Skip to main content
Log in

Formation of Grain and Packet-Lath Structure in Low-Carbon Steels After Quenching from Intercritical Temperature Range

  • STRUCTURAL STEELS
  • Published:
Metal Science and Heat Treatment Aims and scope

Structural and phase transformations under cooling of low-carbon martensitic steels of the Cr – Mn – Ni – Mo – V – Nb system with carbon content 0.15 and 0.27% are studied. The microstructure is investigated by optical and electron microscopy, measurement of hardness, x-ray diffraction analysis, dilatometric and energy dispersive analyses. The strength and ductility parameters are determined in tensile tests. The impact toughness is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. H. M. Fonshtein, “Fundamental features of phase transformations of low-alloy steels under heat treatment from intercritical temperature range,” in: V. N. Urtsev (ed.), Phase and Structural Transformations in Steels [in Russian], Magnitogorsk (2008), Issue 5, pp. 62 – 75.

  2. B. M. Bronfin, S. N. Goldshtein, and E. I. Golub, “Model of strain hardening and plasticity of ferrite-pearlite steels,” Fiz. Met. Metalloved., 60(5), 1010 – 1017 (1985).

    Google Scholar 

  3. L. I. Kogan, E. F. Matrokhina, and R. I. Entin, “Effect of austenitization in ITR on the structure and properties of low-carbon steels,” Fiz. Met. Metalloved., 52(6), 1232 – 1241 (1981).

    Google Scholar 

  4. S. K. Berezin, A. A. Shatsov, and S. K. Greben’kov, “Structure and mechanical properties of low-carbon martensitic steel quenched from intercritical temperature range,” Nauch. Obozr., No. 22, 136 – 142 (2015).

  5. A. P. Kamenskikh, L. Ts. Zayats, L. M. Kleiner, and Yu. N. Simonov, “Special features of formation of structure and properties in low-carbon martensitic steel 12Kh2G2NMFT,” Metalloved. Term. Obrab. Met., No. 3, 10 – 12 (2003).

  6. L. M. Kleiner and A. A. Shatsov, Structural High-Strength Low-Carbon Steels of Martensitic Class [in Russian], Izd. PGTU, Perm (2008), 303 p.

  7. L. E. Popova and A. A. Popov, Diagrams of Transformation of Austenite in Steels and Beta Solution in Titanium Alloys: A Handbook of Heat Treatment Specialist [in Russian], Metallurgiya, Moscow (1991), 503 p.

  8. N. A. Anufriev, A. V. Maisuradze, and Yu. V. Yudin, “Numerical simulation of structural transformations in hypoeutectoid low-alloy steels,” Metalloved. Term. Obrab. Met., No. 4, 40 – 45 (2011).

  9. M. A. Krishtal, Diffusion Mechanism in Iron Alloys [in Russian], Metallurgiya, Moscow (1972), 400 p.

  10. L. M. Kleiner, D. M. Shatsov, A. A. Larinin, and M. G. Zakirova, “Structure of low-carbon martensite and structural strength of steels,” Perspekt. Mater., No. 1, 59 – 71 (2011).

  11. Yu. S. Karabasov (ed.), Steel at the Frontier of Centuries [in Russian], MISiS, Moscow (2001), 664 p.

    Google Scholar 

  12. L. Ts. Zayats, D. Yu. Panov, and Yu. N. Simonov, “Refinement of the structure of steels under intense thermal impact. Part 1. Choice of optimum alloying system,” Metalloved. Term. Obrab. Met., No. 11, 13 – 19 (2010).

  13. V. A. Kozvonin, A. A. Shatsov, I. V. Ryaposov, et al., “Structure, phase transformations, mechanical properties and cold resistance of low-carbon martensitic steels,” Fiz. Met. Metalloved., 117(8), 862 – 870 (2016).

    Google Scholar 

  14. M. E. Blanter, The Theory of Heat Treatment. A Study Aid [in Russian], Metallurgiya, Moscow (1984), 328 p.

  15. N. P. Antsiferov, V. A. Galushin, and M. V. Maisuradze, “Determination of critical points of structural steels under heating-cooling by the method of thermal analysis,” in: X Int. Ural Workshop of Young Metallurgists, Ekaterinburg, 7 – 11 December 2009 [in Russian], Ekaterinburg (2009), pp. 11 – 13.

  16. Hidenori Terasaki and Yu-Ichi Komizo, “Correlation between the microstructural development of bainitic ferrite and the characteristics of martensite-austenite constituent,” Metall. Mater. Trans. A, 44(12), 5289 – 5293 (2013).

    Article  Google Scholar 

  17. M. G. Zakirova, L. M. Kleiner, S. K. Greben’kov, and A. V. P’yankov, “Raising the stability of supercooled austenite of low-carbon martensitic steels,” Metall. Mashinostr., No. 5, 41 – 42 (2011).

  18. S. S. Yugay, L. M. Kleiner, A. A. Shatsov, and N. N. Mitrokhovich, “Formation of structure and properties of low-carbon martensitic steel 12Kh2G2NMFT under quenching,” Fiz. Met. Metalloved., 97(1), 107 – 112 (2004).

    Google Scholar 

  19. L. M. Kleiner, D. M. Larinin, L. V. Spivak, and A. A. Shatsov, “Phase and structural transformations in low-carbon martensitic steels,” Fiz. Met. Metalloved., 108(2), 161 – 168 (2009).

    Google Scholar 

Download references

The authors gratefully acknowledge the participation of Professor L. M. Kleiner in initiation of the works and the help of Professor L. V. Spivak with the calorimetric studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Berezin.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 2, pp. 32 – 38, February, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berezin, S.K., Shatsov, A.A., Panov, D.O. et al. Formation of Grain and Packet-Lath Structure in Low-Carbon Steels After Quenching from Intercritical Temperature Range. Met Sci Heat Treat 61, 101–107 (2019). https://doi.org/10.1007/s11041-019-00383-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-019-00383-5

Key words

Navigation