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Abstract

Phones for 239 non-annotated languages were selected by automatic segmentation based
on changes of energy in the time-frequency representation of speech signals. Phone bound-
aries were set at location of relatively major changes in energy distribution between seven
frequency bands. A vector of average energies calculated for eleven frequency bands was
chosen as the representation of a single phone. We focus our research on an unsuper-
vised comparison of phone distribution in 239 languages. Using the hierarchical clustering
method, the relationship between the number of clusters and Ward’s distance was deter-
mined. A mathematical model is proposed to describe this dependency. Its four parameters
are determined for each language individually to model the relationship between the num-
ber of clusters and the frequency diversity of phones contained in clusters. We used these
relationships to compare languages and to create their ranking based on the size of phone
varieties in the frequency domain.

Keywords Speech technology - Frequency analysis - Language ranking

1 Introduction

A phone is a sound of speech, and a phoneme is an abstract representation of a phone.
The main difference is that phones are characterized by physical features, such as the dis-
tribution of energy in frequency bands, while phonemes have a linguistic descriptions as
speech elements. In other words, phones can be extracted from speech by electronic devices
while phonemes are distinguished by the sense of hearing supported by linguistic knowl-
edge. Phones and phonemes are not uniquely assigned to one another. From the physical
point of view, speech signals are strongly distorted by the speaker’s individual character-
istics such as: sex, age, intonation, and emotional state. Additional distortions result from

P< Mariusz Ziétko
ziolko@agh.edu.pl

Stanistaw Kacprzak
skacprza@agh.edu.pl

Faculty of Computer Science, Electronics and Telecommunications, AGH University of Science
and Technology, al. Mickiewicza 30, 30-059 Krakéw, Poland

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-018-6933-1&domain=pdf
mailto: ziolko@agh.edu.pl
mailto: skacprza@agh.edu.pl

15576 Multimedia Tools and Applications (2019) 78:15575-15588

co-articulation effects as a significant impact of neighbouring phones. All these phenomena
strongly affect the physical properties of phone articulation. It is therefore reasonable to ask
how, in spite of these distortions, speech signals are accurately analyzed by the human brain,
and how electronic devices can be improved to enhance voice communication between
humans and computers.

Quentin D. Atkinson in his article [2] suggested that the founder effect may operate on
human languages. It means that expansion should progressively reduce phonemic diversity
with increasing distance from the point of origin. His model points to central and southern
Africa as the location of where the first languages may originate. Atkinson examined geo-
graphic variation in phonemes using data taken from 504 languages described in the World
Atlas of Language Structures (WALS). His article [2] provoked immediate criticism (e.g.
[22]) and had numerous citations. His opponents suggest that taking into account histori-
cal processes like migrations, conquests, and borrowings would explain language evolution
more credibly than the founder effect solely. The scientific controversy about Atkinson’s
hypothesis motivated us to conduct an independent study to assess his suggestions. Unlike
Atkinson [2], our approach was based on analyzing phones instead of phonemes.

Every language articulation exploits only a small part of innate human abilities. Young
children are able to learn a spectrum of sounds broader than those existing in any particular
language. Their individual articulation abilities are shaped by the culture that motivates
children to master some phones and lose the ability to produce others at the same time.

We compared phones for 239 languages spoken by about 96% of the world’s population.
Our approach is an unsupervised speech research study. Unsupervised methods make it
possible to analyze any language without prior linguistic knowledge. These methods try to
mimic the way in which human sense analyze speech and infants learn language by simply
being exposed to it.

Most approaches to automatic partition of speech into separate units do it in two steps
[14]: segmentation joined with parametrization, followed by clustering. We also used this
approach.

Frequency analysis is the first step in speech processing, by people and usually also
by electronic devices. Computer analysis makes it possible to partition speech signals into
segments which are characterized by relatively constant energy distribution in the frequency
domain. Additionally, more precise frequency analysis makes it possible to parametrize
phones. Next, these parametrization were used to determine the probability density of phone
distribution in the 11-dimensional frequency domain.

Cluster analysis aims to reveal similarities between related phones collected in a data set
[10]. Groups of similar elements (frequently associated with different variations of the same
speech segment) were extracted by the clusterization of phones.

For any language the number of clusters which group similar phones and acceptable
phone deviations in the frequency domain is not precisely defined. These two quantities,
however, are closely tied. The greater the value of permissible deviations within the clusters,
the smaller is the number of clusters identified with different representations of hypothetical
phone representatives. The main goal of our publication is the presentation of experimen-
tally determined dependencies of the number of phone representatives from permissible
changes inside the clusters that group similar acoustic elements. The nature of this depen-
dence is the same for all languages, although some characteristic differences are visible. We
used these deviations as the basis for ranking languages.

Frequency analysis of phones allows us to calculate spectral properties in order to
compare world languages. Such analysis provides information about languages from an
articulation point of view [11, 18]. It is natural to expect different pronunciations between
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different languages. Computer analysis uses signal processing methods to find the frequency
properties of speech. Phone comparison between languages brings new and sometimes
unexpected conclusions. Precise analysis of multi-linguistic speech aims to provide answers
to the following question: how different are phones used in different languages and what
are the individual features which characterize phone distributions?

This paper consists of five main parts. Chapter 2 introduces the database used to analyze
the languages of the world. The next two chapters briefly describe the frequency method
for automatic extraction of phones and their parametrization. Chapter 5 provides the basics
of the clusterization method. The most important part of the paper is presented in Chapter
6, where we propose two methods for language characterization. They based on the depen-
dence of the number of clusters from the Ward’s distance obtained during the hierarchical
clustering. Chapter 7 presents the results of calculations and suggestions how they can be
interpreted. Chapter 8 concludes the paper.

2 Data acquisition

Vast volumes of speech recordings are not transcribed and do not have time annotations.
Adding such annotations is an expensive and time-consuming process. Our motivation to
develop a universal method for automatic extraction of phones form non-annotated speech
is a need to compare phones of vast number of languages which do not have transcribed
training data corpora. Therefore, fully automatic segmentation followed by phone analysis
is extremely useful.

The diversity of languages can be verified by a computer analysis of speech recordings.
To analyze frequency features of languages it is necessary to collect speech samples for
hundreds of languages. Gathering speech recordings of appropriate quality and length is
not an easy task. Results of analysis can be relevant if the duration of recordings for each
language are sufficiently long. We have not found a database with speech recordings, created
for scientific research and containing several hundred languages of the world. The Global
Recordings Network (GRN) website [6] is a source of vast volumes of language recordings.
GRN is a provider of Bible audio materials in 3563 languages and dialects, making the
database a vast linguistic resource. The uneven quality of recordings is a drawback, since the
database was not created for scientific research. However, the recordings have been used for
linguistic research into subjects as rhythm and phonological characteristics [4], developing
and testing computer systems to recognize languages [3] and for documenting and reviving
rare languages [17].

Languages were chosen for further processing based on recording length and number of
native speakers. From the top 300 languages which were analyzed in [22], we selected 239
language to enable us to compare our results with other approaches.

Language recording length makes it possible to extract at least a few thousand segments
for each language, up to almost two million for English and Mandarin. To make computa-
tion feasible, the number of segments for further processing was restricted to two hundred
thousand segments randomly selected from language data.

3 Segmentation

The vast majority of speech processing methods need segmentation of speech signals [5].
Uniform segmentation is used most commonly, but many studies relate to the non-uniform
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segmentation of: phones [8, 24], syllables [13], words and other elements [1, 15, 20]. The
large variety of segmentation issues determines the multitude of algorithms and the publi-
cations which present them. We focused on methods based on wavelet transformation (e.g.
[21, 24]).

The continuous nature of speech makes segmentation uncertain. Moreover, various
acoustic segments may represent a single phonetic segment and vice versa. In [18] a phone
segmentation based on frequency features detected in a speech signal was compared with a
segmentation created by human transcribers.

The first stage of our speech analysis is extracting segments corresponding to phones.
We used segmentation developed by Ziétko et al. [24]. This spectral method is based on the
wavelet packet transformation which splits the speech signal into seven frequency bands.
Each fraction is separated by digital low-pass and high-pass filters. Low frequencies have
narrow bandwidths and are investigated with a finer resolution, while high frequencies have
wide bandwidths, resulting in a lower resolution. The frequency ranges of the seven bands
are: 0.5-1kHz, 1-1.5 kHz, 1.5-2 kHz, 2-3 kHz, 3-4 kHz, 4-6 kHz and 6-8 kHz. In practice the
boundaries between these bands overlap because digital filters do not have perfect frequency
characteristics. Such speech analysis in the frequency domain corresponds to a perceptual
scale.

The role of the segmentation algorithm is to detect significant transitions of energy
among the frequency bands. Boundaries of phones are detected based on local changes
in energy distribution. This method is universal enough to handle any language. We veri-
fied experimentally that having more than seven frequency bands increased the number of
segments in comparison with manual segmentation.

Figure 1 is an example of speech segmentation based on energy distribution in seven
frequency bands. The upper plot shows the wavelet time-frequency representation of speech
signal presented in the lowest part of Fig. 1. The Meyer wavelet of the 11-th order was
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Fig.1 An example of segmentation based on the time-frequency analysis of speech signal
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used. The other two figures show the rank map and event function. The rank map shows
the size of energy changes in the frequency bands. The event function presents the global
importance of changes in energy distribution.

4 Parametrization

Phones are treated as quasi-stationary segments. We assumed that the majority of phone
identity information is concentrated in the centers of the segments. The parameters were
calculated for speech segments scaled by the Hamming window to minimize co-articulation
effects. Analysis was carried out by applying similar discrete wavelet packets as for seg-
mentation, but with more frequency bands. Phone parameters were calculated as the average
energy in eleven frequency bands (see Fig. 2). This way, every extracted phone was charac-
terized by the time stationary vector in the 11th dimensional frequency domain. Details are
presented by Ziétko et al. [24]. Such frequency analysis is similar to the commonly used
MFCC method. In both approaches, the analysis is carried out on frequency subbands with
variable width. The most important difference is the lack of triangular windows and smaller
overlapping ranges in our method.

5 Clusterization

The clusterization algorithm involves creating a Gaussian Mixture Model (GMM) to
approximate the probability density distribution of phones in an 11-dimensional frequency
space. This approach is justified by the common use of GMM in speech modelling. We
chose 1024 components (frequently used in other speech applications), which is signifi-
cantly higher than the expected number of phone representatives in any language. Phone
component groups were created by GMM hierarchical clustering. A similar approach
to clustering was presented in [7]. Differences between components were calculated as
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Fig.2 Frequency bands of Wavelet Packet Decomposition for phones parametrization [24]
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Euclidean distances between expected values, Ward’s algorithm [23] was then used in a
hierarchical clustering procedure.
GMM is associated with the probability density function

K
pe) =Y N (x[xx, Zk) (1

k=1

where oy is the mixture weight and K is the number of components equal to 1024 in our
case. The multivariate Gaussian density distribution has the form
1
N (e, B0 = e ep (<05 (¢~ T 5 = F0) . (@)

v @m) | Zy |12

where the observation x € 9!! is a cosine transform of a vector representing the energy
distribution for a phone and | Xy | is the corresponding determinant. Cosine transformation
allows us to obtain diagonal covariance matrices Y. Finally, the GMM model of phone
distribution in the frequency domain is represented by weighting coefficients oy and the
parameters of Gaussian functions: Xy and X~ I

Figure 3 presents the hierarchical clusterization of GMM components for English. The
dendrogram shows the dependency of grouping GMM components in clusters and the cut-
off point of Ward’s distance for 34 phone representatives.

Phone clusterization makes it possible to determine the statistical relationship between
phones and phonemes for annotated speech samples. Such experiments showed that pure
frequency analysis does not lead to credible mapping between acoustic units (phones) and
linguistic transcriptions (phonemes). Left and right context information plays a vital role in
accurate phone recognition.
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Fig. 3 Results of hierarchical clustering of GMM model for English. The doted line represents the cut-off
Ward’s distance for 34 phones. For clarity, the bottom part of the dendrogram (with 1024 leaves) is not shown
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6 Language differences based on the clustering procedure

The number of clusters ¢ depends on an assumed admissible diversity p of elements within
the clusters. It decreases if a greater diversity in each cluster is allowed. Figure 4 shows
examples of the relationship between the number of clusters and Ward’s distance. These
plots display the wide range of changes in the number of clusters. A distinctive visual prop-
erty is the convergence of all the charts for a small and large number of clusters. The most
significant differences appear if the number of clusters is in the range typical for the num-
ber of phonemes assigned to languages. It is generally assumed that the average number of
phonemes for world languages is around 34.

The experimental results characterized by Fig. 4 can be analyzed in many different ways.
An important advantage is the ability to precisely approximate experimental data by the
equation

c(p) = are " + are2" 3)

where a1, az, by, by are parameters chosen separately for each language. We fitted relation-
ship (3) to experimental data for the range of cluster numbers from ¢;,j,, = 1t0 ¢pax = 512.
If the number of clusters is equal to the number of Gauss functions (i.a. ¢ = 1024), then
each cluster contains one element only and the largest distance inside the clusters is equal to
0. This means that all curves shown in Fig. 4 must end at the point: distance = 0 and #Clus-
ters = 1024. There are no differences between languages, so this is not interesting. Model
(3) proposed by us is a good representation of experimental data ranging between 1 and 512
clusters. This area is important for language differentiation. Including data for more clusters
than 512 would reduce the visibility of differences between languages.

Adjusted R-square statistics was used to verify the mathematical model quality for each
language. For the case of mathematical model (3) with four parameters, adjusted R-square
statistics for i-th language has the form

— (1-RHWJ - 1)

R, =1

; e @)

where
J 2
i=1(ci,j —ci(pi,j))
RP=1- 2=y = cilhi . (5)
J 1
2j= (Ci,j - 72_,-:101‘,1‘)

and J = 512 is the number of cluster changes, ¢;, ; is the number of clusters when Ward’s
distance is not greater than p; ;, while ¢; (p;, ;) is the value of (3) for p; ;.
The mathematical model (3) for English is characterized by the Root Mean Squared Error

RMSE=2.97 and R~ = 0.9996. For other languages, the fitting parameters are similar. The

worst match was observed for Spanish, we obtained RMSE=6.25 and fz = 0.998.

There are languages which have a low frequency diversity, while in other languages
differences between elements in clusters are significantly more noticeable. The relationships
between the number of clusters ¢ and the allowed distance p for two selected languages are
presented in Fig. 5. The examples shown in this figure represent languages having extreme
properties in the distribution of phones.

The area

© a, a
A= dp = — 4+ — | 6
/0 c(p)dp b1+b2 (6)
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Fig.4 Number of clusters vs. the cut-off distance (compare with Fig. 3)

under the curve defined by (3) can be taken as the characteristic parameter for each ana-
lyzed language. The advantage of this scalar factor is its simple dependence on experimental
parameters aj, az, by, by characterizing the selected language. Small values of (6) indicate
a high decreasing of function (3). In this case, a relatively small change in Ward’s distance
results in a significant change of cluster number. This means a small variety of articu-
lated phones. Therefore parameter (6) characterizes the frequency diversity of phones. This
means that (6) can be used for the ranking of languages.

The clustering procedure starts from 1024 components, because this number of Gauss
functions was used to approximate the probability density. The number of clusters decreases
as a result of the implementation of Ward’s algorithm. A pair of variables is successively
obtained: the number of clusters and the maximal Ward’s distance between elements within
the clusters. This is shown in Fig. 4 for six selected languages.

Assuming that the number of phones is equal to the number of phonemes assigned to
the analyzed language, the diversity of phones can be assessed. On the basis of linguistic
data it is possible to determine the average value of phonemes for main languages. From
data contained in [22] the expected value is slightly above 34 phonemes. For this number of
clusters Fig. 5 shows significant variations between languages.

Assuming the number of clusters equal to 34 for all languages, it is possible to
systematize them and group languages in terms of similarity. Let set

P ={pi:ci(p) = 3417 . (7)
groups characteristic distances for 239 languages being compared. Values of p; depend on a
frequency variety of phones. They can be determined directly from the clustering procedure,
so they do not depend on the quality of mathematical model (3).

Figure 6 presents the flowchart of calculations provided for each language separately.
Most of the calculations: DWT parametrization, GMM training, clustering and curve fit-
ting is done using built-in MATLAB functions. Implementation of speech segmentation
algorithm was obtained from authors of [24].
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Fig.5 Number of clusters as a function of the cut-off Ward’s distance for Arabic and Mandarin

7 Experiments

Both indicators (6) and (7) can be used to assess the diversity of phones for the analyzed
languages. The indicator (7) is calculated directly from the results of the clusterization.
However, it is sensitive to local deviations and therefore the indicator (6) seems to be more
accurate for the ranking of languages.

Table 1 presents two indicators which characterize the chosen 50 languages. The first
indicator is defined by (6) and its values are presented in second column. The second indi-
cator is Ward’s distance assuming that the number of clusters is equal to 34. Values of this
indicator are defined by (7) and are shown in the third column of Table 1. Both indicators are
measures of phone diversity in the frequency domain, therefore they should be correlated.
For the 239 analyzed languages the correlation coefficient is equal to 0.72. The languages
are ordered from the highest to the lowest value of indicator (6). It means that languages
which have relatively major differences in articulation are shown at the top of Table 1. This
group includes Arabic and Punjabi. In contrast Mandarin is characterized by the lowest
variation in phones articulation.

The other four columns present coefficients of mathematical model (3). This model is the
sum of two exponential functions. The initial values of the first functions are approximately
ten times higher (a; in relation to ay), but their decay rates are approximately six times
higher (b in relation to by). As a result, the second components of the model (3), determined
by parameters a; and b;, have a greater impacts on modeling effects for p > 10.

The last two columns of Table 1 present RMSE and adjusted R-square statistics (4). The
value of index (4) is equal to 1 if the mathematical model provides a perfect approximation.
The data presented in the last column of Table 1 indicates very good usability of model (3).
The next to last column presents RMSE values. For all languages these errors concern the

@ Springer



15584 Multimedia Tools and Applications (2019) 78:15575-15588

Fig.6 Flowchart of calculations Speech signals
to determine the mathematical
model (3) for tested language .

v

DWT parametrization

v

Phonetic segmentation

v

GMM training

v

Clustering of GMM components
(dendrogram)

\ 4

Find cutoff distances coresponding to
clusterization

4--.-.

Fit curve (3) to points obtained
in previous step

number of clusters ¢ which vary from 1 to 512. This index is more sensitive and it makes it
possible to differentiate modeling efficiency when all results are very good.

If we assume that the number of clusters is the same as the number of phonemes, then we
can suppose that each cluster corresponds to a certain phoneme. To verify this hypothesis,
experiments have been provided for languages taken from corpora with hand annotations. It
appears that only 20% of phonemes were correctly allocated to clusters [12]. This observa-
tion is not surprising and was firstly noted around 60 years ago (e.g. [16]). Now, the hidden
Markov models are used in automatic recognition systems to overcome these difficulties.
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Table 1 Ranking of languages according to phones diversity in the frequency domain

Language Equation (6) Equation (7) aj by az by RMSE R
Pular 8241 22.6 3586 0.7 338 0.11 3.62 0.999
Croatian 8093 2191 3212 0.62 294 0.1 4.23 0.999
Arabic 8029 28.57 1757 0.37 199 0.06 3.25 1
Punjabi 7703 28.25 2070 0.45 229 0.07 5.25 0.999
Italian 7697 232 2079 0.42 183 0.07 4.27 0.999
Vietnamese 7440 19.8 3827 0.79 320 0.12 3.97 0.999
Marathi 7431 20.75 3108 0.64 272 0.1 4.84 0.999
Javanese 7335 26.09 2076 0.47 227 0.08 3.56 0.999
Swedish 7153 23.62 2658 0.61 285 0.1 4.1 0.999
Urdu 7109 26.47 1613 0.37 154 0.06 4.34 0.999
Spanish 7083 21.56 3283 0.73 300 0.12 6.25 0.998
Hungarian 7052 22.68 2596 0.6 291 0.11 4.57 0.999
Romanian 7014 19.28 2977 0.68 309 0.12 4 0.999
Japanese 6986 27.05 1746 0.44 223 0.07 3.52 0.999
Ukrainian 6963 22.66 2669 0.66 318 0.11 4.37 0.999
English 6957 26.12 1693 0.42 195 0.07 2.97 1
Polish 6946 27.43 1949 0.46 193 0.07 3.7 0.999
Serbian 6863 25.36 2154 0.58 351 0.11 5.32 0.999
Bengali 6812 17.56 3264 0.73 302 0.13 4.24 0.999
Armenian 6809 21.37 2140 0.54 311 0.11 4.79 0.999
Somali 6806 21.85 2581 0.63 284 0.11 4.11 0.999
Portuguese 6675 24.12 1869 0.49 228 0.08 3.7 0.999
Turkish 6559 20.3 2833 0.69 268 0.11 4.24 0.999
French 6449 23.74 2008 0.52 224 0.09 4.69 0.999
Dari 6444 17.56 3367 0.82 316 0.14 4.56 0.999
Korean 6414 21.66 2352 0.61 251 0.1 5.15 0.999
Greek 6341 21.71 2136 0.56 246 0.1 5.34 0.999
Georgian 6314 19.5 2405 0.63 268 0.11 35 0.999
Slovak 6280 23.62 2033 0.57 246 0.09 4.55 0.999
Dutch 6249 18.76 2249 0.63 342 0.13 4.11 0.999
Turkmen 6196 19.55 2651 0.7 276 0.11 3.95 0.999
Lithuanian 6179 18.29 2297 0.57 201 0.09 3.6 0.999
Indonesian 6175 20.78 2539 0.69 300 0.12 5.66 0.999
Hindi 6130 19.18 2082 0.56 240 0.1 4.38 0.999
Pashto 6109 18.73 2686 0.72 296 0.12 4.34 0.999
Hebrew 6080 18.36 2540 0.67 267 0.12 3.83 0.999
Bulgarian 5975 2221 2115 0.59 203 0.09 3.71 0.999
Russian 5935 17.56 2307 0.62 254 0.11 3.58 0.999
Kyrgyz 5925 18.88 2485 0.67 250 0.11 4.05 0.999
Farsi 5903 18.04 2560 0.71 280 0.12 3.56 0.999
Kannada 5887 18.65 2312 0.63 245 0.11 3.74 0.999
German 5823 18.4 2328 0.65 261 0.12 4.05 0.999
Danish 5753 18.39 1881 0.5 157 0.08 2.36 1
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Table1 (continued)

Language Equation (6) Equation (7) ap by ap by RMSE R
Tamil 5640 17.63 2105 0.61 236 0.11 3.06 1
Finnish 5575 18.75 2160 0.64 228 0.1 4.09 0.999
Telugu 5504 14.52 2989 0.84 313 0.16 4.8 0.999
Czech 5398 14.57 2774 0.8 305 0.16 4.07 0.999
Mandarin 5048 15.04 2550 0.79 271 0.15 37 0.999

8 Conclusions

Our research was inspired by work carried out by Atkinson [2] in which he compared the
phoneme diversity for 504 languages. Our main motivation was to find an acoustic similarity
measure between languages that can lead to language taxonomies. We supposed that this
measure could be used to verify Atkinson’s hypothesis about the presence of a founder
effect in world languages. The comparison of the language ranking obtained by us with
the results of Atkinson’s work does not confirm his hypothesis. Our experiments support
the views of Atkinson’s adversaries, claiming that various factors conditioned by historical
processes have a decisive influence on the diversity of articulation. These phenomena have
a major impact on the evolution of languages. Their relatively high rate of change is clearly
signalled in other studies, e.g. [9].

The data we obtained can be correlated with the geographical location of languages;
additionally, there may be other phenomena which have a significant impact on the size of
the differences in phone pronunciation. This direction of research could lead to interesting
conclusions.

Our main conclusions arise from the analysis of data showing the relationship between
the number of clusters and their internal differentiation. There are no clear isolated clusters
in the frequency space. This makes it possible to fine-tune the continuous curve (3). How-
ever, Fig. 5 shows the existence of 24 visible isolated clusters for Chinese and fewer isolated
clusters for Arabic.

The method of clustering we used is frequently applied in various types of scientific
research. A great simplification is the availability of ready-made computer programs. Cal-
culating the differences between components remains an open question, better methods than
the Euclidean distance may exist.

Frequency analysis of phones is not sufficient to reliably determine phonemes in speech
recognition systems. Although both types of frequency analyzers, the sense of hearing and
electronic devices - operate efficiently, they cannot remove distortions from speech. The
human brain and computer analysis (supported by trained models) play a highly important
role in speech recognition.

We used the frequency variety of phones to rank the order of languages. We ranked lan-
guages from those where frequency diversities between phones are significant to languages
where these differences are significantly smaller.

Major differences in the articulation of phones may involve languages spoken by non-
native speakers i.e. people with diverse cultural backgrounds. Secondly, it seems that major
differences in articulation make learning foreign languages easier.
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Smaller differences between phone articulation may be due to fast speech. Schupert et al.
[19] verified the hypothesis that differences in speech tempo are the main reason why spo-
ken Danish is so difficult to understand for Norwegians and Swedes. Differences between
Danish and Swedish, shown in Table 1, support this conclusion.

Data for all 239 tested languages is available from http://www.dsp.agh.edu.pl/_media/pl:
research:language_ranking.pdf.
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