Skip to main content

Advertisement

Log in

Martensitic stainless steel AISI 420—mechanical properties, creep and fracture toughness

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

In this paper some experimental results and analyses regarding the behavior of AISI 420 martensitic stainless steel under different environmental conditions are presented. That way, mechanical properties like ultimate tensile strength and 0.2 percent offset yield strength at lowered and elevated temperatures as well as short-time creep behavior for selected stress levels at selected elevated temperatures of mentioned material are shown. The temperature effect on mentioned mechanical properties is also presented. Fracture toughness was calculated on the basis of Charpy impact energy. Experimentally obtained results can be of importance for structure designers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, T.L.: Fracture Mechanics, 2nd edn. CRC Press, New York (1995), pp. 366–411

    MATH  Google Scholar 

  • Annual Book of ASTM Standards: Metal Test Methods and Analytical Procedures, vol. 03.01. ASTM International, Baltimore (2005)

    Google Scholar 

  • Brnic, J., Niu, J., Turkalj, G., Canadija, M., Lanc, D.J.: Mater. Sci. Technol. 25(2), 175–178 (2009a)

    Google Scholar 

  • Brnic, J., Turkalj, G., Canadija, M., Lanc, D.: Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process. 499(1–2), 23–27 (2009b)

    Google Scholar 

  • Brnic, J., Turkalj, G., Canadija, M., Lanc, D.: ASME J. Eng. Mater. Technol. 132(2) (2010). doi:10.11151.4000669

  • Çetin, A., Tek, Z., Öztarhan, A., Artunç, N.: Surf. Coat. Technol. 201(19–20), 8127–8130 (2007)

    Article  Google Scholar 

  • Chao, Y.J., Ward, J.D., Sands, R.G.: Mater. Des. 28(2), 551–557 (2007)

    Article  Google Scholar 

  • Collins, J.A.: Failure of Materials in Mechanical Design, 2nd edn. Wiley, New York (1993), pp. 6–15

    Google Scholar 

  • Courtney, T.H.: Fundamental Structure-Property Relationships in Engineering Materials. ASM Handbook Materials Selection and Design, vol. 20. ASM International, Materials Park (1997), pp. 336–356

    Google Scholar 

  • Escudero, M.L., Belló, J.M.: Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process. 158(2), 227–233 (1992)

    Google Scholar 

  • Farahmand, B., Bockrath, G., Glassco, J.: Fatigue and Fracture Mechanics of High Risk Parts. Chapman & Hall, London (1997), pp. 13–99

    Book  Google Scholar 

  • Fidley, W.N., Lai, J.S., Onaran, K.: Creep and Relaxation of Nonlinear Viscoelastic Materials. Dover, New York (1989), pp. 1–21

    Google Scholar 

  • Fu, R.K.Y., Tang, D.L., Wan, G.J., Chu, P.K.: Surf. Coat. Technol. 201(9–11), 4879–4883 (2007)

    Article  Google Scholar 

  • Herting, G., Lindström, D., Wallinder, I.O., Leygraf, C.: J. Food Eng. 93(1), 23–31 (2009)

    Article  Google Scholar 

  • International standard ISO 15579:2000(E), Metalic materials—Tensile testing at low temperature (2000)

  • Kolukisa, S.: J. Mater. Process. Technol. 186(1–3), 33–36 (2007)

    Article  Google Scholar 

  • Kurt, B., Orhan, N., Somunkiran, I., Kaya, M.: Mater. Des. 30(3), 661–664 (2009)

    Article  Google Scholar 

  • López, D., Congote, J.P., Cano, J.R., Toro, A., Tschiptschin, A.P.: Wear 259(1–6), 118–124 (2005)

    Article  Google Scholar 

  • Pepelnjak, T., Barisic, B.: J. Strain Anal. Eng. Des. 44, 459–472 (2009)

    Article  Google Scholar 

  • Raghavan, V.: Materials Science and Engineering. Prentice-Hall of India, New Delhi (2004), pp. 287–289

    Google Scholar 

  • Redy, J.N.: Finite Element Method, 2nd edn. McGraw-Hill, New York (1993), pp. 3–63

    Google Scholar 

  • Roberts, R., Newton, C.: Weld. Res. Counc. Bull. 265, 1–18 (1981)

    Google Scholar 

  • Rozvany, G.I.N.: Structural Design via Optimality Criteria. Kluwer Academic, London (1989), pp. 1–20

    Book  MATH  Google Scholar 

  • Saxena, A.: Nonlinear Fracture Mechanics for Engineers. CRC Press, New York (1998), pp. 51–54

    MATH  Google Scholar 

  • Shekhter, A., Kim, S., Carr, D.G., Crocker, A.B.L., Ringer, S.P.: Int. J. Press. Vessels Piping 79(8–10), 611–615 (2002)

    Article  Google Scholar 

  • Shukla, A.: Practical Fracture Mechanics in Design, 2nd edn. Dekker, New York (2006), pp. 116–124

    Google Scholar 

  • Solecki, R., Conant, P.R.: Advanced Mechanics of Materials. Oxford University Press, New York (2003), pp. 141–142

    Google Scholar 

  • Stephens, R.I., Fatemi, A., Stephens, R.R., Fuchs, H.O.: Metal Fatigue in Engineering, 2nd edn. Wiley, New York (2001), pp. 1–16

    Google Scholar 

  • Tavares, S.S.M., Fruchart, D., Miraglia, S., Laborie, D.: J. Alloys Compd. 312(1–2), 307–314 (2000)

    Article  Google Scholar 

  • Timmins, P.F.: Failure Control in Process Operations. ASM Handbook Fatigue and Fracture, vol. 19. ASM International, Materials Park (1997), pp. 468–482

    Google Scholar 

  • Tuckart, W., Forlerer, E., Iurman, L.: Surf. Coat. Technol. 202(1), 199–202 (2007)

    Article  Google Scholar 

  • Xi, Y.-t., Liu, D.-x., Han, D.: Surf. Coat. Technol. 202(12), 2577–2583 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Brnic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brnic, J., Turkalj, G., Canadija, M. et al. Martensitic stainless steel AISI 420—mechanical properties, creep and fracture toughness. Mech Time-Depend Mater 15, 341–352 (2011). https://doi.org/10.1007/s11043-011-9137-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-011-9137-x

Keywords

Navigation