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Abstract The WRKY transcription factor (TF) plays a

very important role in the response of plants to various

abiotic and biotic stresses. A local papaya database was

built according to the GenBank expressed sequence tag

database using the BioEdit software. Fifty-two coding

sequences of Carica papaya WRKY TFs were predicted

using the tBLASTn tool. The phylogenetic tree of the

WRKY proteins was classified. The expression profiles of

13 selected C. papaya WRKY TF genes under stress

induction were constructed by quantitative real-time

polymerase chain reaction. The expression levels of these

WRKY genes in response to 3 abiotic and 2 biotic stresses

were evaluated. TF807.3 and TF72.14 are upregulated by low

temperature; TF807.3, TF43.76, TF12.199 and TF12.62 are

involved in the response to drought stress; TF9.35, TF18.51,

TF72.14 and TF12.199 is involved in response to wound;

TF12.199, TF807.3, TF21.156 and TF18.51 was induced by

PRSV pathogen; TF72.14 and TF43.76 are upregulated by

SA. The regulated expression levels of above eight genes

normalized against housekeeping gene actin were signifi-

cant at probability of 0.01 levels. These WRKY TFs could

be related to corresponding stress resistance and selected as

the candidate genes, especially, the two genes TF807.3 and

TF12.199, which were regulated notably by four stresses

respectively. This study may provide useful information

and candidate genes for the development of transgenic

stress tolerant papaya varieties.

Keywords Carica papaya L. � WRKY transcription

factor � Quantitative real time PCR (qRT-PCR) � Biotic

stress � Abiotic stress � Papaya ringspot virus (PRSV)

Abbreviations

AS Salicylic acid

TF Transcription factor

TFPs Transcription factor proteins

ZF Zinc finger

CDS Coding sequence

WRKY Transcriptional regulatory factors in which

N-terminal ends contain a conserved

WRKYGQR amino acids sequences

PBS Phosphate buffer solution

Introduction

Carica papaya is an economically important fruit in

southern China as well as other tropic and sub-tropic

countries. Its flower bud formation and fruit production are

susceptible to abiotic and biotic stresses such as extreme

temperatures, seasonal droughts, typhoon wounds, and

papaya ringspot virus (PRSV). These stresses may cause

severe economic loss in papaya production in China. The

development of transgenic Papaya varieties that are more

tolerant to these stresses could be an effective approach to

the problems.

Plants have multiple mechanisms for adapting to abiotic

and biotic stresses in their natural habitats [1, 12]. Research

Electronic supplementary material The online version of this
article (doi:10.1007/s11033-013-2966-8) contains supplementary
material, which is available to authorized users.

L. Pan � L. Jiang (&)

College of the Department of Horticulture and Forestry of

Huazhong Agricultural University, Key Laboratory of

Horticultural Plant Biology of Ministry of Education, National

Indoor Conservation Center of Virus-free Gemplasms of Fruit

Crops, Wuhan 430070, Hubei, China

e-mail: jiangling@mail.hzau.edu.cn

123

Mol Biol Rep (2014) 41:1215–1225

DOI 10.1007/s11033-013-2966-8

http://dx.doi.org/10.1007/s11033-013-2966-8


on the responses of plants to their environments has been

focused on the gene regulation of transcriptional level.

Transcription factors (TFs) are proteins that can activate or

restrain the transcription of downstream target genes by

binding directly to promoters of target genes in a sequence-

specific mode [37]. The WRKY TFs form one of the largest

families and play a broad-spectrum regulatory role as

positive and negative regulators in the responses to abiotic

and biotic stresses in plants [1].

Proteins of the WRKY gene family contain one or two

highly conserved WRKY domains and a zinc finger motif

in the C-terminal region [10]. WRKY proteins containing a

single WRKY domain with the C2-H2 (C-X4-5-C-X22-23-

H-X1-H) pattern are group I, WRKY proteins containing

two WRKY domain followed by a C2H2 are group II;

WRKY proteins containing a single WRKY domain with

C2-HC (C-X7-C-X23-H-X1-C) pattern are group III; group

IV especially for WRKY proteins that contain a WRKY

domain but lack a complete zinc finger [10, 41]. The

WRKY domain can bind to the TTGAC(C/T) of W-box

found in promoters of target genes and regulates its tran-

scription [44]. WRKY family members appear to be

involved in the regulation of various physiological and

development processes in plants, such as senescence,

embryogenesis, regulation of biosynthetic pathways, hor-

mone signaling, etc. [42].

WRKY genes are frequently reported to be involved in

various stress responses. The WRKY proteins have been

observed in response to various pathogenic infections, such

as fungal, bacterial, and viral [11, 17, 29, 39]. Some

WRKYs are induced by pathogen infection, and activated

by other elicitors such as SA or wounding [2]. Hwang et al.

[15] reported the heterologous expression of OsWRKY6

gene in Arabidopsis activates the expression of defense

related genes and enhances resistance to pathogens. WRKY

TFs have also been shown to regulate cross-talk between

jasmonate- and salicylate-regulated disease response path-

ways [56]. Different stresses have been reported to induce

the expression of various WRKY TFs. For example, SA

induces AtWRKY3, BnWRKY, CaWRKY1, FaWRKY1,

HvWRKY38, and OsWRKY [8, 23, 36, 40, 43, 48, 50]; cold

stress induces HvWRKY and LtWRKY [32, 59, 60]; drought

induces HvWRKY and OsWRKY [40, 43]; and wound

induces LtWRKY, OsWRKY, OsWRKY, PtWRKY, VvWRKY,

and WtWRKY [24, 31]. Many WRKY TFs are activators,

such as AtWRKY3 and AtWRKY4 [23], CaWRKYb [17].

Some WRKYs, however, are repressors, such as AtWRKY62

[22], OsWRKY51 and OsWRKY71 [47].

The rapid and effective quantitative real-time polymer-

ase chain reaction (qPCR) is still considered to be the

effective method for the comprehensive quantification

analysis of WRKY expression at the genome level [21, 52].

Since the identification of the first WRKY protein, SPF1,

from sweet potato (Ipomoea batatas) [16], large numbers

of WRKY genes have been cloned from various plant spe-

cies including potato [6], tobacco [53], wheat and barley

[44], Arabidopsis [3, 4, 15, 49, 56], pepper [38, 57], grape

[31], rice [40, 41, 55], capsicum [36], populus [24], canola

[50], Cucumis sativus [27], cotton [52], etc. Although

numerous WRKY genes have been identified or predicted

from many different species, only a small number of them

have been functionally characterized in Arabidopsis, soy-

bean, rice, tobacco, etc. [26]. The WRKY genes of papaya

have been confirmed since the whole genome sequence of

the papaya plant has been completed [33].

Dong et al. [7] reported the expression profile of WRKY

against pathogenic stress in Arabidopsis, and induced

expression was detected in 49 out of the 72 tested WRKY

genes. Ming et al. [33] reported 52 WRKYs in papaya.

However, the number of WRKYs in papaya responsible to

stresses remains unknown. And the WRKY genes have not

yet been functionally characterized.

The purpose of present study is to build a local database

for WRKY genes in papaya, to construct a phylogenetic tree

using the domain amino acid sequences of these WRKY

proteins, and to detect the expression profiles of selected

candidate WRKYs under various stressed conditions and

predict the possible functions based on their expression

patterns. This research may provide useful information and

candidate genes for the development of transgenic stress

tolerant papaya varieties.

Materials and methods

Materials and treatments

Seedlings of C. papaya L. ‘Sunup’ provided by the Insti-

tute of Agriculture Science in Fujian Province were cul-

tured at 28 �C,under a photoperiod of 14 h/day. Stress

treatments were performed on 30-day-old seedlings with

four to five leaves. 1 mmol/L SA was sprayed onto the

cotyledons and two euphilla at a dose of 10 ml/plant.

Afterwards, the leaves were collected 12 h after treatment.

Plants treated with only water served as the control. The

stress and control groups were kept in different growth

chambers. Rubbing quartz sands on the surface of leaves,

producing small cuts, performed wound treatment. Keeping

the plants at 4 �C for 12 h imposed a low temperature

stress, whereas the control plants were grown at 28 �C, at

dark. Drought stress was induced by not providing water

for 1 week with the quadrate plastic pot of 12 cm in height,

and 10 cm in width, whereas the control group was regu-

larly watered. PRSV pathogens were identified by reverse

transcriptase (RT)-PCR. The leaves (provided by the Fruit

Institute of Guangdong Province) were inoculated with
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pathogen juice in phosphate-buffered saline (PBS),

whereas the control plant was inoculated only with PBS,

the samples were collected after 24 h. The leaves were

harvested at certain time points as indicated in each

experiment, frozen with liquid nitrogen, and stored at

-80 �C until RNA extraction. The basal levels of WRKY

expression were evaluated and normalized to the actin

transcript level of papaya. Each treatment involved the

leaves of five plants, and samples were taken from exper-

iments conducted in triplicate.

Database collection and gene annotation

The protein sequence corresponding to each papaya WRKY

unigene was determined by SUPERFAMILY (http://supfam.

org/SUPERFAMILY/index.html). Utilizing GenBank infor-

mation, the BLAST local database of the expressed sequence

tags (ESTs) of papaya was constructed using the BioEdit

software with EST sequences (EX227656–EX303501) for

comparison and confirmation of the nucleotide sequence of

the WRKY genes. The operator procedure is following:

download the genomics coding sequence of ‘‘Sunup’’ of

papaya from NCBI database, and save the genomics sequen-

ces with FASTA file format, a local nucleotide database file

was created, it was named ‘‘papaya.aa’’. To startup BioEdit

software program, selected Accessory Application and use

BLAST function, and then, paste the amino acid sequence,

and selecting blast function and the nucleotide sequence of

WRKY ZF were confirmed in papaya. The specific WRKY-

type domain signature and WRKYGQK heptapeptide motif

were compared using the BioEdit software. The specific ZF

WRKY-type domain signatures were also investigated by

searching the ExPasy proteomics server (http://cn.expasy.

org). The WRKY amino acid sequences were aligned, and a

phylogenetic tree was constructed using DNAman software.

RNA extraction and qRT-PCR analysis

Total RNA was extracted using TRIzol reagent (Invitro-

gen) following the manufacturer’s instruction, with DNase

I digestion for purification. The RNA samples were

detected using an Ultrospec 2100 UV/Visible spectropho-

tometer (Amershan GE Healthcare, USA). First-strand

cDNA was synthesized from 2 lg of total RNA in a 20-lL

final volume using an M-MLV first-strand cDNA kit. qPCR

was performed using Platinum SYBR Green qPCR Super

Mix-UDG (Invitrogen) following the manufacturer’s

instruction. A real-time qPCR assay for gene expression-

specific primers was designed from the papaya cDNA

sequences using the Primer Express 5.0 software at

58–60 �C. The amplification fragment lengths were

98–193 bp. The primer sequences are shown in

Supplemental Table 2. These primers were designed with

Primer 5-cracked software, the primers were synthesized

by Sanggon Shanghai Biology Technology, Ltd. qRT-PCR

was performed using Rator 6000 (Corbett). The primers

were strictly filtrated by reverse transcription test and

amplified the single band.

The cycling conditions started with 2 min of polymerase

activity at 95 �C and 40 cycles at 95 �C for 20 s, followed by

60 �C for 20 s and 72 �C for 20 s. Each assay was conducted

in triplicate, and a no-template control was included. The

threshold cycle (Ct) of the primary amplification curve was

used for calculations. The actin gene was chosen as the

internal constitutively expressed control (normalization)

according to the formula DDCt = (Ct, target - Ct, Actin) time x

- (Ct, target - Ct, Actin) time 0. The relative expression level was

analyzed using the 2-DDCt method [30]. Dilutions of cDNA

(1:10 to 1:1,000) from a reference sample were used to con-

struct a relative standard curve. The specificity of the PCR

products was verified by melting curve analyses (60–95 �C).

Only primer sets producing a single sequence-specific peak in

the dissociator curve were conserved. The data were analyzed

using the Roter Gene 6000 Series software (VIRTUAL Mode

software package) to obtain the relative expression levels of

the papaya gene based on the comparative Ct method. The

significant differences among the data were analyzed via

t tests using Microsoft Excel. Data are represented as means

and standard errors of three replicates.

Results

Identification of WRKY TFs and their nucleic acid

sequence in papaya

A total of 52 significant WRKY domains in 50 proteins

have been predicted using the SUPERFAMILY database of

C. Papaya. In the present study, after analyzing the

homology of the putative amino acid sequence and elimi-

nating redundancies, 52 nucleic acid coding sequences of

C. Papaya WRKY TFs were identified using the tBLASTn

tool. These data were mined from 47483 papaya ESTs in

the C. Papaya genome. The numbers of TFs, relative

GenBank accession numbers, protein size, amino acid

positions, frame and available nucleic acid sequence,

WRKY type domain signature are shown in Supplement

Table 1.

To examine the evolutionary relationships among the

WRKY domains, a phylogenetic tree was constructed

using the conserved WRKY domain amino acid sequences.

The phylogenetic tree demonstrated that the 52 WRKYs

could be classified into 4 groups according to the most

prominent feature of these proteins, the WRKY domain,

which contained 60 amino acids. Group I includes 6
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WRKYs that have two standard WRKYGQK heptapeptide

followed by a C2H2. Group II includes 32 WRKYs that

have a conserved WRKYGQK heptapeptide followed by a

zine finger CX4–5CX22–23HHX1H. Group III includes 7

WRKYs that have a conserved WRKYGQK heptapeptide

followed by a C2HC. And group IV includes 5 WRKYs

that do not contain the standard WRKYGQK domain and

2 WRKYs that do not contain the zine finger

Fig. 1 Phylogenetic unrooted tree of the WRKYs in C. papaya. Relationships among WRKY TF, as illustrates by phyogenetic tree produced by

DNAMAN. WRKYs were classified into groups I, II, III and IV

1218 Mol Biol Rep (2014) 41:1215–1225
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CX4–5CX22–23HX1H. The phylogenetic unrooted tree of

the WRKY transcripts was shown in Fig. 1 with notes for

induced expressions of 10 WRKYs under abiotic and

biotic stresses.

The structural characteristics of the 52 WRKYs was

demonstrated by comparing the detailed sequence of 60

amino acids at the N-terminer of the coding sequence

containing at least one amino acid motif of WRKY (Fig. 2).

Fig. 2 Comparison of WRKY domain and zine figure signature of WRKY domain of papaya

Mol Biol Rep (2014) 41:1215–1225 1219

123



Expression of WRKY genes under abiotic stresses

Expression of four WRKYs is significantly upregulated

by low temperature

The expression levels of 13 WRKY TFs were analyzed under

stress conditions. The results showed that the expression

levels of TF807.3 and TF72.14 were induced by 14.3- and 16.2-

fold normalized against housekeeping gene actin whose rel-

ative mRNA expression was 2-DDCt = 1 (significant at

probability \0.01) after 12 h of low-temperature treatment

(4 �C). TF12.199 and TF18.51 were induced by 8.6- and 5.5-fold

(significant at probability\0.05) after 12 h of 4 �C treatment.

The expression levels of TF114.61 and TF21.156 were also

notably up-regulated, but statistically insignificant (Fig. 3).

Six WRKYs are involved in the response to drought

stress

Four WRKY genes were upregulated and two WRKYs were

down-regulated under drought stress. The expression of

TF807.3 and TF43.76 were increased by 14.12- and 19.22-fold

at the significant level of probability\0.01. The expression

of TF5.242 and TF21.156 were increased by 13.2- and

13.1-fold at the significant level of probability\0.05. How-

ever, the expression of TF12.199 and TF12.62 were significantly

(p \ 0.01) decreased by 0.46- and 0.39-fold (Fig. 4).

Expression of five WRKYs is involved in response

to wound

Changes in the transcript abundance of the 13 WRKY genes

in response to wound treatment were examined. The tran-

script abundances of the WRKY genes of TF9.35, TF18.51

and TF72.14 were significantly (p \ 0.01) increased 12 h

after wounding. And the expression of TF807.3 were also

significantly increased but at a lower probability level

(p \ 0.05). The expression abundance of TF12.199, how-

ever, was significantly (p \ 0.05) decreased (Fig. 5).

Expression of WRKY genes under biotic stresses

Expression of four WRKY genes was induced by PRSV

pathogen

Three WRKY genes were upregulated and one WRKY were

down-regulated when infected by PRSV pathogen. The
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expression levels of TF12.199, TF807.3, and TF21.156 signif-

icantly increased (p \ 0.01) by 10.8-, 19.8-, and 18.1-fold

after 24 h of treatment. The expression level of TF18.51 was

significantly decreased (p \ 0.01) by 0.22-fold (Fig. 6).

Expression of three WRKY genes is up-regulated

by Salicylic acid

Salicylic acid (SA) plays a critical role in plant defense

against pathogens. TF114.61, TF72.14, and TF43.76 were

demonstrated to be induced by SA treatment. The tran-

scription abundances of TF72.14 and TF43.76 were signifi-

cantly increased (p \ 0.01) by 17.6- and 13.4-fold at 12 h

after the SA treatment, respectively. The transcription

abundance of TF114.61 was increased by 14.4-fold which is

significant at probability \0.05 level (Fig. 7).

Identification of WRKYs in response to abiotic

and biotic stresses

A total of ten WRKYs were indentified in response to three

abiotic and two biotic stresses (Table 1). Four WRKYs were

up-regulated by low-temperature. Six WRKYs responded to

drought stress, including four upregulated and two down-

regulated genes. Five WRKYs responded to wound,

including four upregulated and one down-regulated genes.

Four WRKYs were induced by PRSV pathogen, including

three up-regulated and one down-regulated genes. And

three WRKYs were up-regulated by SA.

A WRKY gene may respond to one stress or several different

stresses. For example, the expression of TF807.3 and TF12.199 was

found to be in response to four different stresses, respectively.

TF807.3 was up-regulated by low-temperature, drought, wound
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and PRSV pathogen. TF12.199 was up-regulated by low-tem-

perature and PRSV pathogen but down-regulated by drought

and wound. The expression of TF72.14 and TF18.51 responded to

three different stresses, respectively. The expression of TF21.156

and TF43.76 was up-regulated by two different stresses, respec-

tively. While the expression of TF12.62, TF9.35, TF14.61 and

TF14.61 were in response to single stress, respectively.

Homological comparison between WRKYs of papaya

and that of other plants

Homological analysis on the detailed sequence of 60 amino

acids was made between the ten WRKYs and nine AtWRKY

in Arabidopsis, seven OsWRKY in rice, seven GmWRKY in

soybean, one NtWRKY in tobacco, and one VvWRKY in

grape (Supplement Fig. 1). The homology of the WRKY TFs

in papaya and the WRKYs with known functions in other

plants were analyzed by DNAman. Results indicate that

TF12.199 shares 100 % homology with GmWRKY3 and

GmWRKY6, TF72.14 shares 88.5 % homology with At-

WRKY33, TF9.35 shares 80.3 % homology with OsWRKY3,

TF43.76 and TF807.3 share 78.9 and 75.5 % homology with

OsWRKY23 respectively, TF12.62 shares 75.4 % homology

with OsWRKY53. The high homology suggests that the

WRKYs in papaya may have similar functions with their

homologous genes in other species.

Discussion

Characteristics of the WRKY TFs in C. papaya

WRKY TFs contain one or two conserved WRKY domains,

which can recognize and bind to the TTGAC(C/T) W-box

elements found in the promoters of a large number of plant

defense-related genes [9, 20, 51]. The detailed nucleotide

sequence information of 52 WRKY genes was mined using

bio-information methods in this study. This information

could be used to facilitate the further research of WRKY

genes in C. papaya.

WRKY TFs can be classified based on both the number

of WRKY domains and the features of their zinc-finger

motif. WRKY TFs are usually classified into three or four

groups. 72 WRKYs have been reported in Arabidopsis, 15

WRKYs belong to group I, 43 belong to group II and 14

belong to group III. 96 WRKYs have been found in rice, 13

WRKYs belong to group I, 45 belong to group II, 32

belong to group III, and 6 belong to group IV [50]. The

group II including a conserved WRKYGQK heptapeptide

followed by a zine finger CX4–5CX22–23HHX1H is the

largest group in most plants [10, 50]. In this research, 52

WRKYs in papaya have been classified into 4 groups, 6

WRKYs belong to group I, 32 WRKYs belong to group II,

7 belong to group III, and 7 belong to group IV. Group II is

also the largest in papaya.

Homological analysis between the 10 WRKYs induced

by abiotic and biotic stresses and WRKYs with known

functions in other plants revealed striking similarities in the

conserved sequence of 60 amino acids. TF12.199 in papaya

has exactly the same sequence of 60 amino acids as that of

GmWRKY3 and GmWRKY6 in soybean [58].

In present experiment, 13 WRKY genes with high

mRNA abundance were selected as the target for qPCR, 4

WRKYs belong to group I and 9 belong to group II. And 10

out of the 13 WRKYs including 3 WRKYs in group I and 7

WRKYs in group II were found to respond to abiotic and/

or biotic stresses. This suggests that the WRKYs of groups

I and II in papaya may be more sensitive to stresses.

Table 1 Expression of the

WRKYs in response to abiotic

and biotic stresses in papaya

and :The upregulated and

down regulated expression

levels of WRKY genes

normalized against

housekeeping gene actin were

significant at probability of 0.01

level

: and;: The upregulated and

down regulated expression

levels of WRKY genes

normalized against

housekeeping gene actin were

significant at probability of 0.05

level
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Mining the WRKYs relative to the resistance against

PRSV pathogen in papaya

A large number of WRKY genes are induced by pathogens

or plant defense signal molecules. In Arabidopsis, 49 of 72

WRKY genes tested were differentially regulated in plants

after infection with an avirulent strain of P. syringae or

treatment with SA [7]. A few WRKYs were testified to have

certain functions in Arabidopsis, and several WRKYs have

been proven to possess functions related to disease resis-

tance. For example, NtWRKY3 message was induced rap-

idly upon infection with TMV in tobacco [2, 51].

AtWRKY70 enhanced the resistance to both Pseudomonas

syringae and Erysiphe chichoracearum [25]. And At-

WRKY3, AtWRKY4 and AtWRKY41 had the function of

enhancing the resistance to P. syringae [14, 23]. In this

study, the expression of TF12.199, TF807.3 and TF21.156 were

up-regulated and TF18.51 was down-regulated trend after

PRSV infection. The expression of both TF43.76 and TF72.14

were up-regulated after SA treatment. 7 out of 13 WRKYs

were differentially regulated by PRSV and/or SA in papaya.

This suggests the possibility of mining the WRKYs relative

to the resistance against PRSV pathogen in papaya.

Homological and functional comparison

between WRKYs in C. papaya and other plants

Proteins with similar domains may have the same or sim-

ilar biologic functions [28]. For example, NtWRKY3 in

tobacco share high homology at the amino acid level with

Arabidopsis AtWRKY4 and WRKY70, respectively.

NtWRKY3 was induced rapidly upon infection with TMV

[2]. AtWRKY4 could enhance the resistance to Pseudomo-

nas syringae [23]. AtWRKY70 was induced by SA, JA and

could enhance the resistance to P. syringae and Erysiphe

chichoracearum [25]. The three homological genes all

have functions in responding to disease resistance.

AtWRKY33 is a multifunctional TF that is involved in

both abiotic and biotic stress responses. AtWRKY33 regu-

lated the antagonistic relationship between defense path-

ways mediating responses to P. syringae and necrotrophic

pathogens [56]. And AtWRKY33 was up-regulated 14 times

after NaCl stress treatment [18]. The sequence of TF72.14

shared 88.5 % homology with that of AtWRKY33. TF72.14

was demonstrated to be induced by low temperature,

wound and SA treatment in papaya.

OsWRKY3 in rice was induced by Botrytis & P. syringae

infection and SA, JA, ACC. It expressed the resistance to

Pseudomonas syringae [23]. TF9.35 shared 80.3 % homol-

ogy with OsWRKY3. The transcript abundance of TF9.35

was significantly increased after wounding.

A number of TFs being activated by abiotic stress could

also be induced by pathogen infection [4]. The sequence of

TF12.199 shared 100 % homology with that of GmWRKY6

which was related to drought resistance in soybean [58].

The expression level of TF12.199 was increased by cold and

PRSV, but was decreased by wound and drought treat-

ments. TF12.199 could be a multifunctional TF involved in

both abiotic and biotic stress responses in papaya.

The potential application of the WRKYs in C. papaya

The WRKY genes in papaya has been studies by analyzing

their nucleotide sequence information, classification

according to their characteristics of WRKY type domain,

and detecting the expression of WRKY TFs under three

biotic and two abiotic stresses. Ten WRKYs have been

detected to be in response to the stresses. The regulated

expression levels of eight out of ten WRKYs are significant

at probability of 0.01 levels. These WRKY TFs could be

related to corresponding stress tolerance. Two WRKYs,

TF807.3 and TF12.199, each regulated by four different

stresses, are of especially interesting for further functional

verification. This study may provide useful information for

the genetic improvement and candidate genes for the

development of transgenic stress tolerant papaya varieties.
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