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Abstract S6K1 has emerged as a potential target for the
treatment for obesity, type II diabetes and cancer diseases.
Discovery of S6K1 inhibitors has thus attracted much atten-
tion in recent years. In this investigation, a hybrid virtual
screening method that involves pharmacophore hypothesis,
genetic function approximation (GFA) model, and molec-
ular docking technology has been used to discover S6K1
inhibitors especially with novel scaffolds. The common fea-
ture pharmacophore hypothesis and GFA regression model of
S6K1 inhibitors were first developed and applied in a virtual
screen of the Specs database for retrieving S6K1 inhibitors.
Then, the molecular docking method was carried out to
re-filter these screened compounds. Finally, 60 compounds
with promising S6K1 inhibitory activity were carefully
selected and have been handed over to the other group to
complete the follow-up compound synthesis (or purchase)
and activity test.
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Introduction

The 70-kDa ribosomal S6 kinase 1 (S6K1) is an important
downstream effectors of mTOR distributed in the nucleus
and cytoplasm [1,2], which mediates a variety of cellular
processes, including protein synthesis, mRNA process, glu-
cose homeostasis, cell growth and survival [3–5]. Presently,
S6K1 was found to be over-expressed in various tumors,
including breast cancer and brain tumor [6–8]. In addition,
recent studies have demonstrated that insulin and nutrients
could activate S6K1, while the prolonged activation of S6K1
could hyperphosphorylate IRS1 (insulin receptor substrate 1)
via a negative feedback loop way, disrupting interactions
between IRS1 and IR (insulin receptor) and leading to the
development of insulin resistance [9–13]. Moreover, studies
in mammalian models have approved that inhibition of S6K1
function could reduce adiposity and the risk of age-related
pathologies, increase insulin sensitivity, and prolong mam-
malian life span [14–16]. Thus, developing S6K1-specific
inhibitors could offer an effective tool for the treatment of
obesity, type II diabetes and cancers.

Over the past few years, many academic institutions and
pharmaceutical companies have realized the importance of
S6K1 in human diseases and attempted to develop S6K1-
specific inhibitors, and more than seventy inhibitors have
been reported to date [16–18]. Unfortunately, among these
reported inhibitors, only the oltipraz has entered Phase II clin-
ical trials for inhibiting the development of insulin resistance,
hyperglycemia and fatty acid synthesis [19], and the others
have just moderate or weak inhibition potency. Therefore,
pursuing and discovering more potent and selective S6K1
inhibitors with new scaffolds is very necessary.

High-throughput screening methods, especially the
computer-aided virtual screening (VS), could provide eco-
nomical and rapid approaches for the discovery of lead
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Fig. 1 Chemical structures of
S6K1 kinase inhibitors in the
training set together with their
biological activity data (IC50)
for HipHop run
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compounds with new scaffolds of specified targets from
large chemical databases. Docking-based VS (DB-VS) and
pharmacophore-based VS (PB-VS) classical methods have
been widely used to find hit compounds in drug discovery
[20,21]. However, previous studies have shown that the indi-
vidual use of these methods generally lead to low hit rate and
low enrichment factor, as well as high false positive rate. On
the other hand, the combined use of VS methods in a hybrid
protocol would overcome these drawbacks [22–26].

Thus, in this work, we developed a combined VS method,
including HipHop method, GFA model [27,28] and mole-
cular docking method, to identify S6K1 novel inhibitors.
The GFA algorithm is derived from Rogers’ G/SPLINES
algorithm that combined Friedman’s multivariate adaptive
regression splines algorithm and Holland’s genetic algo-
rithm to evolve a population of equations, which has been
widely applied to the prediction of biological activity by
using physicochemical properties of a series of compounds
[26–30]. In this investigation, we shall first develop a com-
mon feature pharmacophore hypothesis and GFA-based VS
(GB-VS) model. Then, PB-VS, GB-VS and DB-VS would
be sequentially applied to screen the Specs database. Finally,
potential active compounds were selected and handed over
to other research group to complete the follow-up compound
synthesis (or purchase) and activity test.

Methods and materials

Common chemical feature-based pharmacophore modeling

The HipHop algorithm implemented in the Accelrys Dis-
covery Studio 3.1 program package (Accelrys Inc., San
Diego, CA) was employed for pharmacophore modeling.
Eight S6K1 inhibitors (A1–A8), based on a wide range of

biological activities and structural diversity, were chosen to
form the training set (Fig. 1). Compound A1 was selected
as “reference compound”, and their “principal” and “Max-
OmitFeat” values were assigned as 2 and 0, respectively. The
other compounds (A2–A8) of the training set were set to 1
for “Principal” and “MaxOmitFeat” values. The “minimum
Interfeature Distance” value was set to 2.97 Å. Five features
(hydrogen bond acceptor, hydrogen bond donor, hydropho-
bic, hydrophobic-aliphatic and ring-aromatic) were initially
selected and used for pharmacophore generation. The para-
meters “Min” and “Max” of the hydrophobic feature were
defined as 1 and 5, respectively. All the other parameters
were kept at their default values.

GFA model

The GFA model was developed using Discovery Studio (DS)
version 3.1 (Accelrys Inc., San Diego, CA). All collected 73
inhibitors were randomly divided into a training set and a test
set. The training set consisted of 55 agents, and the remain-
ing 18 agents were used as a test set. The “Model Form”
was chosen as Full Quadratic, “Maximum Equation Length”
was set to 27. The parameters for Population Size, Maximum
Generations, Scoring Method and Scoring Function were set
to 1,000, 50,000, Pareto (NSGA-II) and R-squared, respec-
tively. “Model Domain Fingerprint” was defined as ECFP_6.
“Maximum Correlation” was set to 0.95. The other parame-
ters were kept at their default values.

Molecular docking study

All the molecular docking studies were carried out by genetic
optimization of ligand docking that adopts the genetic algo-
rithm to dock flexible ligands into protein binding sites. The
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Fig. 2 a Best pharmacophore
model of S6K1 inhibitors
generated by HipHop. b 3D
spatial relationship and
geometric parameters of Hypo1.
c The best HipHop model
aligned with one of the most
active compounds 1
(IC50 = 1 nM) in the training
set. The features are color
coded: orange ring-aromatic,
green hydrogen-bond acceptor,
magenta hydrogen-bond donor,
cyan hydrophobic feature.
(Color figure online)

crystal structure (PDB: 3A60) of the kinase domain bound
to the inhibitor staurosporine was employed in the docking
studies. All water molecules were deleted, and all hydrogen
atoms were added to the protein by using Accelrys Discovery
Studio 3.1. The binding site was defined as a sphere contain-
ing the residues within 7.8 Å from the ligand, which is large
enough to cover the ATP binding region at the active site.

Cluster ligands model

The cluster ligands model was run in the Accelrys Discovery
Studio (DS) version 3.1. The “Number of Clusters” and “pre-
defined set” were defined as 10 and FCFP-6, respectively.

Results and discussion

Generation of common pharmacophore models of S6K1
inhibitors

Eight inhibitors, containing different scaffolds and activi-
ties, were used to generate common pharmacophore features.
Finally, a total of ten pharmacophore models were generated
by using HipHop algorithm. Figure 2a shows the best phar-
macophore model, Hypo1, with four features: one hydrogen
bond acceptor, one hydrogen bond donor, one hydropho-
bic feature, and one ring-aromatic feature. The 3D space
and distance constraints of these pharmacophore features are

presented in Fig. 2b. The hydrophobic feature is far from
the centers of ring-aromatic feature, hydrogen bond donor
and hydrogen bond acceptor by 5.004, 4.780, and 5.111 Å,
respectively. The hydrogen bond donor feature is far from
the ring-aromatic feature and hydrogen bond acceptor by
5.757 Å and 3.606 Å. And the centers of the ring-aromatic
feature and hydrogen bond acceptor feature are separated by
6.704 Å. Figure 2c shows the most active inhibitor mapped
with the pharmacophore features. Clearly, inhibitor A1 is
mapped very well (fit value: 3.99) with these features of
Hypo1. Furthermore, in order to further validate the estab-
lished pharmacophore model, all the collected inhibitors
(73 compounds) were mapped on Hypo1. The results showed
84.9 % inhibitors were mapped with the features of Hypo1
(fit value >2.5). Taken together, this demonstrates the estab-
lished pharmacophore model is in line with the features of
S6K1 inhibitors.

Development and validation of the GFA regression model

Fifty five compounds were used to train the GFA models and
the remaining 18 compounds were used as a test set to evalu-
ate the capacity of GFA models. Eight molecular property
descriptors (ALogP, Molecular_Weight, Num_H_Donors,
Num_H_Acceptors, Num_RotatableBonds, Num_Rings,
Num_AromaticRings and Molecular_FractionalPolarSurface
Area) and one structural fingerprint descriptor (ECFP_6)
were employed in building the GFA models. Finally, ten GFA
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Fig. 3 Plot of the correlation between the experimental activity and
the estimated activity by the best GFA model for the training set and
test set compounds

models were generated. The following criteria were used to
evaluate the produced models capacity and suitability: (a)
the lack of fit (LOF) score, (b) variable terms in the equa-
tion, and (c) the internal and external predictive ability of the
equation. One GFA model showed greater correlation coeffi-
cient, lowest LOF and least possible intervariable correlation
comparatively was selected to predict activity, in which five
descriptors were finally selected to construct the GFA model
equation (Molecular_Weight, Number_H_Donors, Alogp,
Molecular_FractionalPolarSurfaceArea and ECFP_6). The
correlation coefficients of the training set and test set are
0.97 and 0.76, respectively. Figure 3 shows the experimental
VS estimated pIC50 of the training set and test set molecules
for S6K1.

Parameter setting and scoring function selection for the
docking study

In molecular docking, parameters and scoring functions seri-
ously influence the accuracy of VS. Thus, we carried out the
optimizations for the docking parameters and scoring func-
tions in advance.

The crystal structures of the unphosphorylated S6K1
kinase (PDB: 3A60) domain bound to staurosporine was
selected as reference receptor since it has a higher resolu-
tion (2.80 Å). The root mean square deviation (RMSD) value
between the docked and bound ligand in the crystal structure
was used to optimize docking parameters. After many runs,
the final optimized parameters could produce a very small
RMSD value, such as, the “GA parameters” was designed
as 7–8 times speed up, the “Number of dockings” was set to
ten, the “Detect Cavity” and “Solvate all” were defined as
true, respectively. The “Early termination” was selected as
false, the “Flip Planar R-NR1R2” was turn off, and the rest
parameters were kept at their default values.

Fig. 4 A hybrid VS protocol based on pharmacophore hypothesis,
genetic function approximation model, and molecular docking was
applied to identify novel S6K1 inhibitors and 215 compounds with
new scaffolds were selected

In order to select an appropriate scoring function, a set
of known S6K1 inhibitors (inhibitory activity range of three
orders) were docked into the active site of S6K1 using our
previously optimized docking parameters. The correlation
coefficient between the experimentally measured IC50 val-
ues and the four scoring functions (GoldScore, ChemScore,
ASP and ChemPLP) values were calculated, respectively. We
found that GoldScore gave the best correlation coefficient.
Therefore, GoldScore was gave used in subsequent DB-VS
studies.

Combination of PB-VS, GB-VS, and DB-VS for database
screening

The three VS models of S6K1 inhibitors have been success-
fully constructed. Finally, the three methods have been com-
bined in a hybrid protocol to virtual screen S6K1 inhibitors
from the Specs database (202, 408 compounds) (Fig. 4). As
shown in Fig. 4, the faster screening method, PB-VS, was
used first. Building the 3D pharmacophore model is difficult
because these reported S6K1 inhibitors are limited in struc-
tural diversity. In order to discover S6K1 inhibitors faster
and more accurately, the GFA regression model that deduces
the correlation between the selected five descriptors and the
biological of present inhibitors was applied to re-filter the
PB-VS screened compounds.

Obviously, the PB-VS and GB-VS techniques for S6K1
inhibitors prediction mainly based on the structural informa-
tion of compounds. Furthermore, the interactions between
ligand and active binding site of S6K1 are also considered
in the VS process. Thus, the DB-VS method was further
applied to re-filter the remaining 5,400 compounds. The fol-
lowing criteria were used in the design of selective kinase
inhibitors: (1) compounds have good interactions with the
key residues in the active site of S6K1, such as Leu-175,
Glu-179, and Met-225, (2) these compounds should have
novel scaffolds different from that of the known S6K1
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Fig. 5 (A) One of the final hit
compounds, AG227/42189090,
mapped with the pharmacophore
model Hypo1. (B) The binding
mode of AG227/42189090 with
S6K1 (dashed lines represent
hydrogen bonds)

inhibitors, (3) these compounds can be easily purchased from
the market. Finally, 215 compounds with promising S6K1
inhibitory activity were selected from the top hits.

In order to discover S6K1 inhibitors with new scaffolds,
we further clustered the 215 compounds into ten classes, and
selected 2–7 compounds from each class. Finally, 60 poten-
tial active compounds were carefully selected (see Table S1)
and have been handed over to other research group to com-
plete the follow-up compound synthesis (or purchase) and
activity test, whose results will be reported in the near
future. For these promising inhibitors selected by the com-
bined screening method, the representative structures of
which mainly include hydrophobic moiety, ring-aromatic
moiety, hydrogen bond donor feature and hydrogen bond
acceptor feature. Furthermore, the hydrophobic moiety and
ring-aromatic moiety of inhibitors situate at hydrophobic
pocket of the S6K1 protein. The hydrogen bond donor
feature and hydrogen bond acceptor feature of inhibitors
form hydrogen-bonds to the sidechains of S6K1. More-
over, all the selected inhibitors are predicted to have good
interactions with the active site of residues of Leu-175,
Glu-179, and Met-225. For example, Fig. 5 shows the phar-
macophore mapping and binding mode of one of the best
retrieved compounds. As can be seen from the Fig. 5A, the
hit compound AG227/42189090 (4-[3-(4-chlorobenzoyl)-2-
(2-fluorophenyl)-4-hydroxy-5-oxo-2,5-dihydro-1H-pyrrol-1
-yl]butanoic acid) is mapped very well with these features of
the Hypo1. The binding pose of AG227/42189090 in the ATP
binding pocket is also shown in Fig. 5B. The 2-fluorophenyl
moiety (hydrophobic feature) and 4-chlorobenzoyl group
(ring-aromatic feature) make many favorable van der Waals
contacts with the backbone and side chains of residues.
The hydrogen bond acceptor feature in Hypo1 corresponds
to the hydrogen bond interaction formed between the car-
boxyl pyrrol of the AG227/42189090 and amide nitrogen of
Leu-175 in the linker region. The hydrogen bond donor fea-
ture in Hypo1 corresponds to the hydrogen bond interaction
formed between the 4-hydroxy of AG227/42189090 and car-

boxyl of Leu-175. The butanoic acid group is directed toward
the solvent accessible region. The observed van der Waals
interactions and characteristic polar contacts are consistent
with the Ye et al [17] provided a possible pharmacophore
model of S6K1 inhibitors.

Conclusions

In this study, a hybrid VS method, including pharmacophore
hypothesis, GFA model and molecular docking, has been
developed and applied to identify S6K1 inhibitors with new
scaffolds. We first developed a common feature pharma-
cophore hypotheses and GFA regression model of S6K1
inhibitors. These two models were then used to screen the
Specs database for the identification of potential new S6K1
inhibitors. Then, a molecular docking method was used to
further filter these screened compounds. Finally, 60 poten-
tial active compounds were carefully selected from the final
hits and have been assigned to another research group to
complete the follow-up compound synthesis (or purchase)
and activity test.
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