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Abstract Room impulse response (RIR) simulation based on the image-source method is
widely used in room acoustic research. The calculation of the RIR in computer has to digi-
talize sound propagation delay into discrete samples. To carefully consider the digitalization
error greatly increases the massive computational load of the image-source method. There-
fore many real-time audio applications simply round-off the propagation delay to its nearest
sample. This approximation, however, especially when the sampling frequency is low,
degrades the phase precision that is required by applications such as microphone array. In
this paper, by involving a Hanning-windowed ideal low-pass filter to reduce the digitaliza-
tion error, a more precise image-source model is studied. We analyze its parallel calculation
procedure and propose to use Graphics Processing Unit (GPU) to accelerate the calculation
speed. The calculation procedure is divided into many parallel threads and arranged accord-
ing the GPU architecture and its optimization criteria. We evaluate the calculation speeds of
different RIRs using a general 5-core CPU, an ordinary GPU (GTX750) and an advanced
GPU (K20C). The results show that, with similar precise RIR results, the speedup ratios of
GTX750 and K20C over the general CPU can achieve 20 and 120 respectively.

Keywords Room impulse response · Graphics processing unit · Image-source model

1 Introduction

Room impulse response (RIR), being central to both measurement and modeling of room
acoustics, is a very important description on the sound propagation from one point to another
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point inside a room. It is widely used in acoustic signal processing, such as immersive audio
communication [9], multi-input-multi-output (MIMO) audio system [10], auralization [25],
etc. However, due to the underlying complexity of sound propagation, the acoustic model
of RIR is very computation-intensive.

In the acoustic signal processing community, the image-source model [1] might be the
most commonly used RIR modeling technique, because it covers a wide range of audio fre-
quencies than the wave-based model like Finite Element Method (FEM), Boundary Element
Method (BEM), Finite Difference Time-Domain (FDTD) methods [24, 29], etc. It is a fun-
damental ray-based modeling technique, which assumes that sound propagates in straight
line like ray and all reflections are specular. Since it is guaranteed to find all the reflec-
tion paths, it is more accurate than other ray-based models, such as the ray-tracing [13].
However, as the reflection order increasing, the number of image sound sources boosts expo-
nentially. Thus to consider each propagation path with respect to each image sound source
requires huge computational load. While the dramatic evolution and wide applications of
GPU provides another promising solution.

Over the past decade, the computational power of GPUs has been exploited for scien-
tific, database, geometric, imaging, as well as acoustic signal processing [5, 31]. In fact,
there is a growing trend in the development of computer processor. The main effort in terms
of improving the calculation performance turns from making a single core faster to involv-
ing multiple cores on the same chip, such as the evolutions of multi-core CPUs and general
purpose GPUs (GPGPUs). Especially the GPGPUs, since they have hundreds or thousands
of simpler cores, is very suitable for higher parallel calculation tasks. In the early days,
the programming on GPU was performed using graphics APIs (application programming
interface) such as OpenGL and DirectX, so general calculation had to be posed as a graph-
ics rasterization problem [11]. Later NVIDIA introduced CUDA (compute unified device
architecture) in 2006 [4], which accelerates the widely applications of GPU.

The architectural characteristics of GPUs constrain their power only on numerous inde-
pendent tasks that can be implemented in parallel, i.e. so-called embarrassingly parallel
problems. In fact, many audio applications can be reformulated into the embarrassingly
parallel problems. For example, in [6, 26], GPU is used for headphone-based sound spa-
tialization. In [34], a GPU-based sound synthesis is proposed. In [11, 21], GPU is used for
the acoustic ray-tracing modeling. There also are many works on numerical acoustics using
GPU to solve FEM, BEM or FDTD problems [19, 20, 22]. Please refer to the references
[25, 31] for overview on use of GPU on auralization and correlated audio processing topics.

In this paper, we focus on the RIR calculation based on the image-source method, which
can be a tool for room acoustics simulation and measurement. In most of previous GPU cor-
related audio processing works, the major purpose is to deal with real-time audio interaction
and simulate realistic auditory feelings. Thus different kinds of fast or approximate meth-
ods can be involved. For example, in ray-tracing methods or beam-tracing method only a
finite number of rays are considered to be emitted by every image sound source [15, 30]. In
real-time auralization, especially in dynamic environments, the approximation in geometric
accuracy [27] and late reverberation [2] are used. The similar approximations are involved
in non-GPU fast RIR simulations. In [8], the ray-tracing method is used for binaural RIR
simulation, and in [16, 28], the precision is only preserved in the early reflections. One of
the most frequently used approximation while simulating the discrete version of the RIR
using a computer is to round-off the propagation delay to its nearest sample, for example, in
both the original image-source method [1] and its newly fast implementation in [17]. These
approximations might be ignored in many applications, however, for multiple microphones
systems that are sensitive to inter-microphone phase, accurately simulate the propagation
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delays is critical, especially when the sampling frequency is low. A more precise RIR cal-
culation model is proposed in [7, 18], where a Hanning-windowed ideal low-pass filter is
involved to significantly reduce the round-off distortion. However, the impulse response of
the low-pass filter is convolved with every image source, thus significantly increases the
original massive computational load of the image-source method, especially when comput-
ing a large number of RIRs, e.g., as in the case of moving sound sources and microphone
array applications.

In fact, the image-source method, even with the low-pass filter, is intuitively suit for
GPU processing. Since if the room acoustic hierarchy, the locations of sound sources and
receivers, are given, all of the numerous image sources can be traced independent and thus
can be processed in parallel. On the other hand, GPUs currently are almost embedded in
every computational platform. It is worth utilizing their power to facilitate the RIR calcula-
tion. Therefore in this paper, we study the precise image-based RIR calculation, which takes
the Hanning-windowed ideal low-pass filter into consideration. The calculation procedure
is reprogrammed and efficiently implemented in GPU. By optimizing thread deployment,
the calculation speed with GPU is significantly improved comparing to that with CPU.
The results are verified using two different GPUs of NVIDIA, GeForce GTX750 and Tesla
K20C. Comparing to a normal CPU Core i5-3470 with 4 cores, the speedup ratios of
GTX750 and K20C can achieve 20 and 120 respectively.

2 Image-source model and calculation analysis

In this section, we analyze the image-source model and its calculation procedure. Then the
precise digitalization is considered and the bottleneck calculations are analyzed.

2.1 Image-source model

The image-source model assumes that sound propagates in straight line and all reflections
are specular. Thus given the location and the normal direction of a wall, a virtual sound
source, i.e. an image source, is determined by the locations of original sound source. When
a single sound source plays in a reverberant room, the reverberant sound signal recorded
by a receiver can be viewed as the summation of all direct sounds emitted from all image
sources, which simultaneously plays the same signal as the original sound source.

In this paper, we consider a typical shoebox-shaped room, which is widely used in the
context of speech reverberation, such as in [3, 7] and [17]. Since the room is in 3 dimen-
sions, the image sources are extended in 3 dimensions space. We denote the 3 dimensions
as x, y, and z, respectively. Let’s suppose the size of the room is Lx × Ly × Lz, and
the origin point is located at (0, 0, 0). To make a clearer illustration, we first consider the
wall reflection in x dimension. The reflections in 3 dimensions are the permutation of the
basic case.

Suppose a sound source s̃0 is located at (x̃0, ỹ0, z̃0), and a receiver s0 is located at
(x0, y0, z0), given two parallel walls located at x = 0 and x = Lx respectively, the wall
reflections in x dimension is shown in Fig. 1. Note that the sound reflection coefficients of
the two walls are denoted as βx1 and βx2 , respectively.

Since the x-coordinate of the source s̃0 is x̃0, with the two walls, the x-coordinates of all
sources (including image sources and the original source) in x dimension are [· · · , −2Lx −
x̃0, −2Lx + x̃0, −x̃0, x̃0, 2Lx − x̃0, 2Lx + x̃0, 4Lx − x̃0, · · · ]. The corresponding refection
orders are [· · · , −3, −2, −1, 0, 1, 2, 3,· · · ]. Then the x-coordinates of the vectors pointing
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Fig. 1 The image-source model with reflections only in x dimension

from every source to the receiver are [· · · , x0 + x̃0 + 2Lx , x0 − x̃0 + 2Lx , x0 + x̃0, x0 − x̃0,
x0 + x̃0 − 2Lx , x0 − x̃0 − 2Lx , x0 + x̃0 − 4Lx , · · · ], which can be expressed in a general
form as

(x0 − x̃0 + 2pxx̃0) + (2mxLx) ,

where px = 1 if the reflection order is odd, otherwise px = 0, and mx ∈ Z.
The accumulated reflection coefficients of sound signal propagated from every source to

the receiver are [· · · , β2
x1

βx2 , βx1βx2 , βx1 , 1, βx2 , βx1βx2 , βx1β
2
x2
, · · · ], which also can be

expressed in a general form as
β

|mx+px |
x1 β |mx |

x2
.

The corresponding reflection order can be expressed as Nx = |2mx + px |.
Now with the above general forms, the reflection relationship can be extended to 3-

dimension space. The vector from source s̃k to the receiver s0 is

ds̃ks0 =
⎡
⎣

(x0 − x̃0 + 2pxx̃0) + (2mxLx)

(y0 − ỹ0 + 2pxỹ0) + (
2myLy

)
(z0 − z̃0 + 2pzz̃0) + (2mzLz)

⎤
⎦ , (1)

where py and pz are similar to px , and my,mz ∈ Z. The subscript k denotes the k-th image
source. Apparently, any group of values of px , py , pz, mx , my , and mz determines one
sound source. Therefore, to consider all sound sources, one needs to traverse all possible
values of px , · · · , mz. That is the most time-consuming process. We will discuss its parallel
implementation in Section 3. Accordingly, the accumulated reflection coefficient referring
to the source s̃k is

βs̃ks0 = β
|mx+px |
x1 β |mx |

x2
β
|my+py |
y1 β

|my |
y2 β

|mz+pz|
z1 β

|mz|
z2 , (2)

where βy1 and βy2 are the reflection coefficients of the walls located at y = 0 and y = Ly ,
respectively. βz1 and βz2 are defined similarly. Given a group of values of px , · · · , mz, the
reflection order of the source s̃k is

N = Nx + Ny + Nz = |2mx + px | + ∣∣2my + py

∣∣ + |2mz + pz| (3)

Now the impulse response from the source s̃k to the receiver s0 can be written as

h (s̃k, s0, t) = αs̃ks0δ
(
t − τs̃ks0

)
, (4)

where αs̃ks0 denotes the decay coefficient of the source s̃k and τs̃ks0 is the corresponding
propagation delay time. αs̃ks0 is calculated as

αs̃ks0 = βs̃ks0

4π
∣∣ds̃k s0

∣∣ , (5)
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where
∣∣ds̃k s0

∣∣ represent the distance between the k-th source to the receiver. The propagation
τs̃ks0 can be obtained by

τs̃ks0 = ∣∣ds̃ks0

∣∣/c, (6)

where c is the speed of sound.
Finally, the RIR from the original source to the receiver is the summation of the impulse

responses of all image sources, which is

h
(
s̃, s0, t

) =
∑

k

h (s̃k, s0, t) =
∑

k

αs̃ks0δ
(
t − τs̃ks0

)
. (7)

Note that to traverse all k values is equivalent to traverse all possible values of px , py , pz,
mx , my , and mz, respectively.

2.2 Discrete calculation of the impulse response

In the previous section, the theoretical RIR based on image-source geometric model is
derived. To implement the calculation in computer, there are several issues needed to be con-
sidered: 1) how many image sound sources are needed for the summation in (7); 2) the time
delay τs̃ks0 in (7) may not fall at sampling instants, so the discrete version of this formula is
required.

2.2.1 Number of image sources

The first issue, according to the general form in (1), is actually meant to determine the
required ranges of mx , my , and mz, respectively. Generally, we suppose −N̂u ≤ mu ≤ N̂u,
where u ∈ {x, y, z}. If N̂u is defined, then the number of image sources are known. Note
that N̂u is not strictly equal to the reflection order, i.e. Nu, in u direction.

In practice, N̂u can be either user defined or determined according to the so-called rever-
beration time T60 (f ), which is frequency dependent and determined by the room geometry
and the sound absorption by all materials in the room. There are tremendous works in the
literature that address the reverberation time estimation problem, [14]. In this work, we use
the modified Sabine formula [12] as

T60 (f ) = 55.3V

c [Amat (f ) + 4mair (f ) V ]
, (8)

where V is the room volume, c is sound speed, Amat (f ) is the total material absorption
surface, and mair (f ) is the sound intensity absorption coefficient of air.

Supposing the air in the room is steady, the sound speed can be obtained as

c = 331
√
1 + 0.0036T , (9)

where T is the air temperature in Celsius. The total material absorption surface Amat (f ) is
calculated as

Amat (f ) =
6∑

i=1

(
1 − βi

2
)

Si, (10)

where βi (f ) is the frequency-dependent reflection coefficient of i-th wall, and Si is the wall
surface. The sound intensity absorption coefficient of air, mair (f ), can be estimated using

mair (f ) = 5.5 × 10−4 ×
(
50

H

)
×

(
f

1000

)1.7

, (11)

where H is the humidity of air.
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Now with the frequency-dependent T60 (f ), N̂u can be determined by

N̂u =
c

[
max

f
T60 (f )

]

2Lu

, (12)

where Lu is the room size in u dimension. Consequently, with pu ∈ {0, 1}, and −N̂u ≤
mu ≤ N̂u, where u ∈ {x, y, z}, to traverse all image sources, there are

N̂ = 23(2N̂x + 1)(2N̂y + 1)(2N̂z + 1) (13)

image sources are involved for the RIR calculation.
If the sampling frequency is fs , the length of the final RIR is

LRIR = fsmax
f

T60 (f ). (14)

2.2.2 Discrete form of the impulse response

The second issue is to turn the impulse δ
(
t − τs̃ks0

)
in (4) into its discrete form

δ
(
n − τs̃ks0fs

)
so that the impulse responses of all image sources can be accumulated (7) in

computer. The problem is that τs̃ks0fs may not be integer.
The simplest method is to fix τs̃ks0fs to the nearest integer value [1]. This approximation

may not influence many applications such as auralization, but for multiple microphones
systems that are sensitive to arrival time, more critical solution is necessary. We follow the
method proposed in [7, 18] by replacing δ (t) with the impulse response of a Hanning-
windowed ideal low-pass filter as

δLPF(t) =
{

1
2

(
1 + cos

(
2πt
Tω

))
sinc (2πfct) − Tω

2 < t < Tω

2

0 otherwise
, (15)

where Tω is the width (in time) of the impulse response, and fc is the cut-off frequency. As
in [7], the typical value of Tω is 8ms and fc is set to the Nyquist frequency. The discrete
form of δLPF(t) is then

δLPF(n − ε) =
{

1
2

(
1 + cos

(
2π(n−ε)

Nω

))
sinc

(
2πf ′

c(n − ε)
) −Nω

2 < n < Nω

2

0 otherwise
, (16)

where Nω = Tωfs is the window width (in samples), f ′
c = fc

/
fs is the normalized cut-off

frequency, and ε = τs̃ks0fs − floor
(
τs̃ks0fs

)
. floor(·) means round towards minus infinity,

so 0 ≤ ε < 1.
The above replacement of δ(t)with δLPF(n−ε)modifies the calculation of the RIR. With

δ(t), each image sound source only contributes to one point in the continuous RIR, while
with δLPF(n − ε), each source will contribute to Nω samples in the discrete RIR, which
requires another iteration of calculation.

2.3 Calculation analysis

According to the above analysis, the calculation procedure of the RIR consists of:

(1) Calculating the sound speed c in a given environment (9);
(2) Calculating the reverberation time T60(f ) (8);
(3) Calculating the length of the RIR LRIR (14);
(4) Calculating the N̂u to determine the number of image sources N̂ (12) and (13);
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(5) Calculating the propagation delay τs̃ks0 and the decay coefficient αs̃ks0 of each image
sound source (1) and (2);

(6) Overlapping and adding δLPF(n − ε) of each source to the final RIR (7).

One can find that in the above algorithm, the first four steps are identical for every image
source. So they need to be implemented only once. However, the last two steps have to be
implemented for every image source. If the calculations are implemented in sequence to
traverse all image sources, it will be too time-consuming to be applied in many applications.
For example, with a cube room of size 5m × 5m × 5m and 0.3s reverberation time, then
N̂u � 10, and the number of images sound source is about 74088. Suppose the sampling
frequency fs = 44100Hz, then the total length of the RIR is 13230, and the lowpass filter
length Nω = 353. Thus there are 74088 × 353 � 2.6 × 107 points need to be overlapped
and added to an array of 13230. This number of iterations is truly huge and the calculation
in sequence is very inefficient and time-consuming. In fact, it is easy to find that when the
locations of all sources are known, the succeeding calculations of the impulse response with
respect to each source are independent, which fits the requirement of parallel computing
very well.

3 GPU implemetation of the image-source model

3.1 Some optimization principles for GPU programming

In order to improve the calculation speed of an algorithm with GPU, it is necessary to use
GPU efficiently. The most important thing is to organize the available resources of GPU
properly. When the GPU resource is well organized, CPU can launch a kernel function to
GPU to start computing [32].

The first issue is the memory resource in GPU, since the speed of accessing different kind
memory varies a lot. The memory resource in GPU can be divided into on-chip memory
and off-chip memory, and the available memory types include:

– Shared on-chip memory, which is shared by all threads within the same thread-block;
– Global memory, which is the biggest off-chip memory and has much smaller bandwidth

than on-chip memory;
– Constant memory, which is read-only off-chip memory and can be accessed faster then

the Global memory due to its constant cache;
– Texture memory, which is read-only off-chip memory with texture cache.
– Local memory, which is also off-chip memory without cache, and can be occupied by

only one thread privately.

Generally, the global memory, the local memory and the texture memory have longer access
delay than the constant memory, and the on-chip shared memory is the fastest memory
that should be used preferably. Currently, the widely used NVIDIA GPU based on Kepler
architecture has 16KB local memory, 64KB constant memory and 16KB shared memory.
In addition to those memory resources, every streaming multiprocessor has 8192 or 16384
32-bits registers.

The second issue is the organization of threads. There are hundreds or thousands of
threads running on a GPU simultaneously. In NVIDIA programming model, it allows
32 threads to be organized as one warp, and the threads within one warp are executed
parallel. It also allows several warps to compose as one block, and the threads within



5212 Multimed Tools Appl (2016) 75:5205–5221

one block are executed in one streaming multiprocessor. This facilitates the communi-
cation between different threads because: (1) the threads within one block share same
memory; (2) it is easy to synchronize the threads in one block. Note that the maximum
amount of threads allowed within one block is limited. For threads in different block, the
communication must go through the global memory, which will slow down the calcula-
tion speed. The general optimization principles of GPU programming can be summarized
as [23, 32]:

– More threads are better, so as to deemphasize the memory access delay;
– Avoid access of global memory;
– Try to organize threads within one block. Note the number of threads within one block

should be an integer multiple of the number within one warp;
– Try to reduce the communication between device and host to avoid long delay.
– It is better to use alignment access in the global memory. [23, 33]

3.2 Implementation on GPU

Recalling the calculation procedure of the RIR in Section 2.3, the first four steps are to be
implemented only once. So they are performed in CPU in sequence. When these steps are
done, to traverse all image sound sources as fast as possible, the most frequently access
variables, including the counters, i.e. px , py , pz, mx , my , mz, the coordinates of the sound
source (x̂0, ŷ0, ẑ0) and the receiver (x0, y0, z0), the room size (Lx, Ly, Lz), the reflec-
tion coefficients of the six walls, βx1 , · · · , βz2 , the sound speed c, the length of the RIR
LRIR, N̂x , N̂y , N̂z, the sampling frequency fs , and the lowpass filter coefficients δLPF(n)

are stored in the GPU registers. These variables will be accessed frequently in the calcu-
lations of the step (5) and step (6). Next we consider the thread organization in GPU for
these two steps. To save the result RIR data, a buffer of length LRIR is allocated in the
global memory.

3.2.1 Calculating the propagation delay and decay coefficient

Since the number of all image sources N̂ = 23(2N̂x + 1)(2N̂y + 1)(2N̂z + 1), accord-
ing to the first GPU optimization principle list in Section 3.1, it is best to perform N̂

threads in parallel. And in the CUDA programming model framework, it is suggested
to deploy all threads into one block. However, the NVIDIA GPU only supports at most
1024 threads in one block, which is generally less than what we need. Therefore, we have
to organize more blocks and maintain the number of threads within one block as many
as possible.

According to the CUDA programming model, the blocks can be arranged in one-
dimension, two-dimension, or three-dimension. The threads within each block can also be
arranged in one-, two-, or three-dimension. To address a thread within one block, CUDA
provides two predefined structures named as blockIdx and threadIdx. Each structure
has three members, .x, .y, and .z, referring to the indexes in x-dimension, y-dimension
and z-dimension, respectively. In our task, to make use of these predefined counters and
deploy more threads within each block, we arrange a two-dimension block array, and the
threads within each block is arranged in one-dimension. The thread organization for prop-
agation delay and decay coefficient calculations is shown in Fig. 2, where Bx = 2N̂x + 1,
By = 2N̂y + 1, and Bz = 2N̂z + 1. Therefore, to address a thread, we need three counters.
Two of them address the corresponding block, and one of them addresses the target thread.
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Fig. 2 The thread organization in GPU for propagation delay τs̃ks0 and decay coefficient αs̃ks0 calculations.
The blocks are organized into a two-dimension matrix of Bx ×By , and within each block, there are Bt threads

The three counters, as well as their mapping to the counters of traversing all image sources,
are proposed as,

mx = blockIdx.x;
my = blockIdx.y;
mz = threadIdx.x;

(17)

where −N̂u ≤ mu ≤ N̂u, (u ∈ {x, y, z}). Within each thread, 23 image sources
(px, py, pz = 0 or 1) are calculated in sequence. That reduces the possibility of thread
switching, which also depress the calculation efficiency.

The result propagation delay τs̃ks0 and decay coefficient αs̃ks0 with respect to
each image source is stored respectively into a one-dimension array allocated in
the global memory. The entry index of each array is determined by a group of
(px , py , pz, mx , my , mz).

3.2.2 Overlap-adding to accumulate the room impulse response

The basic consideration in organization GPU resource for this calculation is similar as the
above step. However, because of the low-pass filter window, now we have to arrange more
threads. Specifically, for each image source, there are Nω samples need to be calculated and
accumulated into the final RIR. Therefore, we have

Nω · 23(2N̂x + 1)(2N̂y + 1)(2N̂z + 1)

threads in total.
Generally, Nω > max

(
2N̂x + 1, 2N̂y + 1, 2N̂z + 1

)
. i.e. the length of the low-

pass filter window is longer than the largest reflection order. Additionally, sometimes

23 · min
(
2N̂x + 1, 2N̂y + 1, 2N̂z + 1

)
> 1024. Therefore we have to arrange a three-

dimension block matrix, the size of which is (2N̂x +1) by (2N̂y +1) by 23(2N̂z +1), where
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each block refers to one image source. And within each block, there are (Nω) threads. The
arrangement is shown in Fig. 3, where

Bx = 2N̂x + 1,

By = 2N̂y + 1,

Bz = 23(2N̂z + 1),

Bt = Nω.

When the low-pass filter window of each image source is weighted by the decay coeffi-
cient αs̃ks0 , it is moved to the offset of τs̃ks0fs and accumulated into the final RIR. Note that
τs̃ks0fs must be rounded towards nearest integer firstly.

There is another thing needs consideration. It can be expected that some virtual sound
sources may have same propagation delay, so the threads correlated to those sources will
access same offset in the final RIR cache. If multiple threads operate same cache unit simul-
taneously, access violation may result in failure operation. To avoid this problem, we use the
atomic operation, which is a common operation that will always be executed without inter-
ruption during the operation. Although the atomic operation will extend the computation
time, it is necessary for achieving correct result.

4 Experiments

The purpose of the experiments in this section consists of two parts. The first one is to vali-
date the correctness of the proposed GPU-based calculation. The second one is to evaluate
the speedup ratio of the GPU-based calculation compared to the CPU-based calculation.
The baseline program is from [7]. Note that the estimation on reverberation time in that
program is slightly different than ours. To make fair comparison, the reflection order or the
length of impulse response in the rest of the paper is directly defined, therefore the results
has no relationship with the reverberation time estimation. By changing the reflection order,
the corresponding execution times are measured.

Fig. 3 The thread organization in GPU for overlap-adding to accumulate the final room impulse response.
The blocks are organized into a three-dimension matrix of Bx × By × Bz, and within each block, there are
Bt threads
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4.1 Experiments setup

The baseline program and the proposed GPU-based program are implemented in the same
computer. For the GPU-based program, two different GPUs from NVIDIA are involved.
The details of the computation devices are list in Table 1. Note that GPU1 (denoted as
K20C) is an advanced GPU, and GPU2 (denoted as GTX750) is an ordinary GPU. One can
find that GPU1 has not only far more CUDA cores, but also significantly larger memory
and wider bandwidth than those of GPU2. The competitor CPU is a general one with 5
cores and much higher central clock than the GPUs. We simulate 3 shoebox-shaped rooms
of different sizes, which are denoted as Room1, Room2, and Room3, respectively. The
details of the rooms are list in Table 2. In all of the following experiments, the sampling
frequency is 44.1kHz. In order to compare the RIR calculation performance in extremely
massive conditions, the wall reflection coefficients are all set to 0.9, which means there
will be numerous image sources need calculation. Especially in the smallest room, Room3,
due to its small size and strong reflection, the reflection order of the image-source model is
significantly high.

In order to compare the calculation speeds of different devices, for each room, we defined
5 different lengths of the corresponding RIR. The first four lengths are 4096, 8192, 16384,
44100, and the last length is equal to the T60(reverberation time in samples) of each room.
Note that longer T60 doesn’t refer to higher computational load. The key issue is the number
of image sources. For example, Room3 has shortest reverberation time, but the number of
image sources is about 2 times of Room1, the one with longest reverberation time. The
RIRs are calculated using the CPU and the GPUs respectively, then the computation time
are measured, so as to estimate the speedup ratio. Note that in some cases the running
time of the GPUs is less than 1ms that is too small to measure. To obtain the running time
precisely, the corresponding calculation is repeated 80000 times so as to get an average
running time.

4.2 Experiments results

4.2.1 Calculation errors evaluation

Firstly we exam the correctness of the RIR calculation using the two GPUs in Table 1. The
reference is the calculation result using the CPU. Figure 4. It is found that there are only tiny
numerical errors which are due to the difference of the CPU and the GPUs in calculating
several mathematic functions. It is confirmed that when closing down these functions, the

Table 1 Computing device information

Processor CPU GPU1 GPU2

Version Core i5-3470 NVIDIA Tesla K20C NVIDIA GeForce GTX750

Number of Core 4 2496 CUDA cores 640 CUDA cores

Clock 3.2GHz 706MHz 1020MHz

Memory Size 4GB 5GB 2GB

Memory Bandwidth — 208GB/s 86.4GB/s

TFLOPS∗ — 3.524 1.04

∗teraFLOPS=1012FLOPS



5216 Multimed Tools Appl (2016) 75:5205–5221

Table 2 The information of the experiment rooms

Room1 Room2 Room3

Size 15m×20m×6m 8m×10m×3.5m 4m×5m×3.5m

T60 2.8s 1.6s 1.1s

Source location (3.5m,2.5m,1m)

Temperature 15◦

Humidity 0.3

Reflection coefficient 0.9 for all walls

consequent results are then identical. The quantitative results of the calculation errors in
different testing cases are list in Table 3, where the errors are measured using the normalized
misalignment defined as

ε = 20log10
‖hCPU(n) − hGPU(n)‖2

‖hCPU(n)‖2 , (18)

where ‖·‖2 denotes the l2 norm. Note that the results of the two kinds of GPUs are identical,
so the normalized misalignment is calculated between the results of the GTX750 and the
Core i5-3470.

Fig. 4 The upper figure is the RIR of Room3 calculated using the CPU. The lower figure is the calculation
error using GTX750 GPU
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Table 3 The normalized misalignment (dB) between the RIRs using CPU and GPUs

RIR length (samples) 4096 8192 16384 44100 T60fs

1 −73.52 −67.00 −62.60 −58.52 −57.46

2 −70.95 −67.31 −64.25 −62.48 −62.37

3 −72.11 −69.15 −67.42 −66.93 −66.93

4.2.2 Speedup ratio evaluation

The calculation time on RIR of different lengths using the CPU and the two GPUs are list in
Table 4. As expected, the calculation time of both the CPU and the GPUs are increased with
the increase of the RIR length, but the time of CPU increase significantly higher than the
two GPUs, and the K20C GPU gives the best results. The reason is that the number of image
sound sources need calculation grows exponentially. For iterative calculation in CPU, the
time is increased similarly, while for parallel calculation in GPU, due to more threads are
preformed simultaneously so that the time does not increase significantly. Additionally, one
can find that, given same length of the RIR, the calculation time of the small room (Room3)
is longer than the large room (Room1). That is because the reflection order N̂u is inversely
proportional to the room size, when the wall reflection coefficients and the RIR length are
same, there will be more image sources in the small room.

The speedup ratio of the GPU-based calculation is shown in Fig. 5. Each GPU results of
the three rooms are averaged and compared to the CPU results. Note that since the T60 of
the three rooms are different, the speedup ratios at T60fs can not be averaged. So they are
not shown. It is found that with the very general GPU, GTX750, the speedup ratios are from
8 to 21 times than the CPU, and the speedup ratios of K20C are significantly higher. We

Table 4 The calculation time comparisons

Room1 (T60 = 2.8s)

RIR length (samples) 4096 8192 16384 44100 T60fs

Number of Sources 840 3640 18216 216600 3877272

Calculation time (ms)

CPU 1 5 34 680 14780

GTX750 0.15 0.43 2.2 31 717

K20C 0.08 0.14 0.45 21 114

Room2 (T60 = 1.6s)

RIR length (samples) 4096 8192 16384 44100 T60fs

Number of Sources 275 12312 75480 1167880 4451480

Calculation time (ms)

CPU 3 28 224 4374 17281

GTX750 0.32 1.7 16 234 795

K20C 0.11 0.34 2 33 131

Room3 (T60 = 1.1s)

RIR length (samples) 4096 8192 16384 44100 T60fs

Number of Sources 7128 38760 263736 4551240 5970600

Calculation time (ms)

CPU 14 110 887 17250 23124

GTX750 0.94 16 47 842 1076

K20C 0.22 2 8 135 179
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Fig. 5 The speedup ratios of the two GPUs (GTX750 and K20C) with respect to the CPU (Core i5-3470)

can infer that as the RIR length increasing, the speedup ratios of both GPUs can be further
higher, but they will be constrained by the available parallel resources in GPU.

Since many real-time audio rendering applications do not require the proposed precise
RIR calculation, we also present the performance comparison of the basic image-source
method without the low-pass filter. It can be viewed as the computational cost spent on the
RIR calculation for such real-time rendering applications. The results are shown in Table 5.
Comparing to the results in Table 4, one can find that the missing of the low-pass filter sig-
nificantly decreases the calculation time. For example, in Room1, with the low-pass filter,
the calculation time for T60 on CPU is 14780ms, but without the filter, the calculation time
reduces to 125ms. When using GPUs, the calculation time is also significantly decreased.
Even in the worst case, i.e. in Room3, the speedup ratio of the ordinary GPU, GTX750, is
about 6.5 times over the CPU. Notice that the speedup ratio of the similar case but with the
low-pass filter is 21.5 (in Table 4, 23124/1076 ≈ 21.5), which means the GPUs is more
powerful for the precise RIR calculation problem addressed in this paper.

Suppose that the analysis frame length is 1024 samples with 44100Hz sampling rate,
the calculation time must be less than 1024/44.1 ≈ 23.2ms for real-time implementation.
Obviously, in all cases but in Room3, the calculation time on GPUs satisfies the real-time
requirement. It must be noted that Room3 is a small but strong reverberant room, which is

Table 5 The calculation time (ms) and speedup ratio comparisons without the low-pass filter

Cal. time (speedup ratio) Room1 Room2 Room3

CPU 125 (-) 141 (-) 202 (-)

K20C 3 (41.7) 4 (35.3) 4 (50.5)

GTX750 16 (7.8) 16 (8.8) 31 (6.5)
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seldom exist in reality. All of the test cases are designed specifically for evaluation. In fact,
for real-time applications, some simplification of the image-source model must be taken
into consideration to reduce the necessary computation units, which is beyond the scope of
this paper.

5 Conclusions

This paper addresses the GPU-based room impulse response calculation. Specifically, a
precise RIR calculation method using the image-source model is studied. To avoid the dig-
italization error caused by rounding off the propagation delay of each image source, a
hanning-windowed ideal low-pass filter is involved. Since the overall computational load is
very high but intuitively parallelizable, we use GPU programmed with CUDA to efficiently
solve this problem. The bottleneck computation steps are deployed into many threads, which
can be efficiently calculated in parallel with GPU. We compare the numerical errors and
calculation time of different RIRs using a general 5-core CPU and two different GPUs, one
advanced GPU K20C and one ordinary GPU GTX750. The results show that, with similar
precise RIR results, the speedup ratios of GTX750 and K20C over the general 5-core CPU
can achieve 20 and 120 respectively.
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national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
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