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Abstract During the engagement of the dry clutch in automotive transmissions, clutch jud-
der may occur. Vehicle suspension and engine mounts couple the torsional and longitudinal
models, leading to oscillations of the vehicle body that are perceived by the driver as poor
driving quality. This paper presents an effective formulation for the modeling and simu-
lation of longitudinal dynamics and powertrain torsional dynamics of the vehicle based on
non-smooth dynamics of multibody systems. In doing so friction forces between wheels and
the road surface are modeled along with friction torque in the clutch using Coulomb’s fric-
tion law. First, bilateral constraint equations of the system are derived in Cartesian coordi-
nates and the dynamical equations of the system are developed using the Lagrange multiplier
technique. Complementary formulations are proposed to determine the state transitions from
stick to slip between wheels and road surface and from the clutch. An event-driven scheme
is used to represent state transition problem, which is solved as a linear complementarity
problem (LCP), with Baumgarte’s stabilization method applied to reduce constraint drift.
Finally, the numerical results demonstrate that the modeling technique is effective in simu-
lating the vehicle dynamics. Using this method stick-slip transitions between driving wheel
and the road surface and from the clutch, as a form of clutch judder, are demonstrated to oc-
cur periodically for certain values of the parameters of input torque from engine, and static
and dynamic friction characteristics of tire/ground contact patch and clutch discs.
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Nomenclature
x1, ẋ1 Longitudinal displacement/velocity of the center of vehicle body
y1, ẏ1 Longitudinal displacement/velocity of the center of vehicle body
θ1, θ̇1 Pitch angular displacement/velocity of vehicle body
xc1, ẋc1 Longitudinal displacement/velocity of the center of front wheel
yc1, ẏc1 Vertical displacement/velocity of the center of front wheel
θc1, θ̇c1 Angular displacement/velocity of front wheel
xc2, ẋc2 Longitudinal displacement/velocity of the center of rear wheel
yc2, ẏc2 Vertical displacement/velocity of the center of rear wheel
θc2, θ̇c2 Angular displacement/velocity of rear wheel
θc, θf , θe Angular displacements of clutch discs, flywheel and engine
h Height of body mass center above roll axis
a Longitudinal distance of body mass center from rear axle
b Longitudinal distance of body mass center from front axle
k, c Stiffness and damping coefficient of the front or rear suspension
k1, c1 Stiffness and damping coefficient of the input shaft from engine to flywheel
k2, c2 Equivalent stiffness and damping coefficient of elastic half-shaft
Je Engine inertia
Jf Inertia of flywheel
Jc Equivalent inertia of the clutch disc and the transmission
Jc1, Jc2 The inertia of front or rear wheels
m1, mc1, mc2 Body mass, front or rear wheel mass
J1 Body inertia according to the mass center
Te, Tf Engine torque, friction torque acting on the clutch
TS , TC The maximum static or slipping friction torque
θ̇s the Stribeck velocity
Ff 1, Ff 2 Friction force acting on the front or rear wheel
μ0i , μi Static or dynamic friction coefficient on the contact patch between wheels

and ground
FN1, FN2 Vertical tire force acting on front or rear wheel
Mf 1, Mf 2 Tire rolling resistance acting on the front or rear wheel
δi Rolling resistance coefficient
sgn(x) If x > 0, sgn(x) = 1; if x = 0, sgn(x) = 0; if x < 0, sgn(x) = −1
Sgn(x) If x > 0, Sgn(x) = 1; if x = 0, Sgn(x) ∈ [−1,1]; if x < 0, Sgn(x) = −1

1 Introduction

Clutch judder between friction pairs of sliding contact during the clutch engagement pro-
cess is typically defined as a friction-induced vibration and even torsional self-excitation
of the transmission system. These oscillations introduce undesired dynamic loads, increase
clutch slip and wear of dry clutches and reduce driver comfort [1–7]. Multibody simulation
tools are frequently used to assess the performance of a vehicle to offer the driver better
driving comfort characterized by the longitudinal dynamics of vehicle. The acceleration of
the vehicle is calculated by integrating the powertrain model with the equations govern-
ing the longitudinal behavior of the vehicle [4, 6]. However, the simulation of a complete
acceleration process during the clutch engagement is not straightforward, as the kinematic
constraints imposed on the system change.
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Since the 1970s, the clutch judder phenomenon has attracted the attention of many re-
searchers [8]. Some conclusions have been made that clutch-induced drivetrain oscillations
could be initiated by different mechanisms of excitation, for example, engine harmonics,
difference between static and dynamic coefficient of clutch disc and normal force on clutch
face [2, 14–16]. Mathematical modeling and numerical studies of powertrain systems con-
sidering the contact of clutch engagement dynamics have been presented by some authors.
Multi-degree-of-freedom powertrain models are proposed assuming that the effect of the
tire slip is neglected, the input torque from the engine is constant and the fluctuating fric-
tion torque acts as a source of excitation of the system’s torsional vibration during clutch
engagement. Numerical results obtained indicate that, for negative gradient of the clutch
friction coefficient for a dry friction clutch, the system is subjected to the self-excitation
and becomes very unstable for certain values of this gradient [9]. In fact, it is also possible
to simplify the model of the powertrain transmission to a four-mass model without losing
too much information with respect to clutch vibrations [10–14]. Therefore, to investigate
the reduction of friction clutch vibrations, fewer degrees of freedom models are applied
to represent the detailed powertrain system [10, 11]. The simplified powertrain model en-
ables identical system descriptions during slipping and sticking phase of the dry friction
clutch and is used for studying the onset of stick-slip motions [12]. Furthermore, stability
analysis of a linearized system during slipping phase has studied how friction characteris-
tics affect system stability and therefore clutch judder or the likelihood of the occurrence
of stick-slip. Torque transmitted by the friction clutch is typically numerically calculated
using a trial-and-error method, suitable for the multibody systems with several friction-
affected contact points [2, 10, 14–16]. In the aforementioned literature, most investigations
on clutch dynamics only account for torsional degrees of freedom. In Ref. [17], the power-
train model established has been included in a simplified longitudinal vehicle model with
only one degree of freedom. Penalty functions are applied to approximate the friction torque
from the clutch discs, and they show some limitations by neglecting the stick-slip nature of
interfacial friction of the clutch. In Ref. [18], research on the longitudinal dynamics has
been undertaken using numerical methods, neglecting the influence of transmission oscil-
lation on the longitudinal acceleration of an automobile. In other studies considering the
rotational-translational coupling of tires and vehicle body, self-excited torsional oscillations
of the driveline triggered by the friction characteristic of contact patch between tire and
ground have been studied assuming that no relative slip between the driving and driven
component of the clutch occurs during the process of the torsional oscillation of drive-
line [19].

In studies of longitudinal vehicle dynamics coupled with powertrain torsional vibration,
piece-wise functions of the friction torque acting on the clutch discs, and the friction forces
generated in the contact region between tires and road surface are integrated into the dy-
namic equations of the system. This results in a discontinuously varying structure of the
dynamical equations [10, 20]. The main difficulty for numerical calculations results from
instantaneous changes in the contact forces at transitions from sliding to sticking or re-
versed sliding. Clocker and Pfeiffer [21–23] have presented the theory of non-smooth multi-
body dynamics with unilateral contacts defined in normal and tangential contact directions
for applications similar to that described in this paper. The Linear Complementarity Prob-
lem (LCP) formulation embedded in event-driven schemes can be efficiently used to solve
the contact-impact problem of multibody systems with frictional unilateral constraints, but
the description of the rolling friction law has not been given in detail. In addition, two
groups of numerical schemes have been proposed: namely event-driven and time-stepping
schemes. Following the non-smooth dynamics approach mentioned above, event-driven
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schemes in combination with LCP formulations are applied to the study of longitudinal
dynamics of the vehicle coupled with the torsional dynamics of the powertrain transmis-
sion. For example, the constraint-stabilized method for planar rigid multibody systems with
friction-affected translational joints was proposed using non-smooth dynamical approach
[24, 25].

The Baumgarte method is widely applied to eliminate constraint violations that arise
from direct integration of the equations of motion. A quantitative study of the influence of
the Baumgarte parameters on the dynamic response of multibody systems is demonstrated
in Ref. [32]. As practical examples, the contact forces to drive the motion of a dumbbell
and corresponding to the problem of the Painlevé paradox are calculated via the LCP for-
mulation [26–28]. Different continuous contact-impact force models for both spherical and
cylindrical contact surface in multibody mechanical systems are reviewed in detail [29].
Furthermore, by using a continuous contact force model, the approach to modeling and
analysis of flexible spatial multibody systems with clearance of cylindrical joints is pre-
sented [30, 31]. Following the non-smooth dynamics approach, the event-driven scheme is
devised for study of the longitudinal train dynamics, which involves alternative stick-slip
phases; however, constraint drift is not considered [33]. LCP formulations of dry frictional
contacts with constraint stabilization techniques are also effectively applied to calculate the
frictional forces acting on the contact patch between wheels of tracked vehicle and rough
road surface [34]. The idea of complementarity is used to model the torque and the rel-
ative velocity of one-way clutch but the calculation of the friction torque from the wet
clutch, while transitions from stick to slip or slip to stick cannot be achieved, neglecting
the reality that during the sticking phase the relative acceleration is not always equal to
zero [35].

Based on the above philosophies and with consideration to the presented background,
to analyze the dynamic behavior of powertrain transmissions and its impact on the longi-
tudinal acceleration, a comprehensive vehicle model is presented in this paper. Herein, the
torsional powertrain and longitudinal vehicle dynamics are combined through the rotational-
translational coupling of tires and vehicle body. Based on the non-smooth dynamics ap-
proach, modeling and numerical algorithms have been proposed in which the friction force
in the contact patch between wheels and road surface, as well as frictional torque between
two clutch discs, are described as piece-wise functions and defined as generalized friction
forces.

The rest of the paper is arranged as follows. In Sect. 2, the physical model of the lon-
gitudinal dynamics combined with the powertrain transmission dynamics is developed and
described in detail. The governing dynamical equations of the model are derived using La-
grange’s method with Cartesian coordinates. In Sect. 3, the corresponding relations are es-
tablished using complementarities with respect to normal and tangential directions between
wheels and road surface, as well as tangential direction between two clutch discs [10]. LCP
formulations embedded in the event-driven algorithm are completed as referred to above,
with the Baumgarte constraint stabilization technique employed to reduce the numerical
drift effects. In Sect. 4, numerical results are obtained that indicate transitions from static
to sliding friction and vice versa periodically occur in the contact patch between driving
wheel and road surface and also between the clutch discs for some certain parameters of the
system.



Modeling and simulation of longitudinal dynamics coupled with clutch 157

2 System definition and modeling

2.1 The model description

The elements of multibody systems for vehicle modeling to study longitudinal dynamics
are illustrated in Fig. 1. These include rigid body (the vehicle body), coupling suspension
springs and dampers, as well as kinematical connecting in translation to the wheels. The
tire deformation in the contact patch is considered [36]. The vehicle body is linked to the
front or rear wheel by the spring-damper suspension system with ideal translational joints
constraints, therefore the constraints resulting from the connecting elements are holonomic.
Generally, the axis of translational joints is not vertical to the vehicle body. The coupling and
connection elements, respectively, generate internal forces and torques between the bodies
of the system or external forces with respect to the environment. Both are considered as
massless elements. Consequently, for the vehicle dynamics herein, it is assumed that the tire
shows elastic behavior only in the contact zone, friction force and rolling resistance that act
on and the rest of the body are considered to be rigid [37].

It is well established that friction clutch vibrations take place in a low-frequency range,
around 5 to 15 Hz. Therefore, modeling can be achieved by considering a limited number
of degrees of freedom and only one contact [10]. The powertrain system is therefore mod-
eled as a four-degree-freedom (4-DOF) lumped parameter inertia-damper-spring system as
schematically detailed; see Fig. 2 [15]. On the assumption that the sample vehicle is a front-
wheel-driven, the driveline is composed of the elastic half-shaft represented by an equivalent
stiffness coefficient k2 and the damping factor c2. The parameters k1 and c1 are the stiffness
coefficient and damping factor of the input shaft, respectively. The engine inertia Je is driven
by the engine torque Te . Jf is the flywheel inertia. Tf is the torque transmitted by the clutch
and defined as friction torque exerting on the clutch discs. Jc is the equivalent inertia of the
clutch disc and the transmission. Jc1 is the inertia of the front wheel. By definition Mf 1 is
the rolling resistance acting on the contact patch between the front wheel and road surface.
In addition, a flat plane approximates the road surface near the contact patch [18].

2.2 Equations of motion

A set of Cartesian coordinates q = [x1 y1 θ1 xc1 yc1 θc1 xc2 yc2 θc2 θc θf θe]T is used for
the mathematical description of longitudinal dynamics of vehicle regarded as the bilater-

Fig. 1 The vehicle model for the
study of the longitudinal
dynamics

Fig. 2 The dynamic model of
powertrain with the dry clutch
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ally constrained system. (x1, y1, θ1) are the coordinates of the vehicle body mass center.
(xc1, yc1, θc1) and (xc2, yc2, θc2) are the coordinates of the mass center of the front and rear
wheel. θc , θf , θe are the representations of angular displacements of the clutch discs, fly-
wheel and engine, respectively.

In the following the subscript i ∈ 1,2 denotes contact point of the constraints from the
translational joints between the vehicle body and wheels. The kinematic joints can be de-
scribed by a set of linear holonomic algebraic equations as

Φ(q) = [f1, f2]T = 0 (1)

The Lagrange multiplier technique is used to derive the equations of motion at the accel-
eration level in the following form:

Mq̈ = Q + ΦT
qλ + Qf (2)

where M denotes the symmetric and positive definite mass matrix, Q denotes the vector
containing all smooth external forces, Φq is the Jacobi matrix of the constraint of (1). λ =
[λ1 λ2]T is the Lagrange multiplier vector and Qf is the force/torque vector which contains
friction force and rolling resistance generated at the ground/tire interface, as well as friction
torque from the clutch discs.

Wheel friction forces are modeled with the classical Coulomb’s friction law [38]. The
friction law of Coulomb states that the sliding friction force is proportional to the normal
force of a contact. The amount of the static friction force is less than or equal to the max-
imum static friction force which is also proportional to the normal force FNi . The sliding
friction force has the opposite direction of the relative velocity of the frictional contact.
Consequently, it can be of the form

Ff i =
{

−μiFNi sgn(vri) vri �= 0

−μ0iFNi Sgn(v̇ri ) vri = 0
(3)

where μ0i is the coefficients of static friction, μi is the coefficients of sliding friction, vri =
ẋci − Rθ̇ci .

The pressure distribution in the contact patch between wheel and road surface implies
that the normal force FNi acts through the center of pressure a distance forward of the
wheel center. For equilibrium, a couple exists that must oppose the tire load and its reaction
acting down through the wheel center. The couple reacting against the wheel is the rolling
resistance represented with a rolling resistance coefficient. The rolling resistance Mf i below
is defined according to [18]:

Mf i =
{

−δiFNi sgn(θ̇ci) θ̇ci �= 0

−δiFNi Sgn(θ̈ci) θ̇ci = 0
(4)

where δi is the representation of the rolling resistance coefficient, FNi is represented as the
vertical force acting on the tire.

The calculation of the normal force FNi acting in the tire contact patch has a contribution
due to stiffness FNik and a contribution due to damping FNic . These forces acting in the
normal directions are expressed as [18]

FNi =
{

Kyci
δyci

+ Cyci
δ̇yci

δyci
≥ 0

0 δyci
< 0

(i = 1,2) (5)
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where mt = mass of tire, Kyci
= radial tire stiffness, ζ = radial damping ratio, δyci

=
R − yci = tire penetration, δ̇yci

= −ẏci = rate of change of tire penetration, and Cyci
=

2.0ζ
√

mtKyci
.

Using a Coulomb friction model, the clutch friction torque is [16]

Tf =
{

−TC sgn(θ̇r ) θ̇r �= 0

−TS Sgn(θ̈r ) θ̇r = 0
(6)

where Tc is the slipping friction torque, Ts is the maximum static friction torque, θ̇r =
θ̇f − θ̇c .

The generalized friction force vector Qf can be finally expressed in matrix form

Qf = WTλT (7)

where

Qf = [
Q

f
x1 Q

f
y1 Q

f

θ1
Q

f
xc1 Q

f
yc1 Q

f

θc1
Q

f
xc2 Q

f
yc2 Q

f

θc2
Q

f

θc
Q

f

θf
Q

f

θe

]T

WT =

⎡
⎢⎢⎢⎢⎣

0 0 0 1 0 −R 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 −R 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 −1

⎤
⎥⎥⎥⎥⎦

T

λT = [
Ff 1 Mf 1 Ff 2 Mf 2 Tf

]T

As a result, (2) can be rewritten as

Mq̈ = Q + ΦT
qλ + W TλT. (8)

As a consequence, (8) describes the system under the influence of the tangential contact
forces proportional to the multipliers λT, which has to be determined by contact laws in the
following section.

3 Numerical algorithm

The main difficulty to solve (8) results from instantaneous changes in the contact forces be-
tween the wheels and road surface and from the clutch at transitions from sliding to sticking
or transitions from sticking to sliding. Moreover, if the contacts are kinematical coupled,
the contact forces influence each other. Thus, each new contact generally affects all of the
other contact constraints and produces jumps in contact forces. Due to these step changes,
induced transitions in the states of contacts may occur, for which either are transitions to
sliding or to separation.

Formulations for the complementarity conditions of transitions from sticking to sliding
in the multibody vehicle system are formulated. This evaluates the transition problem and
avoids the combinatorial problem associated with the testing of all possible contact state
combinations for the solution without contradiction to the contact laws.
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3.1 Complementarity conditions of generalized friction forces

Firstly, a complementary formulation for Coulomb’s friction law is formulated by introduc-
ing the definition of the friction saturation in positive and negative direction [23]:

F+
f i = μ0iFNi + Ff i

F−
f i = μ0iFNi − Ff i

}
(9)

The positive and negative part of the tangential acceleration is expressed as

v̇+
ri = (|v̇ri | + v̇ri )

2

v̇−
ri = (|v̇ri | − v̇ri )

2

⎫⎪⎬
⎪⎭ (10)

Next, in the same manner, a complementary formulation for rolling resistance friction’s law
has to be expressed. Similarly, by the definition of the rolling resistance saturation in positive
and negative direction, it can be described in the following form:

M+
f i = δiFNi + Mf i

M−
f i = δiFNi − Mf i

}
(11)

The positive and negative parts of the angular acceleration of the front and rear wheel are
defined as

θ̈+
ci = (|θ̈ci | + θ̈ci )

2

θ̈−
ci = (|θ̈ci | − θ̈ci )

2

⎫⎪⎪⎬
⎪⎪⎭ (12)

Equations (9) and (11) can be finally written as

λ+
Hi = μ∗

i · λNi + λHi

λ−
Hi = μ∗

i · λNi − λHi

}
(13)

where: if λHi = Ff i , then μ∗
i = μ0i ; if λHi = Mf i , then μ∗

i = δi .
Equations (10) and (12) can be finally given in the unified form

g̈+
Hi = (|g̈Hi | + g̈Hi)

2

g̈−
Hi = (|g̈Hi | − g̈Hi)

2

⎫⎪⎬
⎪⎭ (14)

where: g̈H1 = v̇r1, g̈H2 = θ̈c1, g̈H3 = v̇r2, g̈H4 = θ̈c2.
Therefore, the corresponding relations have to be completed by the complementarities

with respect to tangential direction between the wheels and road surface. It is given in the
form

g̈+
Hi ≥ 0, λ+

Hi ≥ 0, g̈+
Hiλ

+
Hi = 0

g̈−
Hi ≥ 0, λ−

Hi ≥ 0, g̈−
Hiλ

−
Hi = 0

}
(15)

Equation (15) is applied while ġT i = 0 (ġT 1 = vr1, ġT 2 = θ̇c1, ġT 3 = vr2, ġT 4 = θ̇c2).
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As mentioned above, the torque transmitted through the clutch (both in slipping and stick
state) is indicated by Tf . The friction torque saturation in positive and negative direction is
firstly stated as

T +
f = TS + Tf

T −
f = TS − Tf

}
(16)

The positive and negative parts of the relative angular acceleration between two clutch discs
are defined as

θ̈+
r = (|θ̈r | + θ̈r )

2

θ̈−
r = (|θ̈r | − θ̈r )

2

⎫⎪⎪⎬
⎪⎪⎭ (17)

Equation (16) also can be expressed as

λ+
Hi = Ts + λHi

λ−
Hi = Ts − λHi

}
(18)

where λHi = Tf .
Equation (17) also can be expressed as

g̈+
Hi = (|g̈Hi | + g̈Hi)

2

g̈−
Hi = (|g̈Hi | − g̈Hi)

2

⎫⎪⎬
⎪⎭ (19)

As a consequence, this transmission behavior is described by the complementary transmis-
sion law:

g̈+
Hi ≥ 0, λ+

Hi ≥ 0, g̈+
Hiλ

+
Hi = 0

g̈−
Hi ≥ 0, λ−

Hi ≥ 0, g̈−
Hiλ

−
Hi = 0

}
(20)

which is restricted to ġT i = 0 (ġT i = θ̇r ) (i = 5).

3.2 LCP formulations

Combining (3), (4) and (6), the detailed expression is found for the generalized friction
forces of (7):

Qf = W TλT

= W T
[
Ff 1 Mf 1 Ff 2 Mf 2 Tf

]T

= W TS
[

−μ0FN1 Sgn(v̇r1) −δ1FN1 Sgn(θ̈c1) −μ0FN2 Sgn(v̇r2) −δ2FN2 Sgn(θ̈c2) −TS Sgn(θ̈r )
]T

+ W T(E − S)

× [
−μFN1sgn(vr1) −δ1FN1sgn(θ̇ci ) −μFN2sgn(vr2) −δ2FN2sgn(θ̇c2) −TCsgn(θ̇r )

]T
(21)

where

S = diag
[
1 − | sgn(ġT1)|,1 − | sgn(ġT2)|,1 − | sgn(ġT3)|,1 − | sgn(ġT4)|,1 − | sgn(ġT5)|

]
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E = diag
[

1 1 1 1 1
]

As a result

Qf = WHλ+
H

+ W T

([−μ0FN1 −δ1FN1 −μ0FN2 −δ2FN2 −TS

]T
S

+ [
−μFN1sgn(vr1) −δ1FN1sgn(θ̇ci ) −μFN2sgn(vr2) −δ2FN2sgn(θ̇c2) −TCsgn(θ̇r )

]T

× (E − S)
)

Suppose that

λT1 = [−μ0FN1 −δ1FN1 −μ0FN2 −δ2FN2 −TS

]T
S

+ [
−μFN1sgn(vr1) −δ1FN1sgn(θ̇ci ) −μFN2sgn(vr2) −δ2FN2sgn(θ̇c2) −TCsgn(θ̇r )

]T

× (E − S)

In that way, another form can be given

Qf = WHλ+
H + WTλT1

where WH = WTB and B is represented as the vector which is composed of the column
vectors of vector S which are not equal to a zero vector.

Consequently, the following equation is obtained

Mq̈ = Q + ΦT
qλ + WHλ+

H + W TλT1 (22)

To keep the constraint violations under control, the Baumgarte stabilization method is used
here. This method allows constraints to be slightly violated before corrective actions can
take place in order to force the violation to vanish. The goal of Baumgarte method is to
replace the differential equation (1) by the following equation:

Φqq̈ + Φ̇q q̇ + αΦqq̇ + βΦ = 0 (23)

Equation (22) can also be expressed as

q̈ = M−1Q + M−1ΦT
qλ + M−1

(
WHλ+

H + W TλT1
)

(24)

Substituting the above equation into (23) results in

λ = DΦqM
−1WHλ+

H + DA (25)

where

D = [−ΦqM
−1ΦT

q

]−1

A = ΦqM
−1WTλT1 + ΦqM

−1Q + Φ̇q q̇ + αΦqq̇ + βΦ

Therefore, (8) can be written in another form:

q̈ = M−1Q + M−1
(
ΦT

qDΦqM
−1WH + WH

)
λ+

H + M−1ΦT
qDA + M−1W TλT1 (26)
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By using g̈T to indicate a transition from sliding (ġT �= 0) to stick or rolling (ġT = 0),
the tangential accelerations in the contact patch between wheels and road surface and also
between two clutch discs can be written in the following form:

g̈T = WT
Tq̈ (27)

If ġT i = 0, (27) can be given by

g̈H = WT
Hq̈ (28)

where

g̈H = g̈TB; W T
T = (W TB)T

Substituting (14), (19) and (26) into (28) results in

g̈+
H − g̈−

H = WT
HM−1

(
ΦT

qDΦqM
−1WH + WH

)
λ+

H + L (29)

denoting L = WT
H(M−1Q+M−1ΦT

qDA+M−1WTλT1). Based on (13) and (18), it is found
that

λ+
H + λ−

H = K (30)

denoting K = B diag[2μ0FN1,2δ1FN1,2μ0FN2,2δ2FN2,2TS].
Therefore, while g̈T i = 0, the following method to solve the planar frictional contact

problem between the wheels and road surface and also between two clutch discs is pro-
posed by transforming it into a linear complementarity problem. Equations (29) and (30)
are integrated in matrix form:[

g̈+
H

λ−
H

]
=

[
W T

H M−1(ΦT
qBΦqM

−1WH + WH) E

−E 0

][
λ+

H

g̈−
H

]
+

[
L

K

]
[
g̈+

H λ−
H

]T ≥ 0; [
λ+

H g̈−
H

]T ≥ 0[
g̈+

H λ−
H

] [
λ+

H g̈−
H

]T = 0

(31)

Equation (31) is a LCP in standard form and can be solved directly by a pivoting algorithm
like Lemke’s method or iteratively, with a Block–Gauss–Seidel relaxation scheme [39]. The
event-driven schemes detect changes of the constraints (events), such as stick-slip transitions
between driving wheel and road surface and that between two clutch discs, and they resolve
the exact transition times. Between these events the motion of the system is smooth and can
be computed by a standard ODE/DAE integrator with root-finding. If an event occurs, the
integration stops and the computation of the contact forces is performed by solving a LCP.

4 Numerical results

The physical model is illustrated in Figs. 1 and 2. It is assumed that the axis of the transla-
tional joints is vertical to the vehicle body shown as Fig. 1. The values of the basic parame-
ters for the investigated vehicle model are accepted as follows [36]:

m1 = 1400 kg, J1 = 1200 kg·m2, mc1 = 30 kg, Jc1 = 2 kg·m2
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mc2 = 30 kg, Jc2 = 2 kg·m2

a = 1 m, b = 1 m, h = 0.6 m, R = 0.25 m,

k = 25 kN/m, c = 3.5 kN·s/m;
The parameters of the powertrain transmission system are [15]

Je = 0.6 kg·m2, Jf = 0.2 kg·m2, Jc = 0.28 kg·m2

k1 = 77 kN·m/rad, c1 = 1.76 N·m·s/rad

k2 = 16 kN·m/rad, c2 = 0.12 N·m·s/rad

Kyc1 = Kyc2 = 150 N/mm, ς = 0.05

Baumgarte parameters α and β are chosen as positive constants [32]:

α = 30, β = 30

The Stribeck model is described as the following equation [43]:

Tf = [
TC + (TS − TC) · e−(|θ̇r |/θ̇s )

0.6] · sgn(θ̇r )

TS = 100 N·m, TC = 80 N·m, θ̇s = 10 rad/s

For simulation, the engine torque is modeled [44]:

Te = T0

(
1 + 1.8 · sin(2θ̇et) + 0.7 · sin(4θ̇et)

)
4.1 Case 1

The following initial conditions are used for the numerical integration:

x1 = a, y1 = h, θ1 = 0, xc1 = 0, yc1 = R, θc1 = 0

xc2 = (a + b), yc2 = R, θc2 = 0, θe = θf = θc = 0

θ̇e = θ̇f = θ̇c = θ̇c1 = 20 rad/s, ẋ1 = ẋc1 = ẋc2 = Rθ̇c1 = Rθ̇c2 = 5 m/s

The vehicle is assumed to move over a flat level road surface with dry asphalt and concrete
along a straight line. Simulations are performed using the friction coefficient determined via
(3) with a μ0 value of 0.8 and a μ value of 0.75 [37].

Typical value of rolling resistance coefficient δ is set to 0.005 m. The torque from engine
Te is assumed as a constant value of 200 N·m. The maximum static friction torque Ts of
the clutch is large enough to ensure that the slipping motion between two discs will never
occur once the clutch is locked. Figures 3, 4 and 5, respectively, show the pitch angular
rotation of the vehicle body θ1, the relative velocity Vr1 and frictional force Ff 1 of contact
patch between the driven wheel and road surface, and the relative velocity Vr2 and frictional
force Ff 2 of contact patch between the rear wheel and road surface. Based on the numerical
analysis, it has been found that the wheels are purely rolling and the torsional vibration
from the powertrain transmission system leads to the fluctuation of frictional force between
wheels and road surface during the launch phase (see Figs. 4 and 5). Figure 3 illustrates that
the effect of vibration absorber results in the decreased amplitudes of pitch angular θ1 which
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Fig. 3 Time history of θ1

Fig. 4 Time history of Vr1 and
Ff 1

Fig. 5 Time history of Vr2 and
Ff 2

finally remains constant. As illustrated in Fig. 6, the normal force exerted on the front wheel
gradually decreases, and, on the contrary, the force acted on the rear wheel increases. In the
final phase, the observation FN1 < FN2 is qualitatively identical to the simulation results. It
is evident from Fig. 7 that the clutch plates with zero relative velocity stick with each other,
maintained by static friction torque.
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Fig. 6 Time history of FN1 and
FN2

Fig. 7 Time history of θ̈r and
Tf

4.2 Case 2

The vehicle is still assumed to move over a horizontal road surface with dry asphalt and
concrete. The numerical solution is achieved using the friction coefficient determined via
(3) with a μ0 value of 0.8 and a μ value of 0.75.

Typical value of rolling resistance coefficient δ is set to 0.005 m. The output torque from
engine Te is set to constant value 323.47 N·m, so that the impact of engine forced vibration
on clutch dynamics is excluded [40]. This value for the engine torque is identified through
a number of iterations as the point at which the output torque is high enough to initiate
stick-slip in the clutch.

For the assessment of driving comfort influenced by the variation of the friction coef-
ficient against the relative angular velocity in the frictional clutch contact, the parameters
TS and TC determined via (5) are with a value of 400 N·m and 320 N·m, respectively. As
can be seen in Fig. 8, during steady state phase, friction-induced stick-slip vibrations (clutch
judder) occur periodically in the powertrain transmission system, which yield the periodic
oscillations of pitch angular acceleration that can characterize driving comfort. This behav-
ior results from the transient response of the multiple flexible-body system interacting with
the sticking and slipping friction torques, resulting in multiple transitions into and out of
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Fig. 8 Steady state response of
θ̇r and Tf : zoom on θ̇r and Tf

Fig. 9 (a) Time history of θ̈1.
(b) Steady state response of θ̈1:
zoom on θ̈1

Fig. 10 Steady state response of
ẍ1: zoom on ẍ1

sticking in the clutch. Furthermore, the torsional vibration behavior of the clutch discs is
interpreted as a measure of the clutch judder. The torque variations in the driveline will vary
the drive forces at the tire-ground contact and thus may act directly to generate longitudinal
acceleration oscillations in the vehicle body (see Figs. 9 and 10). Figures 11 and 12 indicate
that the front and rear wheels are purely rolling on the road surface (ġT 1 = 0 and ġT 3 = 0).

The output torque from engine Te is set to constant value 100 N·m. The Coulomb friction
model and the Stribeck model are used to describe the friction torque acting on the clutch
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Fig. 11 Steady state response of
Vr1 and Ff 1: zoom on Vr1 and
Ff 1

Fig. 12 Steady state response of
Vr2 and Ff 2: zoom on Vr2 and
Ff 2

discs, respectively. As can be seen in Fig. 13, the Stribeck effect increases the amplitude of
relative angular velocity of clutch discs. Compared with the Coulomb friction model, during
the slipping phase of clutch, the negative gradient of dynamic friction torque with relative
angular velocity will worsen the clutch oscillation.

4.3 Case 3

The vehicle is assumed to move over a horizontal road surface with ice along a straight line,
as such the friction coefficient for the road will be reduced. Simulations are carried out using
the friction coefficient determined via (3) with a μ0 value of 0.1 and a μ value of 0.07. Typ-
ical value of rolling resistance coefficient δ is still set to 0.005 m. The output torque from
engine Te is set to −168.48 N·m. This value is chosen as it represents the smallest value
at which periodic stick-slip can be identified in the simulation results. The negative torque
implies that the vehicle is a rear-drive-wheel vehicle moving in the opposite direction to
cases 1 and 2. The parameters determined via (5) with a TS value of 400 N·m and a TC value
of 320 N·m. In Fig. 14, on steady state conditions, the simulation results for the relative an-
gular velocity and clutch torque are shown, demonstrating that the clutch discs remain stick
with each other all the time. As depicted in Figs. 1 and 2, during driving the transmission
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Fig. 13 Time history of θ̇r and
Tf

Fig. 14 Steady state response of
θ̇r and Tf : zoom on θ̇r and Tf

Fig. 15 Steady state response of
Vr1 and Ff 1: zoom on Vr1 and
Ff 1

will impart a driving torque to the rotating wheel and thus the rotation of the driven wheel
is coupled to the rotation of the transmission part. As the angular velocity of the wheel in-
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Fig. 16 (a) Time history of θ̈1.
(b) Steady state response of θ̈1:
zoom on θ̈1

Fig. 17 (a) Time history of FN1
and FN2. (b) Steady state
response of FN1 and FN2: zoom
on FN1 and FN2

creases, a driving force is generated that tends to move the contact patch forward relative to
the wheel center. Based on the above fact and the results achieved as illustrated in Figs. 15,
16 and 17, it can be concluded that the occurrence of the stick-slip transitions between the
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Fig. 18 Time history of Te and
(θ̇e − θ̇c1): zoom on Te and
(θ̇e − θ̇c1)

Fig. 19 Time history of ‖Φ‖

front wheel and road surface is influenced by the difference of static and dynamic friction
coefficients of the road surface. This interacts with torsional vibrations of the powertrain and
the variation of pitch angular acceleration to produce a time varying wheel force, resulting in
stick-slip. Thus, the above numerical results obtained can be used for interpretation of power
hop phenomena with pitch oscillation superimposed on the forward motion of vehicles [41].

As the effect of engine harmonics on oscillations of driveline is taken into consideration,
for simulations the parameter T0 is set to 60 N·m. As shown in Fig. 18, the fluctuating engine
torque acts as a source of the excitation of torsional vibration in the driveline system.

Figure 19 shows the drift of constraint equations achieved by the Baumgarte stabilization
technique can be limited to a small scale (‖Φ‖ < 10−4 m).

5 Conclusions

This paper presents an effective model and formulation of the longitudinal dynamics
of the vehicle affected by the torsional dynamics of powertrain transmission. The system
is modeled as a multi-rigid-flexible-body system with bilateral constraints. The proposed
model is composed of vehicle body, wheels and suspension system as well as a simplified
powertrain system with clutch. Based on the non-smooth dynamics approach, the dynam-
ical equations of the system with normal and tangential contact forces are derived at the
acceleration-force level using the Lagrange multiplier technique, and geometric constraints
of the translational joints are considered as bilateral constraints. Friction forces between
wheels and road surface, as well as friction torque from the clutch, are included as the gen-
eralized frictional forces, which lead to the discontinuity of the dynamical equations.
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Firstly, the Coulomb friction law is applied to the frictional contacts between wheels
and road surface. Coulomb’s law and Stribeck’s friction model are used to describe the
friction torque acting on the clutch, respectively. Complementary relations between friction
saturation and tangential accelerations are formulated. Additionally, the complementary for-
mulations of friction between wheels and road surface are established to determine state
transitions from pure rolling to slipping. Next, by introducing the Baumgarte stabilization
method into the non-smooth equations of motion, the problem of the stick-slip transitions
between wheels and road surface and in the clutch is solved as a LCP. Based on event-
driven schemes, the numerical algorithm efficiently detects the stick-slip transitions, which
periodically occur between wheels and road surface and in the clutch for specified input
torque and friction coefficients. By analyzing the results numerically obtained under certain
conditions, it demonstrates that the stick-slip motions (clutch judder) between two clutch
discs are triggered and significantly influenced by the clutch friction torque. Compared with
the Coulomb friction model, the Stribeck effect increases the amplitude of relative angu-
lar velocity of clutch discs. Throughout the three cases studied, it is demonstrated that the
occurrence of periodical stick-slip motions between wheels and road surface is closely de-
pendent on torsional dynamics of powertrain transmission and the friction characteristics
of road surface. The influence of engine harmonic on the powertrain dynamics has been
numerically investigated.

The approach proposed in this paper is also suitable for the study of the longitudinal
dynamics of the rear-drive-wheel or all-drive-wheel vehicles. It is used to investigate the
friction-induced stick-slip phenomena in the contact patch between wheels and road sur-
face, and also on the contact interface between two clutch discs. Furthermore, regarding the
friction models mentioned above, Coulomb model shows acceptable results, but the friction
behavior in the facing materials is highly dependent on relative velocity and temperature of
facing materials. Therefore, one alternative for future studies is the use of different friction
models in the dry clutch and tire modeling [42, 43].
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