connector with length of 0.3 m has a uniform circular cross-section with a
diameter of 0.006 m and is made of steel. In the simulation a Young’s modulus of 0.2E12
Pa and a mass density of 7.87E3 kg/m3 is used. The end of the connector is connected to
a slider with a mass half the mass of the connector. The slider is able to translate without
friction on its base.

The angular velocity of the crank introduces an initial linear velocity and an angular
velocity of the connector, assuming no deformation. The connector is modeled with two
bodies. Hence, this model has three nodes: the two interface nodes and a half-way node at
the location of the floating frame.

As output the displacement of the midpoint perpendicular to the undeformed beam was
determined and plotted against the crank angle. The results are shown in Fig. 7. This figure
also shows the results obtained with Spacar in which longitudinal deformations due to nor-
mal forces are suppressed. Moreover, results obtained with MSC/Adams are included. As
Fig. 7 shows, the new method agrees very well with the results obtained with Spacar. The
results obtained with MSC/Adams show small differences.

The dynamic 3D slider–crank mechanism is adopted from [21] and shown in Fig. 8. The
physical properties of the mechanism are the same as in the 2D case described above. The
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Fig. 5 Deflection of a cantilever
beam subjected to a tip force
compared with Spacar and
Ansys. Figure was made using
Matlab for plotting and Adobe
Illustrator for labels

Fig. 6 2D Slider–crank
mechanism with flexible
connector. Figure was made
using InkScape

Fig. 7 Mid-point deformation of
the connector compared with
Spacar and MSC/Adams. Figure
was made using Matlab for
plotting and Adobe Illustrator for
labels

horizontal position of the rotation axis d is 0.1 m. In the initial configuration, the crank is
oriented vertically upward.
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Fig. 8 3D Slider–crank
mechanism with flexible
connector. Figure was made
using InkScape

Fig. 9 Mid-point deformation of
the connector compared with
Spacar and MSC/Adams. Figure
was made using Matlab for
plotting and Adobe Illustrator for
labels

Fig. 10 Flexible beam on a
spherical joint. Figure was made
using InkScape

As output the displacement of the midpoint in its local y-direction was determined and
plotted against the crank angle. The results are shown in Fig. 9. It can be seen that also in
this case the results obtained with the new method are very close to the results obtained with
Spacar. The results obtained with MSC/Adams again show a small difference in comparison
with the other two methods.

The 3D spinning beam on a spherical joint is adopted from [14] and shown in Fig. 10.
The physical properties, prescribed loads and simulation settings are the same as described
in this reference: The beam has length 141.42 mm, cross-section 9.0 mm2 and moment of
inertia 6.75 mm4. The material has a mass density 7.8E-3 kg/mm−3 and Young’s Modulus
2.1E6 N/mm2. The beam is modeled with two bodies. A torque of 200 N mm is applied
about the vertical axis during the first 10.2 seconds. After 15 seconds, an impulsive vertical
tip force of 100 N is applied.
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Fig. 11 Angular velocity about
the vertical axis at the base of the
beam compared with Spacar and
MSC/Adams. Figure was made
using Matlab for plotting and
Adobe Illustrator for labels

As output the absolute angular velocity about the vertical axis at the base of the beam
was determined and plotted as a function of time. The results are shown in Fig. 11. It was
observed in [14] that different methods show different results only after the impulsive verti-
cal force is applied. In Fig. 11 it can be seen that all methods used here produce very similar
results even after this moment. Comparing all results with those published in [14], it can
be seen that the new method presented in this work is most comparable to results of the
nonlinear finite element formulation used in [14].

8 Conclusion

Describing the kinematics of a flexible multibody system comes down to the kinematic for-
mulation of the motion of the interface points. In the inertial frame and corotational frame
formulations, the absolute interface coordinates are part of the degrees of freedom, allowing
for a direct application of the constraints. This is in contrast to the floating frame formula-
tion, which requires the use of Lagrange multipliers. In this work, it has been demonstrated
that the absolute floating frame coordinates and the local elastic coordinates that appear in
the equation of motion of a floating frame formulation can be replaced by the absolute in-
terface coordinates. Consequently, the new method does not require Lagrange multipliers
to enforce the kinematic constraints. In this way a floating frame formulation in terms of a
minimal set of coordinates is successfully obtained. Validation of the method with static and
dynamic problem found in literature has shown to yield reliable results in all cases.

The use of Craig–Bampton modes as local shape functions is crucial in the presented
procedure. The rigid body motions contained in these Craig–Bampton modes are employed
to eliminate the floating frame coordinates from the system. The problem of establishing the
kinematic coordinate transformation presented in this work for the floating frame formula-
tion is in fact comparable to the problem of expressing the corotational frame coordinates
in terms of the element’s absolute nodal coordinates for a corotational frame formulation.
Only here this problem is encountered at the level of an entire body instead of on the level
of a single element. An advantage of the new method is that it can be applied to systems that
consist of arbitrarily shaped three-dimensional bodies that have an arbitrary number of in-
terface points. Also in this sense, it can be seen as a generalization of the corotational frame
formulation, which is only developed for a limited number of parameterized finite elements,
such as beams, plates and shells.
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As such, this paper not only provides valuable insight in the relations between differ-
ent multibody formulations, but it also offers the possibility to reduce geometric nonlinear
systems by applying important modal order reduction techniques in a body’s local frame.
This is found a convenient way of creating so-called superelements in a flexible multibody
formulation. The use of the term superelement emphasizes the striking similarity between
the floating frame and corotational frame formulations at this point. For each flexible body,
the tangent mass and stiffness matrices, reduced to the interface points can be obtained from
detailed linear finite element models. These system matrices can directly be applied in the
flexible multibody analysis of the entire system.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
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provide a link to the Creative Commons license, and indicate if changes were made.
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