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Abstract The determination of next best view of a camera for moving object has wide
application in dynamic object scenario, such as unmanned aerial vehicle and automatic
recognition. The major challenge of this problem is how to determine the next best view
while the visual object is moving. In this work, a novel next best view method based on self-
occlusion information in depth images of moving object is proposed. Firstly, a depth image of
moving object is acquired and self-occlusion detection is utilized in the acquired image. On
this basis, the self-occlusion regions are modeled by utilizing space quadrilateral subdivision.
Secondly, according to the modeling result, a method based on the idea of mean shift is
proposed to calculate the result of self-occlusion avoidance corresponding to the current
object. Thirdly, the second depth image of moving object is acquired, and the feature points
in two images are detected and matched, then the 3Dmotion estimation is accomplished by the
3D coordinates of feature points which are matched. Finally, the next best view is determined
by combining the result of self-occlusion avoidance and 3D motion estimation. Experimental
results validate that the proposed method is feasible and has relatively high real-time
performance.
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Next best view

1 Introduction

The determination of next best view is to find a new observation view based on the
information of visual object in current view to achieve the goal that the maximal information
of unknown regions of visual object can be obtained by the camera.

Nowadays, scholars have gained some achievements on the next best view. Connolly [7], as
one of the earlier scholars studying the next best view, used partial octree model to describe
visual object, and made different marks to the nodes to determine the next best view. Roy et al.
[32] used search tree nodes to determine the next best view. Low et al. [21] proposed a next
best view method by using an adaptive hierarchical algorithm. Blaer et al. [4] used a voxel-
based occupancy method to plan the next best view. By combining GKLT feature tracking,
Trummer et al. [34] explicitly used the knowledge about the current 3D estimation of the
tracked point to determine the next best view. Based on the former work, they also proposed a
next best view method by combining online method in literature [35]. Based on the model’s
covariance structure and appearance, Dunn et al. [12] determined the next best view by
deploying a hierarchical uncertainty driven model refinement process. Jia et al. [17] deter-
mined the next best view by using information on the image sequences and their relative 3D
positions. Haner et al. [15] proposed a method by using covariance propagation to determine
the next best view. Based on the field-of-view constraint of stereo vision, Freundlich et al. [13]
iteratively minimized the fused uncertainty to determine the next best view. Li et al. [20]
extracted different views’ features by unsupervised feature learning, and then trained classifiers
to evaluate each view’s discrimination ability to determine the next best view. Adler et al. [1]
sorted the candidate views by achievable information gain to determine the next best view.
Mauro et al. [24] proposed a next best view method based on the concept of view importance.
Yiakoumettis et al. [40] introduced a relevance feedback on-line learning strategy to learn the
user’s preference to determine the next best view.

However, because of never considering occlusion factor in these methods, the more serious
the occlusion phenomenon is, the lower the accuracy of these methods would be. Therefore,
scholars proposed the next best view methods taking occlusion into account. Based on the
Positional Space algorithm, Pito [30] determined the next best view from plenty of candidate
views. Banta et al. [3] proposed a method based on the overall observation strategy to
determine next best view. Li et al. [19] proposed a viewpoint planning method by calculating
information entropy, and regarded the view corresponding to maximal information entropy as
next best view. Vázquez et al. [36] proposed an automatic view selection using viewpoint
entropy. Combining layered ray tracing and octree, Vasquez-Gomez et al. [37] constructed the
object model and generated candidate views based on sorting of the utility function to
determine the next best view. Wenhardt et al. [16] used a Kalman filter to obtain the best
estimate of the object’s geometry, and determined the next best view by choosing a suitable
optimization criterion. Potthast et al. [31] utilized a belief model of the unobserved space to
estimate the expected information gain of each possible viewpoint to determine the next best
view. Kriegel et al. [18] proposed a surface-based next best view approach by creating a
triangle surface and determining viewpoints similar to human intuition. Maver et al. [25]
approximated the occluded region by polygons and used the occluded region information to
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determine the next best view. Wu et al. [38] determined the next best view by utilizing layered
contour fitting(LCF) with a density-based clustering algorithm. Giorgi et al. [14] determined
the next best view according to semantic criteria. Munkelt et al. [26] proposed a next best view
method based on voxel space. Based on a retrainable neural network architecture, Papaoulakis
et al. [29] proposed a next best view method for detecting athletes in large-scale Olympic
events. Delannay et al. [9] selected the next best view based on the contextual features. Chen
et al. [5] extracted foreground likelihood and projected it to define a ground occupancy map to
determine the next best view. Daniyal et al. [8] used a multivariate Gaussian distribution to
determine the next best view. Chen et al. [6] used ray tracing to determine how much new
information a given sensor perspective would reveal, and the next best view was determined
by new information. Although these methods consider the factor of occlusion, there are
limitations in time complexity [3, 19, 30, 36], specific equipment [16, 18, 31, 37], priori
knowledge [14, 25, 26, 38], multi cameras [5, 6, 8, 9, 29] etc., and what’s more, all the research
objects in literature [1, 3–9, 12–21, 24–26, 29–32, 34–38, 40] are stationary. Furthermore, in
many scientific research fields such as 3D reconstruction of moving object, automatic tracking,
recognition of moving object, operation of robot in hazardous regions, spacecraft docking etc.,
the visual objects are moving and have self-occlusion, and these tasks have high demand for
real-time. Due to the limitation in literature [1, 3–9, 12–21, 24–26, 29–32, 34–38, 40], they
can’t solve these issues.

Aiming to the moving visual object, depth images of object need to be matched for motion
estimation. The ORB(Oriented Fast and Rotated BRIEF) algorithm proposed by Rublee et al.
[33] has fast speed and high efficiency, which is widely applied in image-based matching.
Makantasis et al. [22] utilized ORB to deal with image filtering from removing outlines as to
perform a 3D image retrieval from the wild. Based on ORB algorithm, Mur-Artal et al. [27]
proposed a feature-based monocular SLAM system operated in real-time, in small and large,
indoor and outdoor environments. Mason et al. [23] developed an approach to object percep-
tion based on the principle of object discovery by using ORB. In this paper, based on ORB
algorithm, a method to pre-match two images is proposed to estimate the motion of visual
object.

The Kinect sensor shows promise in many computer vision applications, such as data
acquisition and 3D modeling. Alexiadis et al. [2] described a novel system that automatically
evaluated dance performances and provided the visual feedback to the performer in a 3D
virtual environment, and the motion of a performer was acquired and modeled via Kinect-
based human skeleton tracking. Dimitropoulos et al. [10] used the Kinect sensor to track the
volume of a performer and produce skeletal data, so that the intangible treasures can be learned
in an interactive 3D environment. Doulamis et al. [11] utilized the Kinect sensor to build
Digital Heritage Libraries to protect the tangible and intangible cultural heritage. Yang et al.
[39] proposed a real-time synthetic aperture imaging algorithm based on Kinect sensor. In the
process of real experiments in this paper, the Kinect sensor is used to acquire depth images of
moving objects.

In order to determine the next best view when the visual object is moving, this paper, by
using the self-occlusion information in depth image, proposes a method through combining the
self-occlusion avoidance and 3D motion estimation to determine the next best view. And the
proposed method is different from the traditional next best view methods for reconstruction or
recognition. The main purpose of proposed method is to observe the occluded region, which
contains much useful information of the visual object. If the information of occluded region
can be obtained, both the reconstruction and recognition results are greatly improved, so that
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the visual system combining the proposed method can perform these tasks better, such as 3D
reconstruction of moving object, automatic tracking, recognition of moving object, operation
of robot in hazardous regions, spacecraft docking etc.. Experimental results in our work
demonstrate that the proposed method is feasible and has relatively high real-time
performance.

2 Problem formulation and method overview

The determination of next best view based on the self-occlusion information in depth image of
moving object can be defined as that taking self-occlusion regions as the unknown regions and
taking two depth images of moving object as the research object, the result of self-occlusion
avoidance is calculated by using the self-occlusion information in the first depth image, then
the result of 3D motion estimation is calculated by using the two depth images of moving
object. Finally the next best view is determined by combining the result of self-occlusion
avoidance and 3D motion estimation to achieve the goal that the maximal information of self-
occlusion regions of the moving object can be obtained by the camera.

The definition of self-occlusion avoidance is that when the visual object is stationary, the
next best view is calculated based on the self-occlusion information in depth image to achieve
the goal that the maximal information of self-occlusion regions can be obtained by the camera.
But in this paper, the problem of next best view specially refers to the fact that when the visual
object is moving, the next best view is calculated by combining the result of self-occlusion
avoidance and 3D motion estimation to achieve the goal that the maximal information of self-
occlusion regions of the moving object can be obtained by the camera.

Fig. 1 shows the position relation between the depth camera and the moving object. Fig. 1a
is the position relation in the initial view. The region ABEA′ACDA′ is the self-occlusion region.
Fig. 1b is the position relation in the next best view which is only calculated by the method of
self-occlusion avoidance. Fig. 1c is the position relation in the next best view which is
calculated by our proposed method for moving object.

It can be seen from Fig. 1 that the camera can’t reach the next best view if only use the
method of self-occlusion avoidance, because the visual object is moving. But in our work, the
motion of visual object is estimated, which compensates the visual object’s motion, so the
camera can achieve the next best view. It illustrates that the proposed method can solve the
problem of next best view of a camera for moving object.

Based on the analysis above, the overall idea of proposed method is as follows. Firstly, the
first depth image of moving object is acquired and the self-occlusion detection is utilized in the
acquired image. On this basis, the self-occlusion regions are modeled by utilizing space
quadrilateral subdivision and the area, center and normal vector of each space quadrilateral
are calculated. Secondly, the result of self-occlusion avoidance corresponding to current object
is calculated based on the idea of mean shift by using the space quadrilateral information.
Thirdly, the second depth image of moving object is acquired and the mean curvature of each
pixel in the two acquired images is calculated as the local invariant feature. The features of the
two acquired images are pre-matched first, and a method to remove the wrong matching points
by using the constraint of rigid invariance is utilized to get the accurate matching results. Then
according to the accurate matching results, the 3D motion can be estimated by using the 3D
coordinates of these accurate matched points. Finally, the next best view is determined by
combining the results of self-occlusion avoidance and 3D motion estimation.
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3 Self-occlusion avoidance

3.1 Modeling the self-occlusion regions

3.1.1 Obtaining the self-occlusion information of visual object

In order to model the self-occlusion regions, first of all, the self-occlusion information is
obtained from the depth image of visual object. Self-occlusion information refers to the self-
occlusion boundaries and its corresponding nether adjacent boundaries obtained from the
depth image in the current view, and each obtained self-occlusion boundary and its corre-
sponding adjacent boundary compose a self-occlusion region in 3D space. The self-occlusion
boundaries and its corresponding nether adjacent boundaries are obtained by utilizing the
method in literature [41], and then all the points on the self-occlusion boundaries compose the
self-occlusion boundary setO and all the points on the nether adjacent boundaries compose the
nether adjacent boundary set O′. Fig. 2 shows the depth image of Bunny and its self-occlusion
boundaries and nether adjacent boundaries in current view. The red points are the self-
occlusion boundary points and the green points are the nether adjacent boundary points in
Fig. 2b.

3.1.2 Modeling the self-occlusion regions based on the self-occlusion information

Based on the obtained self-occlusion information, the self-occlusion regions are modeled to
provide the basis for self-occlusion avoidance. Because the internal information of self-
occlusion regions is unknown, one self-occlusion region is subdivided to describe itself by
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The proposed method
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Fig. 1 The position relation between the depth camera and the moving object (a) The position relation in the
initial view (b) The position relation in the next best view which is only calculated by the method of self-
occlusion avoidance (c) The position relation in the next best view which is calculated by our proposed method
for moving object
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the following method. Two adjacent self-occlusion points oi, oi + 1 on the same self-occlusion
boundary are taken out from the self-occlusion boundary set O, meanwhile their corresponding

adjacent points o
0
i, o

0
iþ1 are taken out from the nether adjacent boundary set O′. Then a space

quadrilateral oioiþ1o
0
iþ1o

0
i is formed by the four points in 3D space and denoted by patchi,

where i is an integer from 1 to N − 1, N is the number of points on the self-occlusion boundary.
At last, all self-occlusion regions are modeled by the above space quadrilateral subdivision
method. Fig. 3 shows the sketch map of self-occlusion region subdivision.

3.1.3 Calculating the area, center and normal vector of each patch

After modeling self-occlusion regions, the area, center and normal vector of each patch are
calculated to solve the problem of next best view.

Firstly, the area of each patch is calculated. In order to describe the patchi as far as possible,
the area Si of patchi is defined as half of the sum area of 4 triangles which compose patchi,
namely

Si ¼ 1

2
SΔoio

0
i o

0
iþ1

þ SΔoio
0
iþ1oiþ1

þ SΔoio
0
i oiþ1

þ SΔoiþ1o
0
i o

0
iþ1

� �
s:t: 1≤ i≤N−1 ð1Þ

Fig. 2 The depth image of Bunny and its self-occlusion boundaries and nether adjacent boundaries (a) The
depth image of Bunny (b) The self-occlusion boundaries and nether adjacent boundaries in the depth image of
Bunny

Fig. 3 The sketch map of self-occlusion region subdivision
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where SΔoio
0
i o

0
iþ1
, SΔoio

0
iþ1oiþ1

, SΔoio
0
i oiþ1

, SΔoiþ1o
0
i o

0
iþ1

are the area of triangle oio
0
io

0
iþ1, triangle

oio
0
iþ1oiþ1, triangle oio

0
ioiþ1, triangle oiþ1o

0
io

0
iþ1 respectively.

Then, the center of each patch is calculated. The center Ci of patchi is defined as the average
of coordinates of the four space quadrilateral points which compose patchi, namely

Ci ¼ 1

4
oi þ oiþ1 þ o

0
i þ o

0
iþ1

� �
ð2Þ

At last, the normal vector of each patch is calculated. The normal vector of patchi is defined
as the vector which starts from Ci and parallels to the common perpendicular of oio

0
iþ1 and

o
0
ioiþ1. The direction of normal vector is toward outside of the visual object. The concrete

method is as follows. Take oi as the start point and o
0
iþ1 as the end point constructs the vector

μi, meanwhile take oi + 1 as the start point and o
0
i as the end point constructs the vector γi. Then

the normal vector ni of patchi is defined as

ni ¼ μi � γi or ni ¼ γi � μi ð3Þ
Through analysis of the self-occlusion boundary and its corresponding nether adjacent

boundary, it can be seen that the depth values of self-occlusion points are less than the depth
values of its corresponding nether adjacent points, so the direction of normal vector can be
determined by the following method to ensure that the direction is toward outside of the visual

object. In the depth image, oioi + 1 is the vector from the point oi to oi + 1, oio
0
i is the vector from

the point oi to o
0
i and oio

0
iþ1 is the vector from the point oi to o

0
iþ1. Take oi as the circle center to

rotate oioi + 1 in a clockwise direction, if the rotation angle which is from oioi + 1 to oio
0
i is

greater than 0∘ and less than or equal to 180∘, meanwhile the rotation angle which is from

oioi + 1 to oio
0
iþ1 is greater than or equal to 0

∘ and less than 180∘, the normal vector of patchi is
defined as μi ×γi to ensure that the direction is toward outside of the visual object, namely

ni ¼ μi � γi ð4Þ
if the rotation angle which is from oioi + 1 to oio

0
i is greater than or equal to 180∘ and less than

360∘, meanwhile the rotation angle which is from oioi + 1 to oio
0
iþ1 is greater than 180

∘ and less
than or equal to 360∘, the normal vector of patchi is defined as γi ×μi to ensure that the
direction is toward outside of the visual object, namely

ni ¼ γi � μi ð5Þ

3.2 The method of self-occlusion avoidance

After modeling the self-occlusion regions, a self-occlusion avoidance method is proposed
based on the idea of mean shift by using the information of area and normal vector of each
patch. The main process is as follows. Firstly, the best observation position of each patch is
determined by using its information of area and normal vector, and all the best observation
positions form a set Sp. Secondly, starting from the current camera position Pbegin, based on the
idea of mean shift, the center of mass of all the elements in Sp is calculated by using the
information of area and normal vector, then the best observation position Pe of the self-
occlusion avoidance result is determined by using the constraint of camera observation
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distance to the center of mass. The best observation direction Ve of the self-occlusion
avoidance result is the direction from Pe to the midpoint of all visible patch centers when
the camera is in Pe. At last, by combining the best observation position and the best
observation direction, the result of self-occlusion avoidance is (Pe, Ve). To make our proposed
method clear, the concrete process is discussed as follows.

In order to calculate the best observation position of each patch, the normal vector of each
patch needs to be handled. Firstly, the length of each normal vector is normalized. The
normalized length is equal to the length of vector which is from Pbegin to the center of visual
object. Then the end point pi of normal vector ni which is from Ci is defined as

xpi ; ypi ; zpi
� �

¼ ni þ xCi ; yCi
; zCi

� � ð6Þ

where xpi ; ypi ; zpi
� �

is the coordinate of pi, xCi ; yCi
; zCi

� �
is the coordinate of Ci.

Then pi is defined as the best observation position of patchi, and all the best observation
position of patches form the set Sp.

After that, the mean shift vector F(Pk) in Pk is defined as:

F Pkð Þ ¼ 1

k
∑

pi∈Sp
gPk

pið Þω pið Þ pi−Pkð Þ ð7Þ

where ω(pi) is the weight corresponding to the point pi, k is the number of elements in Sp,
gPk

pið Þ is defined as a sigmoid function to judge whether pi has effect on iteration or not

when the camera in Pk.
The weight ω(pi) of point pi in Eq. (7) is defined as the ratio of the area of patchi to the total

area of all patches, namely

ω pið Þ ¼ Si

∑
N−1

i¼1
Si

ð8Þ

where Si is the area of patchi.
The equation of gPk

pið Þ is defined as

gPk
pið Þ ¼ 1

1þ e−αcosθi
ð9Þ

where θi ∈ [0, 180] is the angle between the normal vector of patchi and the vector
from the center of patchi to Pk. α is a positive constant, the accuracy of result is
proportional to its size. Considering the accuracy of result and consumption, we set
α = 400 in this paper. Analyzing Eq. (9), if θi is less than 90∘, cosθi is a positive, so
gPk

pið Þ is approximately equal to 1. In this case, pi has effect on iteration. If θi is

greater than or equal to 90∘, cosθi is a negative or zero, so gPk
pið Þ is approximately

equal to 0. In this case, pi has no effect on iteration.
Afterwards, based on the mean shift vector and the constraint of camera observation

distance, the best observation position of current visual object can be calculated by Eq. (10):

Pe ¼ argmin
pk

F Pkð Þk k ð10Þ

where Pk is the kth iterative position.
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The constraint condition minimizing ‖F(Pk)‖ refers to the fact that the distance from the
initial observation position P0 to the center of visual object is equal to the distance from the
best observation position Pe to the center of visual object.

In this paper, the initial iteration position is P0 = Pbegin, and the allowable error is
ε = 0.1. When‖F(Pk)‖ > ε, set Pk + 1 = F(Pk) + Pk and continue iterating according to Eq.
(10). While when ‖F(Pk)‖ < ε, the best observation position of self-occlusion avoid-
ance result is Pe = Pk.

Then, the best observation direction of self-occlusion avoidance result is calculated.
Firstly, the midpoint Cm of all visible patch centers when the camera is in Pe is
calculated by

Cm ¼
∑

i∈ 1;N−1½ �

pi∈Sp
gPe

pið ÞCi

∑
pi∈Sp

gPe
pið Þ ð11Þ

where Ci is the center of patchi.
After calculating Cm, the best observation direction Ve of self-occlusion avoidance result is

defined as the direction from Pe to Cm, namely

Ve ¼ Cm−Pe ð12Þ
Finally, the result of self-occlusion avoidance is (Pe,Ve).

4 3D motion estimation

4.1 Matching two depth images by utilizing ORB algorithm

In order to estimate the 3D motion of visual object, first of all, two acquired depth images
should be matched. Because the ORB(Oriented Fast and Rotated BRIEF) algorithm in
literature [33] has fast speed and high efficiency, it is utilized to pre-match the two depth
images. The concrete process is as follows. Firstly, the mean curvature of each pixel in the two
acquired depth images is calculated to be the feature of the pixel. Then the matching points are
obtained by utilizing the ORB algorithm in the two depth images acquired before and after
visual object motion respectively. Fig. 4 shows the matching results of two depth images
acquired before and after the visual object Bunny motion respectively. The blue points in Fig.
4 are feature points, and the two feature points which are connected by the green line are a pair
of matching points.

Fig. 4 The matching results of
two depth images acquired before
and after the visual object Bunny
motion respectively
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4.2 Filtering matching results to get accurate matching results

Because the error may cause mismatching, a method is proposed to filter matching results by
using the constraint of rigid invariance to get the accurate matching results. The idea of
proposed method is as follows. Based on the constraint of rigid invariance, the relative position
of each matching point in the visual object is invariant in the process of visual object moving.
Therefore, the triangle which is constructed by any three accurate matching points in the first
image, and the triangle which is constructed by their corresponding points in the second image,
should be congruent, and the inaccurate match points generally can not satisfy this condition,
so the inaccurate match points can be removed by using this characteristic. Based on this
characteristic, a triangular-based inaccurate matching point filter algorithm is presented in this
paper. The main steps of the algorithm are as follows.

Firstly, all matching points in the first image are used to form the set M1, and their
corresponding points in the second image are used to form the set M2. Secondly, triangle t1
is constructed by the three points in M1. Meanwhile, triangle t2 is constructed by the three
points corresponding to the points which are constructed triangle t1, and each edge length of
triangle t1 and t2 is calculated. Thirdly, through comparing the corresponding edge length of
triangle t1 and t2, the matching points are filtered by the following rules.

(1) If all the corresponding edges length of triangle t1 and t2 are equal to each other, namely
t1 ≅ t2, the reason for this situation may be that the relative position of three pairs of
matching points are invariant, so the three pairs of points are the accurate matching

points. Then, the three points of triangle t1 are deleted from M1 and put into the set M
0
1,

and their corresponding points of triangle t2 are deleted fromM2 and put into the setM
0
2.

Finally, three pairs of matching points fromM1 andM2 are taken to construct the triangle
t1 and t2 for further judgment continually.

(2) If two pairs of corresponding edges length of triangle t1 and t2 are equal to each other, one
pair of corresponding edges length is not equal, the reason for this situation may be that
one or two of the points which construct the unequal edge are mismatching points. In
order to reduce the time complexity of the algorithm, we would consider that the two
points which construct the unequal edge are mismatching points, so the two points which
construct the unequal edge in triangle t1 are deleted from M1 and the two points which
construct the unequal edge in triangle t2 are deleted from M2. Then, with the rest pair of
matching points, two pairs of matching points fromM1 andM2 are taken to construct the
triangle t1 and t2 for further judgment.

(3) If only one pair of corresponding edges length of triangle t1 and t2 is equal each other,
two pairs of corresponding edges length are not equal, the reason for this situation may be
that the two points which construct the equal edge are accurate matching points while the
another point which construct the triangle is mismatching point, so the point which is the
common point of two unequal edges in triangle t1 is deleted fromM1 and the point which
is the common point of two unequal edges in triangle t2 is deleted from M2. Then, with
the rest two pairs of matching points, one pair of matching points from M1 and M2 is
taken to construct the triangle t1 and t2 for further judgment.

(4) If all the corresponding edge length of triangle t1 and t2 are unequal each other, the reason
for this situation may be that the three pairs of points are the mismatching points, so the
three points which constructed triangle t1 are deleted fromM1 and the three points which
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constructed triangle t2 are deleted fromM2. Then, three pairs of matching points fromM1

and M2 are taken to construct the triangle t1 and t2 for further judgment continually.

The process of filtering is repeated until that the number of points in M1 and M2 is all less

than three. Then the points in M
0
1 and M

0
2 are the accurate matching points. Fig. 5 is the

accurate matching results after filtering the matching results in Fig. 4.

4.3 The 3D motion estimation

According to the accurate matching results, the 3D motion can be estimated. The relation
between the points in the depth images acquired before and after visual object motion
respectively is

m2i ¼ Rm1i þ T ð13Þ

Where m1i is the point in M
0
1 , m2i is the corresponding point of m1i in M

0
2, R is unit

orthogonal rotation matrix, T is the translation vector.
As can be seen from Eq. (13), the purpose of 3D motion estimation is to determine the R

and Twhich let all of the m1i and m2i satisfy Eq. (13). Because the point-to-plane ICP(Iterative
Closest Point) algorithm in literature [28] is faster than the traditional ICP algorithm, the R and
T are calculated by utilizing the method in literature [28].

After solving R and T, the result of 3D motion estimation can be expressed as

d2 ¼ Rd1 þ T ð14Þ
Where d1 is the 3D point corresponding to the pixel in depth image acquired in the current
view, d2 is the 3D point corresponding to the pixel in depth image acquired in the next view.

5 The determination of next best view

The next best view is determined by combining the result of self-occlusion avoidance and 3D
motion estimation. Because the position of moving object is constantly changing, the best view
should be changed along with the moving object. In this paper, the self-occlusion avoidance
result (Pe, Ve) is the best view when the visual object is not moving. When the visual object is
moving, the position relation between the best view and visual object should be constant.
Therefore, the self-occlusion avoidance result (Pe, Ve) should be changed based on the Eq.
(14). The self-occlusion avoidance result (Pe, Ve) is calculated based on the first depth image,
and the motion of visual object is estimated by two adjacent depth images (the first depth
image and the second depth image) to obtain the motion information of visual object. Since the

Fig. 5 The accurate matching
results after filtering the matching
results in Fig. 4
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purpose of acquiring second depth image is to obtain the motion information of visual object,
the effect of our next best view method is verified by the third depth image. Moreover, the
camera is in the observation position of the first depth image initially, so the next best view
(Pnbv, Vnbv) is calculated by using Eq. (14) twice. Namely

Pnbv ¼ R*RPe þ Rþ Ið ÞT
Vnbv ¼ R*RVe þ Rþ Ið ÞT

�
ð15Þ

Where R, T are the unit orthogonal rotation matrix and the translation vector which are
calculated by 3D motion estimation, I is the identity matrix. (Pe,Ve) is the result of self-
occlusion avoidance.

6 Experiments and analysis

6.1 Experimental environment

In order to validate the effectiveness of proposed method, the experiments based on 3D object
models in Stuttgart Range Image Database are conducted. The experimental hardware envi-
ronment is the Intel (R) Pentium (R) CPU G2020 @ 2.90GHz, the memory is 4.00GB. The
proposed method is implemented by combining C++ and OpenGL. In the process of simula-
tion experiments, the parameter of projection matrix in OpenGL is (60, 1, 200, 600), the
window size is 400 × 400, the initial observation position is (0, −1, 300) and the initial
observation direction is (0, 1, −300). In the process of real experiments, depth images are
acquired by using Kinect, the horizontal viewing angle is 57∘, the distance from the camera to
the center of the object is 1200 mm, and the window size is 640 × 480.

6.2 Experimental results and analysis

To validate the feasibility and real-time performance of proposed method, Section 6.2.1 gives
the experimental results and analysis of self-occlusion avoidance. Section 6.2.2 gives the
experimental results and analysis of 3D motion estimation. Section 6.2.3 gives the experimen-
tal results and analysis of the next best view method for moving object.

6.2.1 Experiments of self-occlusion avoidance

Fig. 6 shows the experimental results based on the self-occlusion avoidance method proposed
in this paper. Fig. 6a is the name of visual object. Fig. 6b is the depth image acquired in the
initial view. Fig. 6c is the self-occlusion boundaries and nether adjacent boundaries, where the
red lines are self-occlusion boundaries and the green lines are nether adjacent boundaries. Fig.
6d is the normal vector of each patch. Fig. 6e is the visible patch observed from the result of
self-occlusion avoidance. Fig. 6f is the depth image acquired from the result of self-occlusion
avoidance.

As can be seen from Fig. 6, for the visual object Duck, as the self-occlusion phenomenon is
not obvious, the visible patch from the result of self-occlusion avoidance is less, namely, the
red region in Fig. 6e is smaller. While for the visual object Bunny, Mole, Rocker and Dragon,
as the self-occlusion phenomenon is obvious, the visible patch from the result of self-occlusion
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avoidance is more, namely, the red region in Fig. 6e is larger. Therefore, the more obvious the
self-occlusion phenomenon is, the more effective the proposed method is. Meanwhile com-
paring the depth images in Fig. 6b and Fig. 6f, it can be seen that the results of self-occlusion
avoidance which are calculated by the proposed method align with the observing habit of
human vision.

In order to better evaluate the effect of the self-occlusion avoidance method proposed in this
paper, the proposed self-occlusion avoidance method is compared with the methods in [15, 17]
which are both based on the depth image and consider the occlusion. Fig. 7 shows the
experimental results of different methods. Fig. 7a is the name of visual object. Fig. 7b is the
depth image acquired in the initial view. Fig. 7c is the depth image acquired from the result
calculated by the method in [17]. Fig. 7d is the depth image acquired from the result calculated
by the method in [15]. Fig. 7e is the depth image acquired from the result calculated by the
proposed self-occlusion avoidance method.

Analyzed from Fig. 7, the results calculated by the method in [17] focus on observing the
back of visual object, and the results calculated by the method in [15] focus on observing the

Duck 

Bunny 

Mole 

Rocker 

Dragon 

(a) (b) (c) (d) (e) (f) 

Fig. 6 The experimental results of self-occlusion avoidance (a) Visual object (b) Depth image acquired in initial
view (c) Self-occlusion boundaries and nether adjacent boundaries (d) Normal vector of each patch (e) Visible
patch from the result of self-occlusion avoidance (f) Depth image acquired from the result of self-occlusion
avoidance
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adjoining unknown region of the largest information gain point in initial view. While in this
paper, based on the self-occlusion information in depth images acquired in initial view, the
results calculated by the proposed self-occlusion avoidance method focus on observing self-
occlusion region, which align with the observing habit of human vision.

In order to further examine the effect of proposed method, Table 1 shows the quantitative
evaluation of different methods. In Table 1, Nn is the number of surface points, No is the
number of overlap points, Nnew =Nn −No is the number of new added points, Ro is the overlap
rate and Rnew is the new added rate.

Analyzing Table 1, it shows that compared with the method in [17], for the visual objects
where the region of back is larger than the region of self-occlusion, such as Duck, Bunny and
Mole, the number of new added points in depth images acquired in the result of proposed
method is relatively less. But for the visual objects where the region of back is smaller than the
region of self-occlusion, such as Rocker and Dragon, the numbers of new added points in
depth images acquired in the result of proposed method are relatively more(although the new
rate is slightly lower). The reason is that the method in [17] focuses on considering the back of
visual object, when the region of back is smaller than the region of self-occlusion, the method
in [17] can’t achieve good results. Therefore, the method in [17] has a relatively great

Duck 

Bunny 

Mole 

Rocker 

Dragon 

(a) (b) (c) (d) (e) 

Fig. 7 The experimental results of different methods (a) Visual object (b) Depth image acquired in initial view
(c) Depth image acquired from the result calculated by the method in [17] (d) Depth image acquired from the
result calculated by the method in [15] (e) Depth image acquired from the result calculated by the proposed self-
occlusion avoidance method
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limitation. Compared with the method in [15], for the visual objects where the surface is not
complex, such as Duck, Bunny, Mole and Rocker, the number of new added points in depth
images acquired in the result of proposed method is relatively more. But for the visual objects
where the surface is complex, such as Dragon, the number of new added points in depth
images acquired in the result of proposed method is slightly less, but the new added rate is
higher. The reason is that the method in [15] focuses on considering the adjoining unknown
region of the largest information gain point, when the surface is not complex, the method in
[15] can’t achieve good results. Therefore, the method in [15] has a relatively great limitation.
As can be seen from the experimental results of proposed self-occlusion avoidance method,
overcoming the limitations of the method in [15, 17], the proposed method has a better
applicability to different visual objects.

Because the research object is moving in this paper, the requirement of real-time perfor-
mance is high. Table 2 shows the comparison of time consumption between the method in
[17], the method in [15] and the proposed method.

As can be seen from Table 2, the time consumption of the proposed method is far less than
the time consumption of the method in [15, 17]. The average time of obtaining self-occlusion
information by the method in [24] is 47.43 ms. Even though considering that time, the average
time consumption is 49.57 ms, which is also far less than the time consumption of the method
in [15, 17]. Therefore, the proposed self-occlusion avoidance method has relatively high real-
time performance.

6.2.2 Experiments of 3D motion estimation

In order to validate the feasibility and real-time performance of proposed 3D motion estimation
method, this paper adopts several different methods to estimate the various motions of Bunny,
and then the unit orthogonal rotation matrices and the translation vectors calculated by
different 3D motion estimation methods are utilized to move the vector (0, −1, 300) which is
from the origin of the world coordinate system to the initial observation position. The results
and time consumption of different methods are obtained for comparison. Table 3 shows the
results and time consumption of different methods. In Table 3, the ideal results are calculated
by multiplying the modelview matrix which is extracted from OpenGL directly and the vector
(0, −1, 300). Method 1 is only utilizing ICP algorithm in literature [30] to estimate the 3D
motion. Method 2 is combining the ORB algorithm and the ICP algorithm to estimate the 3D
motion, but in the process of 3D motion estimation, it doesn’t filter the matching results. The
proposed method not only combines the ORB algorithm and the ICP algorithm, but also filters
the matching results in the process of 3D motion estimation. Motion modes include translation
along the vector [1,0,0]T at the speed of 6cm/s, rotation around the vector [4,1,2]T at the speed
of 60∘/s, rotation around the vector [2,5,1]T at the speed of 20∘/s and translation along the

Table 2 The comparison of time consumption between different methods

Method Time consumption/ms Average time consumption/ms

Duck Bunny Mole Rocker Dragon

Method in [17] 12,826.32 12,930.74 12,920.18 12,775.14 13,113.72 12,913.22
Method in [15] 8288.35 2517.48 7103.26 1086.23 1205.45 4040.15
Proposed method 1.78 3.79 1.25 1.35 2.53 2.14
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vector [1,0,0]T at the speed of 10cm/s, rotation around the vector[2,1,6]T at the speed of 60∘/s
and translation along the vector[1,0,0]T at the speed of 4cm/s.

As can be seen from Table 3, the time consumption of method 1 is 7 to 9 times more than
that of method 2 and the proposed method. The reason is that method 1 only adopts ICP
algorithm to estimate the 3D motion, all the points in the two acquired depth images are
iterated, so method 1 is limited in efficiency. Method 2 matches points by utilizing ORB
algorithm first, and then iterates the matching points by utilizing ICP algorithm. It greatly
reduces the number of iteration points. So compared with method 1, the time consumption is
greatly reduced. But due to the influence of matching error and other factors, the results of
method 2 differ greatly from the ideal results. So method 2 is limited in accuracy. On the basis
of method 2, the proposed method uses the constraint of rigid invariance to filter the matching
points. The proposed method reduces the number of mismatching points and iteration points in
method 2, so the proposed method has higher accuracy than method 2, and the time
consumption is less than method 2. Overall, through combining the ORB algorithm and the
ICP algorithm, the proposed method reduces the time consumption of ICP algorithm, and puts
forward the constraint of rigid invariance to improve the accuracy of 3D motion estimation. So
the proposed method overcomes the limitations of method 1 and method 2, and it has higher
real-time performance and accuracy than method 1 and method 2.

6.3 Experiments of next best view

To validate the feasibility of next best view method proposed in this paper, Fig. 8 shows the
depth images acquired in the next best views which are calculated by the proposed method
when visual objects are in different motions. The visual object Duck Bunny, Mole, Rocker and
Dragon are 3D object models, and the visual object Kettle and Printer are the real objects. Fig.

Table 3 Results and time consumption of different methods

Motion mode Method Result Time
consumption/
ms

Translation along the vector
[1,0,0]T at the speed of 6cm/s

Ideal result (3, −1, 300) –
Method 1 (3.002, −1.027, 300.003) 414.14
Method 2 (3.984, 1.158, 300.114) 60.28
Proposed

method
(3.160, −0.500, 300.009) 49.23

Rotation around the vector
[4,1,2]T at the speed of 60∘/s

Ideal result (3.605, −14.664, 299.621) –
Method 1 (3.643, −14.647, 299.606) 475.09
Method 2 (4.643, −5.690, 300.155) 53.18
Proposed

method
(4.768, −11.273, 300.014) 52.43

Rotation around the vector
[2,5,1]T at the speed of 20∘/s and
translation along the vector [1,0,0]T

at the speed of 10cm/s

Ideal result (9.785, −2.888, 299.870) –
Method 1 (9.784, −2.909, 299.865) 423.14
Method 2 (10.347, 1.354, 300.031) 55.66
Proposed

method
(9.625, −1.313, 299.554) 51.23

Rotation around the vector[2,1,6]T at
the speed of 60∘/s and translation along the
vector[1,0,0]T at the speed of 4cm/s

Ideal result (4.619, −5.744, 299.918) –
Method 1 (4.630, −5.757, 299.911) 375.51
Method 2 (5.596, −3.684, 300.119) 53.56
Proposed

method
(4.530, −4.459, 299.946) 46.83
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8a is the name of visual object. Fig. 8b is the depth image acquired in the initial view. Fig. 8c is
the depth image acquired from the result of self-occlusion avoidance. Fig. 8d is the depth
image acquired in the next best view when visual object does translation along the vector [1,-

1,-1]T at the speed of 2
ffiffiffi
3

p
cm=s. Fig. 8e is the depth image acquired in the next best view when

visual object does rotation around the vector [2,1,1]T at the speed of 30∘/s. Fig. 8f is the depth
image acquired in the next best view when visual object does rotation around the vector

Duck 

Bunny 

Mole 

Rocker 

Dragon 

Kettle 

Printer 

(a) (b) (c) (d) (e) (f)

Fig. 8 Depth images acquired in the next best view when visual objects are in different motions (a)Visual object
(b) Depth image acquired in initial view (c) Depth image acquired from the result of self-occlusion avoidance (d)
Depth image acquired in the next best view when visual object does translation along the vector [1,-1,-1]T at the
speed of 2

ffiffiffi
3

p
cm=s (e) Depth image acquired in the next best view when visual object does rotation around the

vector [2,1,1]T at the speed of 30∘/s (f) Depth image acquired in the next best view when visual object does
rotation around the vector [−4,1,2]T at the speed of20∘/sand translation along the vector [2,0,1]T at the speed of
2

ffiffiffi
5

p
cm=s.
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[−4,1,2]T at the speed of 20∘/s and translation along the vector [2,0,1]T at the speed of

2
ffiffiffi
5

p
cm=s.

As can be seen from Fig. 8, for the 3D object models, the depth images are ideal (low noise
and smooth boundary). However, for the real visual objects, there are noise pixels and depth
data loss in the depth images acquired by using Kinect. The next best view is determined based
on the self-occlusion information of moving object in this paper, so the depth images acquired
in the next best views when the visual object is in different motions should be same as the
depth image acquired in the result of self-occlusion avoidance. Analyzing the depth images in
Fig. 8c, Fig. 8d, Fig. 8e and Fig. 8f, for the ideal 3D models, we can see that the depth images
of 3D object models acquired in the next best views when visual object moving are almost
same as the depth image acquired in the result of self-occlusion avoidance. For the real visual
objects, the difference between the results of real visual objects is slightly larger than the
results of ideal 3D object models. Through the analysis of the whole experimental process, the
process of 3D motion estimation is the major cause for the difference. Compared with ideal 3D
models, in the process of 3D motion estimation, the existence of noise pixels and depth data
loss in the depth images acquired by using Kinect bring trouble in pre-matching the two depth
images. The noise pixels make the mean curvature feature value of each pixel incorrect, and
the depth data loss decreases the number of matching points. These cause the result of 3D
motion estimation inaccurate. Therefore, the difference between the results of real visual
objects is slightly larger but not obvious. This shows that the proposed method has a good
applicability to the visual object in different motions.

In order to validate the effect of the next best view method in this paper, Table 4 shows the
quantitative evaluation of the result of self-occlusion avoidance and the next best views when
the visual object is in different motions. In Table 4, Nn is the number of surface points, Nnew is
the number of new added points, Rnew is the new added rate. The motion mode 1 is that the

visual object does translation along the vector [1,-1,-1]T at the speed of 2
ffiffiffi
3

p
cm=s, the motion

mode 2 is that the visual object does rotation around the vector [2,1,1]T at the speed of 30∘/s,
the motion mode 3 is that the visual object does rotation around the vector [−4,1,2]T at the

speed of 20∘/s and translation along the vector [2,0,1]T at the speed of 2
ffiffiffi
5

p
cm=s.

It can be seen that when the visual object is in different motions, the number of surface
points Nn, the number of new added points Nnew and the new added rates Rnew in the depth
images acquired in different next best views which are calculated by the proposed method are

Table 5 The time consumption of the proposed method when visual objects are in different motions

Motion modes Time consumption/ms Average time
consumption of
different visual objects/
ms

Duck Bunny Mole Rocker Dragon Kettle Printer

Motion mode 1 99.78 101.25 100.07 98.48 94.94 98.47 102.64 99.38
Motion mode 2 100.45 97.88 100.18 100.82 96.67 99.54 101.91 99.64
Motion mode 3 98.23 99.82 102.91 98.49 98.59 105.68 99.88 100.51
Motion mode 4 99.29 99.69 110.68 98.65 131.21 95.05 98.84 104.77
Motion mode 5 98.55 100.19 98.99 95.1 101.08 94.46 99.54 98.27
Average time

consumption of
different motion
modes/ms

99.26 99.77 102.57 98.31 104.44 98.64 100.56 100.51
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almost same as these in the depth image acquired in the result of self-occlusion avoidance.
Even though considering the influence of 3D motion estimation on the result of next best view,
the proposed next best view method has a good effect.

It can be analyzed from Table 4 that, when visual object is in different motions, the number
of surface points Nn, the number of new added points Nnew and the new added rates Rnew in the
depth images acquired in the next best views which are calculated by the proposed method are
almost same. Moreover, there is no significant difference between the quantitative results of
ideal 3D object models and real visual objects by the proposed method, which suggests that the
proposed method has a good applicability to different motion modes.

Based on the comprehensive analysis of Fig. 8 and Table 4, it is obvious that for the
3D object models, an ideal next best view can be determined by the proposed method.
For the real visual objects, the noise pixels and depth data loss would affect the 3D
motion estimation of visual object, which leads to some errors of the experimental results
of visual object, but the difference between the experimental results of visual object and
the ideal 3D object models is not obvious. It can be seen that the noise pixels and depth
data loss have a slight impact on the 3D motion estimation indeed, but a good next best
view can be determined by the proposed method, which shows that not only for the ideal
3D object models, but also for the real visual objects including the noise pixels and depth
data loss, the proposed method is very robust.

Table 5 shows the time consumption of proposed method when visual objects are in
different motions. The motion mode 1 is that the visual object does translation along the

vector [1,-1,-1]T at the speed of 2
ffiffiffi
3

p
cm=s, the motion mode 2 is that the visual object does

rotation around the vector [2,1,1]T at the speed of 30∘/s, the motion mode 3 is that the visual
object does rotation around the vector [−4,1,2]T at the speed of 20∘/s and translation along the

vector [2,0,1]T at the speed of 2
ffiffiffi
5

p
cm=s, the motion mode 4 is that the visual object does

rotation around the vector [3,3,6]T at the speed of 40∘/s and translation along the vector

[0,2,1]T at the speed of 2
ffiffiffi
5

p
cm=s, and the motion mode 5 is that the visual object does rotation

around the vector [1,-2,2]T at the speed of 20∘/s and translation along the vector [1,2,0]T at the

speed of 2
ffiffiffi
5

p
cm=s.

Table 5 shows that the average time consumption of proposed method is 100.51 ms.
Compared with the average time consumption of methods in [15, 17], it can be seen that the
average time consumption of proposed method is much less than the average time consump-
tion of methods which don’t consider motion in [15, 17]. Therefore, the proposed method has a
relatively high real-time performance. Moreover, there is no significant difference between the
time consumption of ideal 3D object models and real visual objects by the proposed method.
This shows that noise pixels and depth data loss in depth images acquired by using Kinect
have few impacts on the time consumption, which illustrates that the proposed method has a
relatively high real-time performance and applicability for real visual objects.

7 Conclusions

In this paper, a next best view method based on self-occlusion information in depth images for
moving object is proposed. Based on this method, the next best view of a moving object can be
effectively determined in real-time. We validate the proposed method by simulation experi-
ments and real experiments.
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The major contribution of this paper is that a next best view method for moving object is
proposed. The proposed method determines the next best view of a moving object by
combining the self-occlusion avoidance and 3D motion estimation, which overcomes the
limitation that the traditional next best view methods only apply to the static visual objects.
And it provides a means for solving the problem that self-occlusion avoidance methods don’t
work for moving object.

Another important contribution is that a self-occlusion avoidance method based on the idea
of mean shift is proposed. Firstly, based on the self-occlusion information, this method models
the self-occlusion regions by utilizing space quadrilateral subdivision. And then based on the
idea of mean shift, the result of self-occlusion avoidance is calculated by using the quadrilat-
eral information. This method provides a new means for solving the self-occlusion avoidance
and significantly reduces the time consumption of the traditional self-occlusion avoidance
methods.

Finally, a 3D motion estimation method through combining the ORB algorithm and the ICP
algorithm is proposed. The proposed 3D motion estimation method significantly reduces the
time consumption. And in the process of 3D motion estimation, a method to filter the matching
results based on the constraint of rigid invariance is proposed to improve the precision of 3D
motion estimation.

The method proposed in this paper describes a new idea of determining next best view.
Future work may follow two directions. Because the existing next best view evaluation criteria
are all for the static visual objects, we will describe a good evaluation criterion for the next best
view of moving objects. Moreover, we also intend to determine the next best view for moving
object in a complex environment.
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