Skip to main content
Log in

Numerical simulation of Gerotor pumps considering rotor micro-motions

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Gerotor units are widely used in low-pressure (up to 30 bar) fluid power applications, injection as well as lubrication systems, due to their compact package and low cost. Their performance in terms of volumetric efficiency, flow pulsations, internal pressure peaks or localized cavitation depends on many parameters, such as the rotors’ profiles and the manufacturing tolerances. This paper proposes a multi-domain simulation approach for the numerical analysis of the performance of Gerotor units. Characterized by simulation swiftness, the model can be used for virtual prototyping of units considering the actual geometry of the rotors, their geometrical tolerances and the properties of the working fluid. The approach is based on the coupling of different models: a numerical geometric model evaluates the instantaneous volumes and flow areas inside the unit; a lumped parameter fluid dynamic model describes the displacing process of the tooth space volumes; finally, a mechanical model evaluates the internal micro-motions of the rotors axes according to their tolerances. In this way, the model determines the actual loading of the rotors, considering also the actual location of the points of contact. After presenting the approach, the paper describes the potentials of the proposed method with reference to a particular Gerotor pump design. Specific experiments were performed within this research to permit a detailed model validation, and comparisons in terms of significant steady-state as well as transient pressure and flow features are presented. The approach used in the current paper can be considered valuable when studying the impact of real-life technological clearances on the fluid-dynamic performance of the pump.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Abbreviations

A :

Area

b :

Width

D :

Diameter

e :

Eccentricity

F, f :

Force

h :

Height

l :

Length

\(\dot{m}\) :

Mass flow rate

p :

Pressure

P :

Perimeter

Q :

Volumetric flow rate

r :

Radius

t :

Time

T :

Torque

V :

Volume

\(x,y,X,Y\) :

Distances of line of action of force (components) from the rotor center

w :

Rotors’ width

\(\alpha\) :

Coefficient of discharge

\(\phi\) :

Angle defining the direction of the contact force with respect to the global reference system

ρ :

Density

\(\mu\) :

Fluid viscosity

\(\nu\) :

Kinematic viscosity

θ :

Angle

ω :

Angular velocity

\(\varOmega\) :

Area of action of the pressure load

c :

Contact

DC :

Displacement chamber

H :

Hydraulic

i :

Index

in :

Entering

inn :

Inner

out :

Outer/leaving

P :

Pressure of the suction/delivery environment

ref :

Reference conditions

t :

Tip of the profile

\(x,y,z\) :

Cartesian components

HP:

High pressure

LP:

Low pressure

References

  1. Hill MF (1927) Kinematics of gerotors. The Peter Reilly Co., Philadelphia, PA

  2. Colbourne JR (1974) The geometry of trochoid envelopes and their application in rotary pumps. Mech Mach Theory 9(June 1973):421–435

    Article  Google Scholar 

  3. Shung JB, Pennock GR (1994) Geometry for trochoidal-type machines with conjugate envelopes. Mech Mach Theory 29(I):25–42

    Article  Google Scholar 

  4. Litvin FL, Feng PH (1995) Computerized design and generation of cycloidal gearing. American Society of Mechanical Engineers, Design Engineering Division (Publication) DE, vol 82(1), pp 537–541

  5. Mimmi GC, Pennacchi PE (2000) Non-undercutting conditions in internal gears. Mech Mach Theory 35(4):477–490

    Article  MATH  Google Scholar 

  6. Choi TH, Kim MS, Lee GS, Jung SY, Bae JH, Kim C (2012) Design of rotor for internal gear pump using cycloid and circular-arc curves. J Mech Des 134(1):011005

    Article  Google Scholar 

  7. Vecchiato D, Demenego A, Argyris J, Litvin FL (2001) Geometry of a cycloidal pump. Comput Methods Appl Mech Eng 190:2309–2330

    Article  ADS  MATH  Google Scholar 

  8. Demenego A, Vecchiato D, Litvin FL, Nervegna N, Manco S (2002) Design and simulation of meshing of a cycloidal pump. Mech Mach Theory 37:311–332

    Article  MATH  Google Scholar 

  9. Gamez-Montero PJ, Castilla R, Khamashta M, Codina E (2006) Contact problems of a trochoidal-gear pump. Int J Mech Sci 48:1471–1480

    Article  MATH  Google Scholar 

  10. Ivanović L, Devedzic G, Miric N, Cukovic S (2010) Analysis of forces and moments in gerotor pumps. Proc Inst Mech Eng Part C J Mech Eng Sci 224(10):2257–2269

    Article  Google Scholar 

  11. Ivanović L, Devedžić G, Ćuković S, Mirić N (2012) Modeling of the meshing of trochoidal profiles with clearances. J Mech Des 134(4):041003

    Article  Google Scholar 

  12. Biernacki K, Stryczek J (2010) Analysis of stress and deformation in plastic gears used in gerotor pumps. J Strain Anal Eng Des 45(7):465–479

    Article  Google Scholar 

  13. Paffoni B, Progri R, Gras R (2004) Teeth clearance effects upon pressure and film thickness in a trochoidal hydrostatic gear pump. Proc Inst Mech Eng Part G J Aerosp Eng 218(4):247–256

    Article  Google Scholar 

  14. Bonandrini G, Mimmi G, Rottenbacher C (2009) Theoretical analysis of internal epitrochoidal and hypotrochoidal machines. Proc Inst Mech Eng Part C J Mech Eng Sci 223(6):1469–1480

    Article  MATH  Google Scholar 

  15. Mimmi G (2007) Theoretical analysis of internal lobe pumps. IFToMM World Congress

  16. Karamooz Ravari MR, Forouzan MR, Moosavi H (2011) Flow irregularity and wear optimization in epitrochoidal gerotor pumps. Meccanica 47(4):917–928

    Article  MATH  Google Scholar 

  17. Kim S-Y, Nam Y-J, Park M-K (2006) Design of port plate in gerotor pump for reduction of pressure pulsation. J Mech Sci Technol 20(10):1626–1637

    Article  Google Scholar 

  18. Hsieh C-F (2009) Influence of gerotor performance in varied geometrical design parameters. J Mech Des 131(12):121008

    Article  Google Scholar 

  19. Hsieh C-F, Hwang Y-W (2007) Geometric design for a gerotor pump with high area efficiency. J Mech Des Trans ASME 129(12):1269–1277

    Article  Google Scholar 

  20. Mancò S, Nervegna N, Rundo M (2002) A contribution to the design of hydraulic lube pumps. Int J Fluid Power 3(1):21–32

    Article  Google Scholar 

  21. Manco S, Nervegna N, Rundo M, Torino P, Armenio G, Pachetti C, Trichilo R Gerotor lubricating oil pump for ic engines. SAE Paper 982689, International fall fuels and lubricants meeting and exposition, San Francisco, USA and SAE Transactions

  22. Schweiger W, Vacca A (2011) Gerotor pumps for automotive drivetrain applications: a multi domain simulation approach GRPs in AWD-powertrain systems. SAE Int J Passeng Cars Mech Syst 4(3):1358–1376. doi:10.4271/2011-01-2272

    Article  Google Scholar 

  23. Gamez-Montero P-J, Castilla R, del Campo D, Erturk N, Raush G, Codina E (2012) Influence of the interteeth clearances on the flow ripple in a gerotor pump for engine lubrication. Proc Inst Mech Eng Part D J Automob Eng 226(7):930–942

    Article  Google Scholar 

  24. Altare G, Rundo M (2015) CFD analysis of gerotor lubricating pumps at high speed: geometric features influencing the filling capability. ASME/BATH Conf 2015:1–10

    Google Scholar 

  25. Frosina E, Senatore A, Buono D, Monterosso F, Olivetti M, Arnone L, Santato L (2013) A tridimensional CFD analysis of the lubrication circuit of a non-road application diesel engine. SAE Technical Paper 2013-24-0130. doi:10.4271/2013-24-0130

  26. Vacca A, Guidetti M (2011) Modelling and experimental validation of external spur gear machines for fluid power applications. Simul Model Pract Theory 19(9):2007–2031

    Article  Google Scholar 

  27. McCloy D, Martin HR (1980) Control of fluid power: analysis and design. E. Horwood, Sawston

    Google Scholar 

  28. LMS Imagine SA (2015) Hydraulic library, User Manual, Rev 14

  29. Booker JF (1965) Dynamically loaded journal bearings: mobility method of solution. J Basic Eng 87:537–546

  30. Ocvirk FW (1952) Short-bearing approximation for full journal bearings. Natl Advis Comm Aeronaut, NACA Technical Note 2808:28

  31. Vacca A, Franzoni G, Casoli P (2007) on the analysis of experimental data for external gear machines. Asme Imece 2007:1–9

    Google Scholar 

  32. Dhar S, Vacca A (2012) A novel CFD - Axial motion coupled model for the axial balance of lateral bushings in external gear machines. Simul Model Pract Theory 26:60–76

    Article  Google Scholar 

  33. Vacca A, Klop R, Ivanrysynova M (2010) A numerical approach for the evaluation of the effects of air release and vapour cavitation on effective flow rate of axial piston machines. Int J Fluid Power 11(1):33–45

    Article  Google Scholar 

  34. Casoli P, Vacca A, Franzoni G, Berta GL (2006) Modelling of fluid properties in hydraulic positive displacement machines. Simul Model Pract Theory 14(8):1059–1072

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Thomas Magnete GmbH (Etienne Dautry and Benjamin Gisberg) for their valuable support and for providing experimental data for the present study. The authors would like to thank Siemens for the use of Imagine.Lab AMESim.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pellegri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pellegri, M., Vacca, A. Numerical simulation of Gerotor pumps considering rotor micro-motions. Meccanica 52, 1851–1870 (2017). https://doi.org/10.1007/s11012-016-0536-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-016-0536-6

Keywords

Navigation