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Abstract Knowledge of muscle forces and joint reaction forces during human movement
can provide insight into the underlying control and tissue loading. Since direct measurement
of the internal loads is generally not feasible, non-invasive methods based on musculoskele-
tal modeling and computer simulations have been extensively developed. By applying ob-
served motion data to the musculoskeletal models, inverse dynamic analysis allow to deter-
mine the resultant joint torques, transformed then into estimates of individual muscle forces
by means of different optimization procedures. Assessment of the joint reaction forces and
other internal loads is further possible. Comparison of the muscle force estimates obtained
for different modeling assumptions and parameters in the model can be valuable for the
improvement of validity of the model-based estimations. The present study is another con-
tribution to this field. Using a sagittal plane model of an upper limb with a weight carried in
hand, and applying the data of recorded flexion and extension movement of the upper limb,
the resultant muscular forces are predicted using different modeling assumptions and simu-
lation tools. This study relates to different coordinates (joint and natural coordinates) used
to built the mathematical model, muscle path modeling, muscle decomposition (change in
number of the modeled muscles), and different optimization methods used to share the joint
torques into individual muscles.
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1 Introduction

Knowledge of muscle forces and joint reaction forces during human movement can provide
insight into the underlying neural control and tissue loading, and can thus be of great impor-
tance for the design of prostheses, development of post-operative regimes, and assessment
of risk of damage of ligaments during various sport activities. Since direct measurement of
the internal loads is generally not feasible, non-invasive methods based on musculoskeletal
modeling and computer simulations have been extensively developed [1–3].

The inverse dynamics technique applied to musculoskeletal models is used extensively
to calculate the muscular joint torques required to generate an observed motion. Since this
gives only a very general information about intensity of the required actuation, the muscular
loads are then shared, by means of static optimization procedures [4–7], into the individ-
ual muscles whose tensile forces acting on the bones (via tendons) exert moments about
the joints of the skeletal system. Assessment of internal loads within the joints, influenced
by the muscle forces, is further possible. Irrespective of the lack of studies reporting suc-
cessful experimental validation of the model-based estimates of muscle forces, a continuing
interest and substantial progress in the development of musculoskeletal systems modeling,
identification and simulation is observed [5, 6, 8–12], devoted to improving accuracy of the
solutions.

The muscle force estimates resulted from the inverse dynamics-based static optimization
are sensitive to various issues [6]. Several investigations studied the sensitivity of the results
to anthropometrical parameters used in the human models. Important is accurate identifica-
tion of the origin and insertion points [13, 14] and the muscle paths relative to the skeleton
[13, 15, 16], which determine the muscle moment arms around the joints, and as such, in-
crease/decrease the muscle force estimates. The magnitudes of muscle force estimates are
also sensitive to the muscle maximum isometric stresses and physiological cross-sectional
areas [17]. Inclusion of a model of muscle-tendon dynamics can also have significant effects
on the results [10, 17–19]. Multiple objective functions applied in the optimization have also
been proposed and tested with respect to muscle force sharing problem [4]. Finally, accuracy
of the experimental data used within the model is proven to be of paramount importance for
the accurate muscle force estimations [20]. A thorough discussion on the mentioned aspects
of model-based estimation of muscle forces exerted during movements, with a wide review
of the literature in the field, is provided in [6].

Comparison of the muscle force estimates obtained for different modeling assumptions,
different objective functions used in the optimization methods, and slightly altered parame-
ters and/or experimental data used in the models can be valuable for the improvement of
validity of the model-based estimations. The present study is another contribution to this
field. Using a sagittal plane model of an upper limb with a weight carried in hand, and
applying the data of recorded flexion and extension movement of the upper limb, the re-
sultant muscular forces (and joint reaction forces) are predicted using different modeling
assumptions and simulation tools, and the results are compared to each other. Two different
mathematical models of the limb are tested, derived, respectively in joint and natural co-
ordinates. Influence of modeling of musculotendon paths near the joints is then examined,
the problem raised previously in, e.g. [13, 15, 16]. The comparative study include also in-
fluence of muscle decomposition (change in number of the modeled muscles), and different
optimization methods used to share the joint torques into the individual muscles.
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2 The upper limb model

The upper limb musculoskeletal model used in this study is seen in Fig. 1. It is designed
as a planar kinematic structure composed of the arm (segment S1) and forearm together
with a weight carried in hand (treated as one segment S2) connected by the elbow (ideal
hinge) joint E, and then attached to the trunk (segment S0) through the shoulder (another
ideal hinge) joint S. The S joint follows a specified in time (measured) motion rSd(t) =
[xSd(t) ySd(t)]T , and the n = 2 coordinates that describe the upper limb position are q =
[ϕ1 ϕ2]T , where ϕ1 and ϕ2 are angles that measure deviations of the segments from the
vertical downward positions. The multibody system is actuated by k = 8 muscles, numbered
from m1 to m8 in Fig. 1, and as such the system in overactuated, k > n.

It was long since it had been documented that assumptions used to define the muscu-
lotendon paths (and consequently moment arms) near the joints are of critical importance
for the musculoskeletal model behavior and reliability of the consequent muscle force esti-
mates [13, 15, 16]. In many applications, the musculotendon paths are defined as the lines
connecting the actual origin and insertion points of the muscles. Such practice is neither
physiologically grounded nor mechanically correct, however. The mechanical consequence
is that, in some particular configurations, the muscle force arms with respect to the joints
may be very small or even vanishing. These effects make estimation of muscle forces ill
posed or at least unreliable at these specific configurations. The situation is illustrated in
Fig. 2 for muscles m5 (attached to S0 and S2 segments) and m6 (attached to S1 and S2
segments). While in configuration seen in Fig. 2a, the muscles can exert moment about the
elbow joint E, and as such can contribute to the torque required to accelerate extension (or
decelerate flexion) movements in the joint, in configuration seen in Fig. 2b, this would re-
quire very large/infinite muscle forces due to the fact that their moment arms with respect to
the joint are vanishing.

The effective musculotendon path model is defined by assuming effective origin and/or
insertion points and drawing a straight line between these points. Implicit in this model is
that, in the neighborhood of the joint, the muscle path arcs around a cylindrical (spherical
in 3D models) shell so that a certain moment arm is reached irrespective to the relative con-
figuration of segments of the musculoskeletal model. The effective path model for muscles
m5 and m6 crossing the elbow joint E is illustrated in Fig. 3. Now, the muscles can exert
moment about the joint in the whole range of the joint angle. Evidently, the muscle path

Fig. 1 The upper limb musculoskeletal model
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Fig. 2 The origin-insertion
model of muscle path

Fig. 3 The effective muscle path
model

model influences the effective muscle length, and the effective origin/insertion points need
to be specified (and redefined) for each configuration. There is always some modeling effort
concerned with these ‘geometrical’ issues, which will not be reported in this contribution
for shortness.

The muscle moment arms, derived from musculoskeletal anatomy, may or may not de-
pend on joint angles. In the upper limb model used in this study, reassumed in Fig. 4, con-
stant and equal values of radiuses defining the force arms of muscles m4, m5, m7, and m8
with respect to the shoulder joint S were assumed, rS4 = rS5 = rS7 = rS8 = 25mm. The
radiuses rEj of muscles m1, m2, m3, m4, m5, and m6 that exert torques about the elbow
joint E, j = 1, . . . ,6, were taken after [21–23] as dependent on the relative angle α between
the arm and forearm, which is represented in Fig. 5. In calculations, the characteristics were
used in the form of cubic polynomials

rEj (α) = ajα
3 + bjα

2 + cjα + dj (1)

and the coefficients aj , bj , cj , and dj are reported in Table 1.
The physiological cross-sectional areas Aj (abbreviated hereafter from PCSAj ) used in

calculations for the muscles m1, . . . ,m8 are seen in Table 1. Then we assumed the same
physiological allowable minimal and maximal values of muscle stresses for all the muscles,
respectively, σmin = 0.01 MPa and σmax = 0.75 MPa, which determine the allowable mini-
mal and maximal values of muscle forces, Fj min = Ajσmin and Fj max = Ajσmax. Finally, in
Table 2, the geometric and inertial parameters of segments S1 and S2 are represented.
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Fig. 4 The effective musculotendon paths of the upper limb model

Fig. 5 The muscle force arms in the elbow joint

3 Mathematical modeling

For comparison reasons of this study, two qualitatively different mathematical models of
the upper extremity were built, which introduce the dynamic equations derived in terms
of, respectively, joint coordinates and natural coordinates. While the first coordinate type
is commonly used in biomechanical system modeling [1–3, 24–26], implementations of
the other coordinates in biomechanics are rather rare [5, 12, 27–29]. By comparing the
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Table 1 Effective path musculotendon parameters used in the model

Muscle A a b c d

mm2 mm/deg3 mm/deg2 mm/deg mm

m1: BR 150 5.864E−05 −2.500E−02 2.831E+00 −2.760E+01

m2: PT 300 1.852E−05 −7.460E−03 8.405E−01 −8.600E+00

m3: B 500 4.321E−05 −1.587E−02 1.671E+00 −2.020E+01

m4: BBC 750 4.321E−05 −1.976E−02 2.587E+00 −5.740E+01

m5:TBC c.lon. 500 −6.173E−06 2.698E−03 −2.754E−01 2.920E+01

m6: TBC c.lat.med. 900 −6.173E−06 2.698E−03 −2.754E−01 2.920E+01

m7: E 1500 – – – –

m8: F 1500 – – – –

Table 2 Mechanical parameters
of the model segments Segment m l ξC ηC JC

kg m m m kg m2

S1 3.2 0.311 0.184 −0.016 0.035

S2 5.2 0.295 0.256 −0.005 0.022

simulation results obtained using these two mathematical models, one can easily eliminate
possible defects in the models. Apart from this aim, the virtual objective of this study was to
verify a supposition that the optimization results may depend on the choice of type/number
of variables used to describe configuration of biomechanical models, which influence the
structure and number of the dynamic equations that arise.

The general schemes for deriving the dynamic equations of biomechanical systems, es-
pecially for planar structures such as that studied in this paper, are evidently not new and
well documented in the literature. The present formulations for the upper limb planar model
were built using the codes described previously in [26] and [29], when using, respectively,
the joint and natural coordinates. Therefore, in the following, we recall only the basic ideas
of the methods, which are necessary for completeness of this presentation, and concentrate
more on the details related to the upper limb model at hand.

3.1 Dynamic equations in joint coordinates

The dynamic equations of the upper extremity upon study, in terms of n = 2 joint coor-
dinates q = [ϕ1 ϕ2]T (Fig. 6a), can conveniently be derived using the projective scheme
described in [26]. Following this procedure, the starting point are the dynamic equations
in N = 3n = 6 absolute coordinates p = [xC1 yC1 θ1 xC2 yC2 θ2]T , where xCi , yCi are the
coordinates of the mass centers Ci in the inertial frame XY , and θi are the orientation an-
gles (here θi = ϕi) of upper extremity segments S1 and S2 (Fig. 6b). More strictly, from the
dynamic equations in p, which can generally be written as

Mp̈ = fg − CT λ + Bσ (2)

one needs to introduce explicitly only M, fg , and B, where M = diag(m1,m1, JC1,m2,

m2, JC2) is the generalized mass matrix related to p, mi , and JCi are the mass and mass
moment of inertia with respect to Ci of the segments, fg = [0 −m1g 0 0 −m2g 0]T



Influence of modeling and computational issues on muscle force estimates 479

Fig. 6 The joint and absolute coordinates

contains the gravitational forces, fσ = Bσ is the N -vector of generalized control force,
and B(p) is the N × m-dimensional matrix of distribution of m = 8 control inputs σ =
[σ1 · · · σ8]T , where σj = Fj/Aj are the muscle stresses, j = 1, . . . ,8. Then in (2),
fλ = −CT λ is the N -vector of generalized reaction force due to l = 4 constraints on the
segments, z = �(p) = 0, where C(p) = ∂�/∂p is the l × N (4 × 6) constraint matrix, and
λ = [λ1 λ2 λ3 λ4]T contains the constraint reaction forces. Neither expanded forms of con-
straints �(p) = 0 nor C are of use in the sequel, however, and they need not to be formulated
at all.

As seen, the formulation of M and fg is evident. The formulation of B is a little more
challenging [26]. Let us illustrate this for the case of B(1)—the first column of B related to
σ1(F1). The force F1 is attached to segments S1 (effective origin point O1) and S2 (insertion
point I1); see Figs. 7a, b. The inertial frame coordinates of O1 and I1 are:

xO1 = xS + ξO1 sinϕ1 + ηO1 cosϕ1,

yO1 = yS − ξO1 cosϕ1 + ηO1 sinϕ1,
(3)

xI1 = xS + l1 sinϕ1 + ξI1 sinϕ2 + ηI1 cosϕ2,

yI1 = yS − l1 cosϕ1 − ξI1 cosϕ2 + ηI1 sinϕ2

where xS and yS are the inertial frame coordinates of the shoulder joint S, ρO1 = [ξO1 ηO1]T
and ρI1 = [ξI1 ηI1]T are the coordinates of O1 and I1 in the local coordinate frames Sξ1η1

and Eξ2η2, respectively, and l1 is the length of S1 (distance between S and E joints). The
first column of B, which defines the generalized control force due to σ1, fσ1 = B(1)σ1, is then

B(1) = A1

⎡
⎢⎢⎢⎢⎢⎢⎣

cosα1

− sinα1

(yC1 − yO1) cosα1 − (xO1 − xC1) sinα1

− cosα1

sinα1

−(yC2 − yI1) cosα1 + (xI1 − xC2) sinα1

⎤
⎥⎥⎥⎥⎥⎥⎦

(4)

where the positions rC1 = [xC1 yC1]T and rC2 = [xC2 yC2]T of mass centers C1 and C2,
respectively, can be determined from (3) using ρC1 = [ξC1 ηC1]T and ρC2 = [ξC2 ηC2]T
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Fig. 7 The muscle forces acting on the segments

instead of ρO1 = [ξO1 ηO1]T and ρI1 = [ξI1 ηI1]T , and the sine and cosine of α1 (the muscle
line inclination angle with respect to the vertical) are:

sinα1 = xI1 − xO1√
(xI1 − xO1)2 + (yO1 − yI1)2

; cosα1 = yO1 − yI1√
(xI1 − xO1)2 + (yO1 − yI1)2

. (5)

Following this procedure for the other muscles, all m columns of B can be found, and then

fσ =
m∑

j=1

fσj =
m∑

j=1

B(j)σj = Bσ . (6)

In further derivations the augmented joint coordinate method [30] is applied, which
proves especially useful for planar biomechanical models both to obtain the dynamic equa-
tions in joint coordinates and to determine the joint reactions [26, 31]. In short, while the
traditional joint coordinate scheme [32, 33] uses the relationships between the (dependent)
absolute coordinates p and the (independent) joint coordinates q, which are p = g(q)+ η(t)

for the case at hand and express the joint constraint equations given explicitly [32], the
augmented form of the relationships is

p = g(q, z) + η(t) (7)

where z are the open-constraint coordinates that describe the prohibited relative motions in
the joints (Fig. 6b), and the drift in time η(t) is induced by attachment of the upper extremity
to the moving support S, whose motion is specified in time, rSd(t) = [xSd(t) ySd(t)]T . Ac-
tually, since z = 0, (7) is virtually equivalent to p = g(q) + η(t), and the dependence on z is
introduced only to grasp the prohibited directions related to z, which are also the directions
of the respective constraint reactions λ [30]. A useful feature of the present formulation is
also that the open-constraint coordinates need to be introduced only in those joints in which
the reaction forces are to be determined. As an example, let us ‘open’ only the E joint, and
keep ‘closed’ the connection in the S joint. As such, we involve only z∗ = [z3 z4]T , seen
in Fig. 7b, and the related l∗ = 2 constraint reactions in the joints are λ∗ = [λ3 λ4]T . The
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relationship (7) is then

p =

⎡
⎢⎢⎢⎢⎢⎢⎣

xC1

yC1

θ1

xC2

yC2

θ2

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

ξC1 sinϕ1 + ηC1 cosϕ1

−ξC1 cosϕ1 + ηC1 sinϕ1

ϕ1

l1 sinϕ1 + z3 + ξC2 sinϕ2 + ηC2 cosϕ2

−l1 cosϕ1 + z4 − ξC2 cosϕ2 + ηC2 sinϕ2

ϕ2

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

xS(t)

yS(t)

0
xS(t)

yS(t)

0

⎤
⎥⎥⎥⎥⎥⎥⎦

= g(q, z∗) + η(t). (8)

The augmented form of the explicit constraint equations (7) allows one to introduce two
matrices that are used in the further formulations, i.e.,

D =
(

∂g
∂q

)∣∣∣∣
z=0

and E∗ =
(

∂g
∂z∗

)∣∣∣∣
z=0

. (9)

The N × n (6 × 2) matrix D, which arises also from the traditional formulation p = g(q) +
η(t) as D = ∂g/∂q, is an orthogonal complement matrix to the l × N (4 × 6) constraint
matrix C introduced in (2), that is CD = 0 ⇔ DT CT = 0. By introducing then γ (q, q̇, t) =
Ḋq̇ + η̈, which arise from p̈ = Dq̈ + γ , the dynamic equations in joint coordinates q are
produced in the following generic matrix form

M̄(q)q̈ + d̄(q, q̇, t) = f̄g(q) + B̄(q)u (10)

where M̄ = DT MD is the n×n (2×2) generalized mass matrix related to q, d̄ = DT Mγ and
f̄g = DT fg are the n-vectors of generalized forces due to the centrifugal accelerations and
gravitational forces, respectively, and B̄ = DT B is the n × m (2 × 8) matrix of distribution
of control inputs σ in the directions of q. The l∗ = 2 constraint reactions λ∗ in the directions
z∗ can then be determined from (see [26, 30, 31] for more details)

λ∗(q, q̇, q̈,σ , t) = E∗T
[
fg + Bσ − M(Dq̈ + γ )

]
. (11)

As seen, what is needed for the derivation of dynamic equations in q, in the symbolic
form of (10), are M, fg , and B from the absolute coordinate dynamics formulation of (2),
and then D and γ arising from p = g(q) + η(t) as D = ∂g/∂q and γ = Ḋq̇ + η̈. The aug-
mented form (7) of the explicit constraint equations, p = g(q, z∗) + η(t), leads to the effec-
tive formula (11) for determination of reaction forces in the selected joints (where z∗ are
introduced). Following the formulation (8) for the studied upper limb, the related matrices
D and E∗ are:

D =

⎡
⎢⎢⎢⎢⎢⎢⎣

ξC1 cosϕ1 − ηC1 sinϕ1 0
ξC1 sinϕ1 + ηC1 cosϕ1 0

1 0
l1 cosϕ1 ξC2 cosϕ2 − ηC2 sinϕ2

l1 sinϕ1 ξC2 sinϕ2 + ηC2 cosϕ2

0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

; E∗ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0
1 0
0 1
0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(12)

and the n-dimensional vector γ = Ḋq̇ + η̈ can then easily be obtained after deriving Ḋ
from D, and introducing

...
η = [ẍS ÿS 0 ẍS ÿS 0]T .
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3.2 Dynamic equations in natural coordinates

In this formulation, the human upper extremity model is described by six natural coordinates
(xi, yi), i = 1,2,3, which are Cartesian coordinates of the basic points seen in Fig. 8 (located
at the S and E joints, and at the wrist point W ). As before, the (effective) origin and insertion
points of the muscles are defined in the local reference frames attached to the arm (Sξ1η1)

and forearm (Eξ2η2). The gravitational and the muscle forces exerted on the segments need
then to be distributed between its basic points [34].

Using the n̂ = 6 natural coordinates x = [x1 y1 x2 y2 x3 y3]T , the dynamic equations of
motion for the model can be written in the generic form

M̂ẍ = f̂g + f̂m − ĈT λ̂ (13)

where M̂ is the global mass matrix of the system, f̂g is the vector of gravitational forces, f̂m
denotes the vector of muscle forces, Ĉ is the Jacobian matrix of constraints on x, �̂(x, t) = 0
and Ĉ = ∂�̂/∂x, and λ̂ is the vector of associated Lagrange multipliers. The vector of La-
grange multipliers is proportional to the reaction forces associated with the kinematical
constraints originating from the constant distance conditions between two successive ba-
sic points, and from the rheonomic constraints imposed on the shoulder joint motion, i.e.,

�̂ =

⎡
⎢⎢⎣

(x2 − x1)
2 + (y2 − y1)

2 − l2
1

(x3 − x2)
2 + (y3 − y2)

2 − l2
2

x1 − xSd(t)

y1 − ySd(t)

⎤
⎥⎥⎦ = 0 (14)

where l1 and l2 are the distances between the basic points, and rSd(t) = [xSd(t) ySd(t)]T is
the description of motion of the shoulder joint which coincides with the first basic point.
Note that, in the Lagrange multipliers λ̂ = [λ̂1 λ̂2 λ̂3 λ̂4] introduced in (13), λ̂3 and λ̂4 stand
for the horizontal and vertical components of the reaction force in the shoulder joint S, and
λ̂1 and λ̂2 are associated with the internal forces in segments S1 and S2 (note that λ̂1 and
λ̂2 are not physical forces), respectively, between the S and E, and E and W points. The
multipliers can then be used to calculate the reaction force in the elbow joint E. For a more

Fig. 8 The upper extremity
model defined in terms of natural
coordinates
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detailed discussion on the problem of determination of joint reactions related to natural
coordinate formulations, the reader is referred to, e.g. [5, 34].

The components of (13), expressed in an expanded form, are as follows [34]:

M̂ =

⎡
⎢⎢⎢⎢⎣

m1 − 2μ1 + j1 0 μ1 − j1 −ν1 0 0
0 m1 − 2μ1 + j1 ν1 μ1 − j1 0 0

μ1 − j1 ν1 j1 + m2 − 2μ2 + j2 0 μ2 − j2 −ν2−ν1 μ1 − j1 0 j1 + m2 − 2μ2 + j2 ν2 μ2 − j2
0 0 μ2 − j2 ν2 j2 0
0 0 −ν2 μ2 − j2 0 j2

⎤
⎥⎥⎥⎥⎦
,

(15)

f̂g =

⎡
⎢⎢⎢⎢⎢⎢⎣

ν1g

−(m1 − μ1)g

−(ν1 − ν2)g

−(μ1 − μ2 + m2)g

−ν2g

−μ2g

⎤
⎥⎥⎥⎥⎥⎥⎦

; ĈT =

⎡
⎢⎢⎢⎢⎢⎢⎣

2(x1 − x2) 0 1 0
2(y1 − y2) 0 0 1
2(x2 − x1) 2(x2 − x3) 0 0
2(y2 − y1) 2(y2 − y3) 0 0

0 2(x3 − x2) 0 0
0 2(y3 − y2) 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(16)

where μi = miξCi
/ li , νi = miηCi

/ li , ji = Ii/ l2
i , for i = 1,2. The individual muscle forces,

set as Fj = σjAj (j = 1, . . . ,8), are distributed in the following way:

f̂m =

⎡
⎢⎢⎢⎢⎢⎢⎣

f11 f12 f13 f14 0 0 f17 f18

f21 f22 f23 f24 0 0 f27 f28

f31 f32 f33 f34 f35 f36 f37 f38

f41 f42 f43 f44 f45 f46 f47 f48

f51 f52 f53 f54 f55 f56 0 0
f61 f62 f63 f64 f65 f66 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1σ1

A2σ2

A3σ3

A4σ4

A5σ5

A6σ6

A7σ7

A8σ8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= B̂σ (17)

where as before σ = [σ1 · · · σ8]T . The coefficients fij (i = 1, . . . ,6, j = 1, . . . ,8) which
cast the muscle forces into the directions of natural coordinates can be expressed as follows:

f1j =
(

1 − ξ
j

1

l1

)
cosαj − η

j

1

l1
sinαj ,

f2j = η
j

1

l1
cosαj +

(
1 − ξ

j

1

l1

)
sinαj ,

f3j = ξ
j

1

l1
cosαj + η

j

1

l1
sinαj +

(
1 − ξ

j

2

l2

)
cosαj − η

j

2

l2
sinαj ,

(18)

f4j = −η
j

1

l1
cosαj + ξ

j

1

l1
sinαj + η

j

2

l2
cosαj +

(
1 − ξ

j

2

l2

)
sinαj ,

f5j = ξ
j

2

l2
cosαj + η

j

2

l2
sinαj ,

f6j = −η
j

2

l2
cosαj + ξ

j

2

l2
sinαj ,

where αj is the angle between the line of action of force of muscle j and the vertical axis of
the global reference frame, the same as those introduced in (5) but defined now with the use
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of x (which will not be reported here for shortness), and (ξ
j
s , η

j
s ) are the coordinates (in the

local reference frames Sξ1η1 and Eξ2η2) of the effective origin/insertion points of muscle j

at segment S1 (s = 1) or S2 (s = 2). The symbolic form of (13) is finally

M̂ẍ = f̂g + B̂(x)u − ĈT (x)λ̂. (19)

4 Kinematic data used

The actual performance of flexion-extension movement of the upper limb with a weight
(mw = 2.5 kg) carried in hand was recorded using a set of digital cameras, and the sampling
frequency of measured data was 50 Hz. By tracking the positions of markers placed at
the S,E and W points (Fig. 8), we obtained this way first the discrete trajectories x∗

d(t)

with K = 90 points for the recorded movement period tK = 1.79 s, and then calculated
q∗

d(t). The discrete trajectories were then approximated using cubic splines to generate the
continuous qd(t) and xd(t), respectively, and, on this basis, q̇d(t) and q̈d(t) (ẋd(t) and ẍd(t))

could be obtained. Smoothness of the characteristics was further improved by applying the
procedure once again, that is, using a bigger number (K ′ = 360) of points from the first-
fit approximation as input data for the second approximation. In this way, the sampling
frequency of ‘measured’ data was ‘improved’ to 200 Hz, which is of special importance
for improvement of smoothness of q̈d(t) and ẍd(t), being by assumption linear function
between the data points when q∗

d(t) and x∗
d(t) are approximated by splines. Some of the

resulted data used in the inverse dynamics simulation are seen in Fig. 9.

5 Muscle force estimation

As defined above, in this study, muscle stresses are considered as controls of the developed
upper extremity model, σ = [σ1 · · · σ8]T , Fj = σjAj (j = 1, . . . ,8). Due to the control
overactuation in musculoskeletal systems, the (redundant) control problem is usually solved
using optimization techniques [1–7, 35–38] that apply some predetermined criteria to share
the muscular joint torques from the inverse dynamics analysis into the individual muscle
efforts. Most often, the redundancy of muscular load sharing is addressed by minimizing a
cost (or objective) function appropriately selected for the movement under investigation.

Referred to the dynamics formulation in joint coordinates, (10), the optimization problem
can be stated in the following way:

⎧⎪⎪⎨
⎪⎪⎩

minimize J (σ ),

subject to B̄(qd)σ = M̄(qd)q̈d + d̄(qd , q̇d , t) − f̄g(qd)

and σ min ≤ σ ≤ σ max,

(20)

where J is a chosen cost (objective) function, σ min and σ max are the physiologically allow-
able minimal and maximal values of the muscle stresses, and qd(t), q̇d(t), and q̈d(t) are
the measured motion characteristics. In this way, σ d(t) are found that minimize the cost
function J (σ ), subject to both the equality constraints B̄σ = M̄q̈d + d̄ − f̄g given by the
equations of motion and the additional boundary condition σ min ≤ σ ≤ σ max. When referred
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Fig. 9 Examples of motion characteristics used in calculations

to the dynamics formulation in natural coordinates, (19), the optimization problem modifies
to ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

minimize J (σ ),

subject to
[
B̂(xd)

...−CT (xd)
][

σ

λ̂

]
= M̂ẍd − f̂g

and σ min ≤ σ ≤ σ max,

(21)

where xd(t) and ẍd(t) are the measured motion characteristics. Here, while only the muscle
stresses are optimized to minimize J (σ ), σ d(t) are found together with λ̂d(t).

A range of cost functions have been introduced in the literature, followed different (phys-
iologically based) criteria; see, e.g. [4] and [6] for their reviews. For the control problem
stated in this contribution, we applied the cost function proposed by Crowninshied and
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Brand [37], which is one of the most frequently employed due to its physiological back-
ground related to muscle fatigue,

J =
m∑

j=1

σ
p

j (22)

and the power values examined in the sequel were p = 1,2,3,4, . . . ,P . Other alternatives
are

J =
m∑

j=1

(σjAj )
p =

m∑
j=1

F
p

j (23)

in which the muscle forces Fj = σjAj are directly applied, and

J =
m∑

j=1

(σjAjvj )
p =

m∑
j=1

(Fjvj )
p =

m∑
j=1

N
p

j (24)

where vj is the shortening velocity of muscle j , and in which the muscle powers Nj = Fjvj

are applied. With reference to the joint coordinate formulation of (10), we tested also the
pseudoinverse method motivated in [1, 39], which allows one for a unique mathematical
solution for σ d(t) from

σ d(t) = B̄†(qd)
[
M̄(qd)q̈d + d̄(qd , q̇d , t) − f̄g(qd)

]
(25)

where B̄† = B̄T (B̄B̄T )−1 is the m × n (8 × 2) pseudoinverse (Moore–Penrose generalized
inverse [40]) of the rectangular n×m (2×8) matrix B̄. As proved in [39], the pseudoinverse
technique automatically computes the solution which minimizes the quadratic form (p = 2)

of Crowninshield–Brand function given in (22). Evidently, since both positive and negative
muscle forces may be delivered from (25), a post-processing procedure needs then to be
applied to keep all the muscle stresses within the boundary constrains σ min ≤ σ ≤ σ max

(see, e.g. [26] where the pseudoinverse methodology together with such a post-processing
procedure were applied).

6 Comparative analysis

6.1 Joint versus natural coordinates

There has recently been observed [41] that optimization solutions may depend on the choice
of the coordinates used to describe configuration of biomechanical models. For a five-
degree-of-freedom planar musculoskeletal model of human lower extremity, composed of
three rigid bodies and actuated by nine Hill-type musculotendon units, a parametric opti-
mization problem was solved using two dynamic formulations: one defined in joint (gen-
eralized) coordinates and the other defined in natural coordinates. An advanced muscle
model was considered, including its force-length-velocity properties as well as the acti-
vation and contraction dynamic characteristics. The parametric optimization problem was
then solved for 671 and 854 design variables, respectively, in the generalized and natural
coordinate environments. The individual muscle force distribution during raising a leg up
occurred to be different for both solutions. Since the searching spaces for optimal solu-
tions differ in dimension, one of the final conclusions in the mentioned paper [41] was
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Fig. 10 Variations of muscle forces obtained from formulations in q and x coordinate

that the computed differences stem from the numerical reasons. In this study, we intended
to verify these observations using the two musculoskeletal models of the upper extrem-
ity, defined in joint coordinates q (Sect. 3.1) and natural coordinates x (Sect. 3.2), respec-
tively.

For the two models, the optimization procedures applied were as defined in (20) and
(21), respectively, for the dynamics formulation in q and x, and the cost function used in
both cases was that of Crowninshied and Brand defined in (22) for p = 2. The results of
the computations are reported in Fig. 10 for muscle forces F1, . . . ,F6 (all which exert mo-
ments about the elbow joint). As seen, the both optimal solutions match each other quite
well. From one point of view, the similar (practically equivalent) optimization results ob-
tained by using different modeling methodologies may be considered as a validation of
both approaches and the applied computational codes. On the other hand, the results do
not confirm the observation that optimal solutions may depend on the choice of the co-
ordinate system. It must be noted, however, that the upper extremity model used in this
study was very simple, and neither the force-length-velocity properties of the muscles nor
their activation and contraction dynamics were involved (only 8 and 12 variables were op-
timized when solving the problem formulated in q and x coordinates, respectively). The
models used in [41] were much more complex, and much more variables were optimized.
The present observations drawn for the very simple model should not thus be general-
ized.
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Fig. 11 Muscle force estimates
for the effective (a) and actual (b)
insertion points of muscles m5
and m6

6.2 Muscle path modeling

As motivated in Sect. 2, muscle path modeling is of critical importance for reliability of
muscle force estimates. This concerns specifically the modeling assumptions used to define
the musculotendon paths near the joints, resulted in effective musculotendon path models
and their effective origin and/or insertion points, different from the actual ones. In the upper
limb model considered in our study, only two muscle attachment points were modeled as
fixed in the actual attachment points, that is the origin points of muscles F3 and F6. As seen
in Fig. 4, all the other attachment points are the effective ones, consequent to the modeled
muscle moment arms. The simulation results (not reported here for unimportance) proved
that the muscle force estimates were practically insensitive to reasonable changes in place-
ment of the origin points of muscles F3 and F6. The situation was totally different when
the muscle moment arms were changed—the muscle force estimates were very sensitive to
these changes. A specific analysis of this type is shown in Fig. 11, where the selected muscle
force estimates reported previously in Fig. 10, summarized here in graph (a), are confronted
to the results obtained assuming the straight musculotendon lines of muscles m5 and m6 as
seen in Fig. 2 (with no muscle moment arms assumed in E joint), the latter seen in graph (b).
As seen, due to the vanishing moment arms of muscles m5 and m6 they are unable to decel-
erate the flexion movement in E joint, see Fig. 2, and the optimization procedure leads to
non-feasible results (negative muscle forces).

6.3 Muscle decomposition

Another type of sensitivity analysis is reported in Fig. 12. Here, we considered the case
when muscle m4 (biceps brachii) was divided into two separate (identical) sub-muscles
with the same effective attachment points. Now, instead of m = 8 muscles, we considered
the optimization procedure for the model actuated with m′ = 9 muscles. As seen from the
graphs, the simulation results are substantially different. Firstly, the sum of forces in the sub-
muscles of m4, obtained from the nine-muscle model, is smaller then the force in muscle m4
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Fig. 12 Selected muscle force estimates for muscle m4 divided into two identical sub-muscles

obtained from the eight muscle model. The result seems evident as squared muscle stresses
were minimized according to (22) with p = 2. Then, in the nine-muscle model, we have
two high stresses (which are to be minimized) in the two sub-muscles against one such
stress in the eight muscle model. The reduced effort of the two sub-muscles of m4 need
then to be compensated by the increased effort of the other muscles who play similar role as
muscle m4.

6.4 Optimization methods

The last reported example of sensitivity analysis relate the influence of the cost function
used in the optimization procedure. In Fig. 13, we reported the results obtained for the
cost function of Crowninshied and Brand introduced in (24), for the three power values:
p = 1, p = 2 and p = 3. If p = 1, the optimization problem is linear, and the muscles
with largest product of moment arm and physiological cross-sectional area are recruited
first [42]. The courses of muscles m3, m4 and m5 obtained this way differ from the non-
linear solutions (for p = 2 and p = 3), in which the other muscles are recruited as well.
By contrast, the reaction forces in elbow joint E, influenced by the muscle forces, do not
change considerably for the three cases. We checked also the other cost functions reported
in (23) and (24), in each case observing considerable sensitivity of the results to the cost
function chosen. Finally, we tested the pseudoinverse scheme reported in (25) together with
the post-processing procedure to keep all the muscle stresses within the boundary constrains
σ min ≤ σ ≤ σ max. The results were identical to those obtained using the Crowninshied and
Brand cost function for p = 2, which is in accordance with the remarks given in [1].

7 Conclusion

In this study, we have shown that the muscle force sharing problem can be very sensitive to
the modeling assumptions used in building the musculoskeletal models. Of special impor-
tance were the assumptions used to define the musculotendon paths near the joints, resulted
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Fig. 13 Estimates of selected muscle forces and joint reactions using different optimization methods

in effective musculotendon path models and their effective origin and/or insertion points,
consequent to the non-vanishing muscle moment arms about the actuated joints. The results
were also very sensitive to the changes in number of the muscles modeled, obtained for
example after decomposing a given muscle into separate sub-muscles. Of great importance
was also the choice of the cost function employed in the optimization procedure to distribute
the joint torques into the individual muscles. The final conclusion is also that optimization
solutions do not depend on the choice of coordinate system, at least for the simple biome-
chanical model considered in this paper.
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