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Abstract Rhg4 is one of the major resistant genes

conferring resistance to soybean cyst nematode races 1,

3 and 4. In order to better understand its sequence

diversity among different Chinese soybean populations

and the impact of human activities on it, we designed 5

primer sets based on its sequence deposited in Genbank

(Genbank accession No. AF506518) to obtain the Rhg4

sequence from 104 Chinese cultivated and wild soybean

genotypes, and then analyzed the DNA sequence

polymorphism in different Chinese soybean popula-

tions. The alignment of Rhg4 sequence included 5,216

nucleotide base pairs. A total of 67 single nucleotide

polymorphisms (SNPs) including 59 single base

changes and 8 DNA insertion-deletions (InDels) were

identified with a SNP frequency of 1/78. Except for a

14-base InDel, there were 29 SNPs in coding regions,

and among them, 13 were non-synonymous (9 in

functional domains with 1 in a leucine-rich repeats

region, 2 in a transmembrane region and 6 in a Ser/Thr

kinase domain). The probability of substitution at each

site was not the same, there were two hot spots, one was

in the 50-untranslated region between positions 124 and

804, and the other was in the region between positions

2520 and 3733. Sequence diversity analysis among 104

soybean genotypes showed p = 0.00102 and

h = 0.00218 for Rhg4. A domestication bottleneck

was found because of lower sequence diversity and 58%

unique SNPs loss in landraces compared with Glycine

soja. Intensive selection increased the sequence diver-

sity of cultivars, which had higher diversity and more

unique SNPs than landraces.

Keywords Glycine max � Glycine soja � Sequence

diversity � Heterodera glycines

Introduction

Soybean cyst nematode (SCN) (Heterodera glycines

Ichinohe) is one of the most devastating pathogens in

soybean production worldwide and causes substantial

yield losses (Li et al. 2011; Wrather et al. 2001;

Wrather and Koenning 2009) by feeding on soybean

roots, damaging root systems, and reducing the plant’s

ability to absorb water and nutrients. Resistant
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cultivars are considered the best method to control

SCN. Many scientists have conducted research pro-

grams in an effort to identify resistant sources (Arelli

and Wilcox 1997; Arelli et al. 2000; Coordinative

group of evaluation of SCN 1993; Lai et al. 2005;

Young 1990; Zhang and Dai 1992), identify the genes

involved (Caldwell et al. 1960; Lu et al. 2006; Matson

and Williams 1965; Rao-Arelli et al. 1992; Vuong

et al. 2010; Wang et al. 2001; Winter et al. 2007) or

produce resistant varieties (Anand et al. 2004; Diers

et al. 2006; Du et al. 2006; Hao et al. 2003; Mengistu

et al. 2005; Qiu and Wang 2007; Shannon et al. 2009;

Wang et al. 2007). Classical inheritance studies

identified five SCN resistance genes in soybean, three

recessive genes designated rhg1, rhg2 and rhg3 were

first reported in ‘Peking’ (Caldwell et al. 1960), the

dominant gene Rhg4 was also identified in ‘Peking’,

and was linked to the ‘i’ locus controlling seed coat

color (Matson and Williams 1965), an additional

dominant gene, Rhg5, was reported in PI 88788 (Rao-

Arelli et al. 1992).

Almost 20 years of genetic mapping studies

described more than 70 SCN resistance quantitative

trait loci (QTLs) (Concibido et al. 2004; Guo et al.

2006; Vuong et al. 2010; Winter et al. 2007; Wu et al.

2009; Yuan et al. 2006). Despite inconsistencies of

QTL mapping, it was concluded that rhg1 and Rhg4

were two major SCN resistance genes. The rhg1 locus

repeatedly mapped on linkage group (LG) G [chromo-

some (Chr) 18] in many resistant soybean genotypes

(Chang et al. 1997; Concibido et al. 1994, 1997; Guo

et al. 2006; Prabhu et al. 1999; Webb et al. 1995; Yue

et al. 2001) and provided the greatest level of resistance.

Ruben et al. (2006) summarized the construction of

integrated physical and genetic maps of a 0.2 cM

interval encompassing the rhg1 locus, and character-

ized the candidate gene as well as the encoding protein,

RHG1, a receptor-like kinase. Li et al.(2009) developed

6 SNP markers based on the variation in rhg1 and

reported their significant improvement of efficiency in

marker-assisted selection (MAS) when combined with

microsatellite marker BACR-Satt309, although Melito

et al. (2010) reported no significant impacts of the LRR-

kinase gene on SCN resistance.

Meanwhile Rhg4 was located on LG A2 (Chr 8)

(Chang et al. 1997; Concibido et al. 1994; Guo et al.

2006; Heer et al. 1998; Mahalingam and Skorupska

1995; Webb et al. 1995), 0.35 cM from the I locus

(Matson and Williams 1965). Several genes associated

with stress or defense responses such as chalcone

synthase, glucosyl-transferase, heat-shock transcrip-

tion factor, protein kinase, G10-like protein and

restriction fragment length polymorphism molecular

marker pBLT65 were close to the I and Rhg4 loci (Heer

et al. 1998; Lewers et al. 2002; Matthews et al. 2001;

Todd and Vodkin 1996; Webb et al. 1995; Weismann

et al. 1992). Two separate research groups isolated the

receptor-like kinase candidate gene Rhg4 from soy-

bean variety ‘Forrest’ by positional cloning (Hauge

et al. 2001; Lightfoot and Meksem 2002) and its DNA

and protein sequence were lodged in Genbank in 2002

(Genbank accessions AF506518 and AAM44275.1).

However, the candidate gene was little studied except

for the work of Jang et al. (2004) who reported 3 SNPs

and 7 InDels within two regions of Rhg4 totalling

901 bp by direct sequencing with 2 primer sets.

Like other important crops, soybean has undergone

selection by human, involving domestication, inten-

sive breeding, and probable founding events (Gyuhwa

and Ram 2008; Hyten et al. 2006). These selection

activities likely decrease genetic diversity (Tenaillon

et al. 2001; Zhu et al. 2007), change allelic frequencies

(Hyten et al. 2006) and eliminate rare alleles (Hyten

et al. 2006; Tenaillon et al. 2001). Cultivated soybean

(G. max) was domesticated from wild soybean

(G. soja) in China (Hymowitz and Newell 1981),

and domestication immediately resulted in G. max

landraces (Hyten et al. 2007). Subsequent intensive

selection imposed on landraces by soybean breeding

created elite soybean cultivars. Hyten et al. (2006) and

Yuan et al. (2008) detected effects of domestication

bottlenecks in soybeans, but they had inconsistent

results regarding intensive selection effects. Hyten

et al. (2006) showed that modern soybean breeding

had only minimal affects on the allelic structure of the

soybean genome, but Yuan et al. (2008) reported an

intensive selection bottleneck on GmHs1pro-1. How-

ever, in investigating the founding effects of soybean

introduction to North America, they found evidence

for only minor and non- significant bottlenecks (Hyten

et al. 2006). The cumulative effects of the two genetic

bottlenecks caused by founding events and intensive

selection led to significant reductions in genetic

diversity among North American elite cultivars in

comparison with Asian landraces (Hyten et al. 2006).

In the present work we quantified DNA sequence

polymorphism of Rhg4 in Chinese domesticated and

wild soybeans by investigating an almost complete
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Rhg4 gene sequence in order to better understand its

sequence diversity among different Chinese soybean

populations and the impact of human activities on the

candidate resistance gene. The resulting information

may help the development of SNP markers for use in

MAS in breeding programs.

Materials and methods

Plant materials

The plant materials were selected from 27 provinces

(autonomous regions or municipalities) of China

(MOESM1) and represent three populations (G. soja,

landraces and cultivars). The population of G. soja

consisted of 28 accessions from 14 provinces (auton-

omous regions), landraces were represented by 51

accessions from 22 provinces (autonomous regions or

municipalities), cultivars were from 7 provinces

(municipalities), including 8 soybean genotypes from

our core collection resistant to SCN (Ma et al. 2006), 3

awarded varieties, 4 parental lines (varieties) of our

soybean genetic populations, and 10 elite cultivars.

Genomic DNA was extracted from seedlings of wild

accessions and from seed of domesticated genotypes

as described by Yuan et al. (2008).

Primers design and polymerase chain reaction

(PCR) amplification

Five pairs of primers (MOESM2) were designed from

the sequence of the Glycine max receptor-like kinase

Rhg4 gene (GenBank accession AF506518), with

overlaps of 137–218 bp between adjacent PCR

regions. PCR was carried out in total volumes of

20 ll consisting of 60 ng DNA, 19 PCR TaKaRa

Buffer, 0.15 lM of each primer, 0.15 mM dNTP and

0.5 U TaKaRa ExTaq polymerase. PCR amplification

conditions were as described by Yuan et al. (2008).

Sequencing

PCR products were separated on 1.0% agarose gels

stained with ethidium bromide. The PCR primer set of

3561U22 and 4782L26 produced 3 amplicons with

about 90 nucleotide base differences in length. A pre-

experiment determined that the smallest amplicon was

the most similar to AF506518 and located in LG A2

(Chr 8) by blastn against AF506518 (unshown), so we

chose the smallest amplicon as a target fragment. The

fragment was purified using a DNA fragment purifi-

cation kit (Biotech), cloned into the pMD18-T vector

(TaKaRa) and then sequenced with primers of M13F

and M13R. The other 4 PCR primer sets each

produced single amplicons, and the PCR products

were directly sequenced with PCR primers after being

collected and purified. When necessary, sequencing

primers (MOESM2) were designed from the sequenc-

ing information to assure accuracy of sequence

determination.

Sequence analysis

Sequences were assembled with the SeqMan tool of

DNAstar software, and the sequence of cv. Huipizhi-

heidou (HPZhHD) was interrogated by BLAST

searches in Genbank for identity confirmation.

Sequence alignment was performed using Clustalx

1.8 with manual refinement. Single base changes and

single or multiple base InDels were collectively

preferred as SNPs. Only informative SNP sites were

selected to build haplotypes. Differential regions of

the DNA sequence were predicted and located

following the method of Tang and Lewontin (1999).

Two DNA polymorphism measures of nucleotide

diversity (p and h) and haplotype diversity were

calculated with DnaSP v.5.10.01 software. A neigh-

bor-joining phyolgenetic tree was constructed using

MEGA 5.0 software with a Kimura 2-parameter model

and 1,000 bootstrap replications.

Results

Sequence comparison of Rhg4 with AF506518

Sequence assembly with the SeqMan program gener-

ated a continous sequence of 5,216 bp and a BLAST

search showed it had 98% identity at the nucleotide

level with the receptor-like kinase Rhg4 gene

(AF506518), therefore the sequence was presumed

to be Rhg4. Alignment with AF506518, there were 49

base changes, 2 single-base inserts and one three-base

insert (MOESM3). Both single-base inserts occurred

in the 50-untranslated region (UTR), whereas the three-
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base insert was in the second exon, but it was not a

frame-shift mutation. The predicated protein therefore

had one more amino acid than the receptor-like kinase

RHG4 (AAM44275.1).

DNA variants of Rhg4

We obtained the 5,216 bp DNA sequence of Rhg4

from 104 soybean genotypes, representing members

of the three distinct populations, viz. G. soja, landraces

and cultivars. Surprisingly high sequence polymor-

phism was found in Rhg4, a total of 67 SNPs,

including 59 single base changes and 8 DNA InDels,

were identified with an SNP frequency of 1/78

(Table 1). Five InDel loci had 3 alleles each, and a

14-base gap occurred in the coding region of one wild

soybean genotype presumably leading to a frame-shift

mutation. Except for the 14-base Indel, there were 29

SNPs in coding regions, among them 13 were non-

synonymous and 16 were synonymous. Of the 59

single base changes, 40 were involved in transitions,

and 19 were transversions with a transition:transver-

sion ratio of 2:1.

The predicted RHG4 protein consisted of 894

amino acids, characterized with 3 functional domains

of 6 extracellular leucine-rich repeats (LRRs)

(56–401), a transmembrane (TM) domain (449–471)

and an intracellular Ser/Thr kinase (STK) domain

(544–820). Of the 13 non-synonymous nucleotide

substitutions, 9 occurred in functional domains, with 1

in the LRR region, 2 in the TM region and 6 in the STK

domain.

The probability of substitution at each site in Rhg4

was not the same, there were two hot spots with higher

probabilities of substitution. One hot spot occurred in

the 50-UTR region between positions 124 and 804 and

the other was in the region between positions 2,520

and 3,733.

DNA polymorphism of Rhg4 among the three

soybean populations

Unique and shared SNPs among the three soybean

populations were investigated (Fig. 1). A total of 41

SNPs were detected in G. soja, of which 26 were

unique and not found in the two G. max populations.

Landraces contained 27 SNPs, of which 11 were

unique. Cultivars also had 26 SNPs, 13 of which were

unique. While examining the coding region of Rhg4,

we found that cultivars had the largest number of

sequence variants with 19 SNPs, 11of which were

unique; however G. soja and landraces had 13 and 12

SNPs, with only 7 and 4, respectively being unique.

Nucleotide diversity analysis on 104 soybean

genotypes showed p = 0.00102 and h = 0.00218 for

Rhg4 (Table 2). Among the three populations, G. soja

had the highest diversity with p = 0.00114 and

h = 0.00164, followed by cultivars, and landraces

had the lowest with p = 0.00090 and h = 0.00098.

Sequence diversity in different regions of the gene

showed obvious differences, the highest sequence

diversity occurred in synonymous sites of the coding

region, followed by intron, the 50-UTR region, and in

non-synonymous sites of the coding region, with the

Table 1 Numbers of SNPs

in Rhg4 among 104 soybean

genotypes

50-UTR Coding region Intron 30-UTR Total

InDels 6 1 1 0 8

Single base changes

Transitions 6 22 12 0 40

Transversions 6 7 4 2 19

Total 12 29 16 2 59

Total 18 30 17 2 67
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Fig. 1 Number of shared and unique SNPs in the three soybean

populations
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lowest sequence diversity in the 30-UTR. Cultivars had

the highest sequence diversity in the coding region

among the three populations.

Three haplotypes of Rhg4 commonly occurred

among the three soybean populations, the other 23

haplotypes were in only one or two of the populations.

Among the 23 haplotypes, 14 were uniquely detected

in G. soja, 5 were uniquely in cultivars, 3 were

uniquely in landraces, and 1 was detected in both

cultivars and landraces. As for haplotype diversity,

G. soja had the highest haplotype diversity at 0.97,

whereas cultivars and landraces had lower values

(0.89 and 0.80, respectively).

Discussion

The SNP frequency in Rhg4 among the 104 soybean

accessions was 1/78, obviously higher than earlier

estimates of 1/106 (Yuan et al. 2008), 1/107 (Hyten

et al. 2006), 1/273 (Zhu et al. 2003) and 1/343 (Van

et al. 2005) in soybean. When compared with other

plants, the SNP frequency was lower than those

reported in maize (Ching et al. 2002; Tenaillon et al.

2001; Yamasaki et al. 2005) and chickpea (Rajesh and

Muehlbauer 2008), and higher than those in bread

wheat (Ravel et al. 2007) and Arabidopsis thaliana

(Schmid et al. 2003; Clark et al. 2007). The difference

for SNP frequencies maybe due to different samples

and different genomic regions. Although higher SNP

frequency was detected than other reports for soybean,

sequence diversity among the 3 soybean populations

was obviously low compared with other reports among

corresponding soybean populations (Hyten et al.

2006). The reason probably was that soybean

resources we used were only from China, having

somewhat narrower genetic variation.

As for nucleotide mutation type, there is a clear

transition bias probable due of the high spontaneous

rate of deamination of 5-methl cytosine to thymidine

in the CpG dinucleotides (Vignal et al. 2002), that is,

GC content is probably linked to the ratio of transitions

to transversions. In our study the ratio was 2.1, similar

to 2.12 reported in soybean by Van et al. (2005), 2

reported in humans (Wang et al. 1998) and mouse

(Lindblad-Toh et al. 2000), and relatively greater than

1.3 reported in soybean (Yuan et al. 2008), but was

contrary to 0.93 reported by Zhu et al. (2003) in

soybean. The difference among different species and

even among different samples in the same species was

probably related with GC content in observed genomic

region. Of course some other factors leading to DNA

mutation may influence the ratio.

Domestication represents the first result of human

selection in soybean. Hyten et al. (2006) reported that

landraces retained only 66% (p) and 49% (h) of the

nucleotide diversity found in G. soja, and had lost 81%

of the rare alleles in G. soja, thus representing a

domestication bottleneck. Considering the overall

sequence region of Rhg4, we also found a domestica-

tion bottleneck because firstly the sequence diversity

within landraces was obviously low (p = 0.00090 and

h = 0.00098) compared with G. soja (p = 0.00114

and h = 0.00164) (Table 2), and secondly, landraces

lacked 58% of the unique sequence variants present in

G. soja despite that 2 novel SNPs happened (Fig. 1).

However, the domestication bottleneck was slighter

than that reported by Hyten et al. (2006). It maybe

contributed to frequently communication among

agricultural people since the Shang Dynasty or earlier

and several domestication centers in China (Hymo-

witz and Newell 1981, Hymowitz 1970).

Intensive selection imposed in modern soybean

breeding programs is generally thought to reduce

Table 2 Nucleotide diversity for Rhg4 (9 103) in the soybean populations

Population 50-UTR Coding region Intron 30-UTR Total

p h p(sny) h(sny) p(Nsny) h(Nsny) p(total) h(total) p h p h p h

G. max

Landraces 0.91 0.96 2.49 2.41 0.69 0.55 1.12 0.99 0.89 1.87 0.00 0.00 0.90 0.98

Cultivars 0.86 0.46 3.33 4.11 0.89 1.17 1.48 1.88 0.86 1.11 0.00 0.00 1.07 1.22

Total 0.88 0.88 2.74 3.80 0.75 1.10 1.22 1.75 0.87 2.29 0.00 0.00 0.95 1.41

G. soja 1.31 2.24 2.82 2.81 0.71 0.63 1.21 1.16 1.47 3.24 0.22 0.78 1.14 1.64

Total 1.05 2.01 2.79 4.79 0.75 1.23 1.24 2.08 1.04 4.30 0.06 0.58 1.02 2.18
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genetic diversity of elite soybean cultivars (Gizlice

and Burton 1994; Miranda et al. 2001; Concibido et al.

2004; Xiong et al. 2008), but Hyten et al. (2006) failed

to find large effects of intensive selection based on

DNA sequence diversity. In the present study, a

clearly higher sequence diversity was found within

cultivars (p = 0.00107 and h = 0.00122) than in

landraces (p = 0.00090 and h = 0.00098), especially

for the sequence diversity in the coding region

cultivars had sequence diversity increases of

p = 0.00036 and h = 0.00089 compared to landraces

(Table 2). In regard to unique SNPs, cultivars had two

more than landraces in the overall sequence region,

but seven more in the coding region (Fig. 1). This

suggested that intensive selection has increased the

sequence diversity for Rhg4 in cultivars. The reason

was probably the effect of selection in breeding

programs on SCN disease, or other traits, such as oil

content (Oil 1-1), protein content (Prot 17-4) and seed

weight (Sd wt 4-5) associated with yield, whose loci

were close to Rhg4 (http://soybase.org/Marker

DB/MapFeatureSearch.php?OutPutType=HTML&map

set=GmComposite2003&MapName=A2&FeatureType

=All_Types&FeatureStart=0&FeatureStop=9999). Stud-

ies on association of Rhg4 alleles with SCN resistance,

and on association mapping of SCN disease, yield and

seed quality traits mentioned above on LG A2 (Chr 8)

maybe helpful for explanation the effect of intensive

selection on Rhg4 sequence diversity. In addition,

incorporation of exotic germplasm from USA, France

and Japan into breeding program (MOESM1) may

also contribute to the high sequence diversity in

cultivars.

Although there were pedigree relationships among

some soybean elite varieties or lines in the population

of cultivars (MOESM1), which may decrease the

sequence diversity, DNA variations were detected

among them (MOESM4), indicating possible different

allele origins or recombination occurrence. For exam-

ple, the four cultivars of Hefeng 25, Hefeng 23, Jilin

47, and Suinong 14 were pedigree, but they were

grouped into two clusters. Similar case also happened

among the Kangxianchong 1, Kangxianchong 2 and

Kangxianchong 3.
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