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Abstract The deduction of most of the fundamental

laws governing solid and fluid mechanics is due to

Lagrange. As already mentioned by several research-

ers and science historians, analytical mechanics has

achieved the highest degree of perfection thanks to

Lagrange’s work. The aim of this editorial is to

provide a critical review of the second edition of

Mécanique Analytique, which has been considered

Lagrange’s opera summa, and to illustrate the influ-

ence of such a treatise on modern mechanics. Partic-

ular emphasis will be given to the current perspectives

of Lagrange’s work in relation to the many mathe-

matical and engineering developments that have been

inspired by it.
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1 Introduction

1.1 Biographical review and cultural influences

The historical and philosophical analysis of Lagrange

does not seem less complex than the purely scientific

and mathematical one [1]. This is because of the all-

embracing and universal nature of his work, the depth

of his analyses, the power of his synthesis, the

cosmopolitan nature of his life, and because of the

strength, but at the same time simplicity, of his

personal nature. A nature which, on the point of death,

made him so describe his fateful passing away in a

serene and almost Socratic way [2]: ‘‘I was very ill the

day before yesterday, my moral and physical faculties

were extinguishing a little at a time; I observed the

very gradual progression of the diminishing of my

powers with pleasure and arrived at the end without

pain, without regret, and with a very sweet descent.

Oh, one shouldn’t be afraid of death and, when it

arrives without pain, it is a last function of life, neither

painful nor unpleasant […]’’.

Lagrange, apart from being the great mathemati-

cian that we know well, appears to have also had a

remarkable cultural, humanistic, and philosophic

background [3]. Having obtained a university diploma

in Law at only 16, in order to satisfy the wishes of his

father, he continued his studies under the guide of the

Abbot Giambattista Beccaria, an eminent physicist

and mathematician from Turin University, an empir-

icist and continuator of that humanistic course of
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studies of the scientific culture that originated from the

Italian Renaissance and which always remained

clearly distinct from the French eighteenth century

Encyclopedism. Lagrange without doubt belonged to

his era, the Era of the Enlightenment [4], with all the

immense faith that this current of thought entrusted in

the capacity of Man, interpreter of Nature and creator

of his own destiny. One of his many biographers,

Cossali, defined him as ‘‘The most metaphysical

analyst’’, where the term ‘‘metaphysical’’ should be

intended in Kant’s meaning of ‘‘independent of

experience’’. Another of his biographers, Delambre,

revealed the wide ranging intellectual profile of

Lagrange: his interests covered such topics as meta-

physics, the history of culture and of religions,

linguistics, medicine, botany, and above all chemistry.

Lagrange never wanted to be portrayed in any

manner, believing, like a Neoplatonic philosopher,

that only his work deserved to be passed on for

posterity. This desire can be confirmed by the

intention, declared in an apposite note at the

beginning of his greatest work, Mécanique Analy-

tique, of never and in no case using explicative

figures: ‘‘Figures will not in fact be found in this

work. The methods that I show do not require

geometrical constructions or mechanical reasonings,

but only algebraic operations, subject to a regular

and uniform development. Whoever loves Analysis

will with pleasure see Mechanics become a new

branch, and they will be grateful to me for having

thus extended the domain’’. It is not by chance that

Lagrange, at the beginning of his maximum treatise,

emphasised his intention in this manner, an intention

that was also shared by his illustrious colleagues. In

this sentence can be found all the longing, so typical

of the llluminists, of becoming free of contingency,

of appearance, of the unpredictable nature of certain

scholastic methods.

Two important pupils of Lagrange, Biot and

Poisson, commemorating their Mentor, affirmed that

only he could offer mathematicians ‘‘the model of that

almost ideal perfection that it is necessary to force

oneself to reach’’. Biot and Poisson concluded with a

moving recollection of Lagrange’s great modesty:

‘‘This man, who knew so many things, was surprised

above all by what he didn’t know. These simple words,

‘‘I don’t know’’, were his favourite expression…’’. Yet

again a Socratic attitude emerges, as witnessed by his

closest collaborators.

In 1819, Giambattista Magistrini, a teacher of

Sublime Calculus at the University of Bologna, in his

inaugural lecture for the academic year, openly

praised the historical introductions that Lagrange

usually put before his works: ‘‘Primarily of very noble

value, and greatly enlightening of his production, are

those prospects that he proposed in front of anyone on

the origin, on the progresses and on the current state of

affairs of each branch of Science, that he undertook to

examine’’. A characteristic that distinguished him

from all his eminent contemporary colleagues, includ-

ing Euler, was that of framing his most significant

works in a historical studies context. This bestows on

him once again, if it were necessary, his particular

attitude of great cultural open-mindedness.

His empiricist formation, his attention to the reality

of the experimentation and to the objectivity of

measurements, can be found in extensive evidence,

of which mention can be made to the activity carried

out in Paris for the Weight and Measures Commission.

Burzio [5] stated: ‘‘It is said that it is due to the discrete

sarcasm of Lagrange that the number 12 was not

adopted as the basis of the metric system instead of 10:

with the purpose of explaining to the doubtful

members of the commission the absurdity of a base

of 12, Lagrange proposed 11 as being better; but the

disadvantages of this base were so evident that the

Commission understood the irony and opted for 10’’.

Finally, it should be observed how the studies of the

last decades have in particular been directed towards

the figure of Euler [6], and have become side-tracked

from the figure of Lagrange. A similar slowing down

of interest was witnessed in the nineteenth century for

the works of Leibniz, because of the prevalent interest

in Newton [3].

1.2 The philosophical context of Lagrange

activity

Lagrange and Newton can be put together due to the

fact that they were both aware of a certain tiredness

and saturation towards purely mathematical studies,

once their most important works had been published:

the Mécanique Analitique and the Principia. Both

turned to humanistic, historical and philosophical

studies, in order to satisfy interests they previously had

or perhaps to find vaster environments into which they

could place and contemplate their most relevant

results. Bell [7] stated: ‘‘This nausea towards anything
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that had the odour of mathematics pushed Lagrange

towards the questions that he considered worthy of his

interest, in the exact same way Newton had done after

Principia…. In this strange diversity, he used to

surprise his friends with his extensive knowledge and

with his penetration of his spirit into fields that had

nothing to do with mathematics’’.

However, both Burzio [5] and the other biographers

considered Lagrange as a ‘‘pure scientist’’, a ‘‘spe-

cialist’’, so different, even in this, from his contem-

porary colleagues or those that preceded him, who

often mixed purely scientific discussions with digres-

sions of a metaphysical or even theological nature (see

Pascal, Newton, Leibniz, and Euler). Lagrange

remained rigorously outside all of this, although

without the harshness of a certain Enlightenment of

manner. For this reason, he was considered a model by

the Positivism philosophers, from Comte to Renan and

even to Mach. Comte maintained ‘‘the eminent

philosophical superiority of Lagrange over all the

geometricians subsequent to Descartes and Leibniz’’.

In this sense, he is prevalently considered a pre-

positivist. On the other hand, his enlightened, and in

particular his Kantian character, has perhaps not been

emphasised enough.

It should be observed that, although Immanuel Kant

was part of the Prussian Academy of Sciences

(Preussische Akademie der Wissenchaften,

1700–1945) in the Historical and Philosophical Class,

and although he lived in Prussia (to be precise in

Koenigsberg, in Eastern Prussia), in the 20 years

period in which Lagrange directed the Physics,

Mathematics, and Natural Science Class, it does not

appear that the two ever had contact, either direct or

epistolar. As is well known, most of the correspon-

dence of Lagrange dating back to the Berlin period has

been lost. This is to a great extent due to political

reasons which saw the Prussian State set against

France, first revolutionary and then Napoleonic. To a

lesser extent, another reason could be due to the fact

that Lagrange himself, during the French revolution,

had to destroy part of his correspondence for reasons

of personal safety. All this occurred although

Lagrange, and Kant for that matter, had never

explicitly dedicated his works to his powerful protec-

tors: first Frederick II of Prussia and then Napoleon.

In Berlin, Lagrange was a court mathematician and,

as such, he generally spoke in French, while Kant was

a philosopher who was more connected to the

academia and who usually spoke in German. This

obviously does not rule out that they could have

communicated, although no traces of such a possible

relationship remain. When, in l786, Immanuel Kant

was welcomed by the Berlin Academy of Sciences, he

was by then one of the most famous philosophers in

Europe, just like Lagrange could be numbered among

the most eminent mathematicians of that time.

For Kant, it is necessary to distinguish the phe-

nomena that represent the immanent reality and

therefore the shadows in the Plato’s Myth of the

Cave, from the noumena which represent the reality in

its essence, the reality in sé (also known as transcen-

dental reality). There is the impression that the

‘‘Kantian noumenon’’ is reflected in the pages of

Mécanique Analytique. A mechanical world of ideal

laws that imply the phenomenal and empirical world; a

platonic world that interprets Nature, but so perfect

that it is not able to be represented consistently and

opportunely through illustrative figures. Citing Mat-

hieu [8]: ‘‘If…we want to find the features of an

objective reality, we must turn to a concept that is not

based on experience; or, in Kantian language, which is

a priori’’. A significant example of such an a priori

concept can be represented by the Principle of Virtual

Work, which Lagrange considered an axiom. An

analogous definition can be found, almost two centu-

ries later, in Karl Popper’s Critical Rationalism and

conjectures [9].

The doctrine of this a priori concept is precisely

what Kant referred to as ‘‘metaphysics’’. While the

direct study of Nature is the duty of physics,

metaphysics precedes it, knowing the rational struc-

ture of reality without the need to go back to

experience. Kant used the term ‘‘rational’’ in the

same way it appears in the expression ‘‘rational

mechanics’’, intended as the science of motion which

does not need to go back to experience. It can a

priori construct the representation of motion, as it has

at its disposal the primary forms of intuition: space

and time.

More generally speaking, Kant suggested to Sci-

ence the programme to explain mechanically and

without finalities all the natural forms. It is interesting

to observe how Kant refers to space by its traditional

name ‘‘ether’’, considering it not as a physical matter

but rather as an a priori principle [8].

Meccanica (2014) 49:1–11 3

123



1.3 The second edition of Mécanique Analytique

In this section a comparison is proposed between the

first edition [10] of Lagrange’s Mécanique Analytique

(1788) and the second edition of the treatise [11, 12],

which was divided into two volumes, of which the first

appeared in 1811, while the second was publishes after

his death in 1815. As the second edition is very rare, in

the subsequent analysis reference will be made, among

the different subsequent editions of Mécanique Ana-

lytique, to the fourth [13], contained in the XI Volume

of the Oeuvres de Lagrange published in 1888 by

M.J.-A Serret and M.G. Darboux. As indicated in the

preface to the fourth edition, this work in fact

represents, in all intents and purposes, a reprint of

the second edition of Méchanique Analytique, with the

addition, at the foot of the page, of the notes of the

mathematician M.J. Bertrand. Both the first and the

fourth editions can be consulted on the Web at the site

of the French National Llbrary, ‘‘Gallica’’ (http://

gallica.bnf.fr).

The second edition of Mécanique Analytique

(1811) [11, 12] presents significant integrations and

enlargements compared to the first [10], which was

published in 1788, as also remarked on by Lagrange

himself in the preface to the work: ‘‘this is, from many

points of view, a new work, on the same level, but

more extensive. More space has been given to the

development of principles, to the general formulae and

to the applications, in which the solutions to the main

problems that are part of the studies of Mechanics can

be found’’. The principal differences that distinguish

the second edition from the first can be discussed in

detail by comparatively commenting on the indices of

the two editions (see the title pages in Fig. 1).

1.4 Statics

The first part of the treatise, related to the problems of

Statics, contains eight sections, all of which were

expanded by Lagrange to various degrees. The first

section, entitled ‘‘On different principles of Statics’’,

contains a more complete analysis of the three

principles of Statics, in other words, the Principle of

Lever, the Principle of the Composition of Move-

ments, and the Principle of Virtual Work, with new

observations on the nature and on the connections that

exist between them. In the second edition, under the

title ‘‘General Statics formula for the equilibrium of

any system of forces, in such a way to apply this

formula’’, a more general ‘‘demonstration’’ of the

Principle of Virtual Work is given for any number of

forces in equilibrium [14]. Furthermore, the conditions

that are necessary for a system of forces to be

considered equivalent to each other are also given.

The third section, entitled ‘‘General properties of a

system of bodies, deduced from the previous for-

mula’’, deals in a more intuitive way with the formulae

Fig. 1 Title page of the 1st edition of Mécanique Analytique, from the 11th volume of the work Oeuvres de Lagrange and the 4th

edition of Mécanique Analytique
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of instantaneous rotation movement and of the com-

position of movements. Likewise, Lagrange deduced

the vectorial theory of the composition of movements,

proposing a new demonstration of the maximum and

minimum that occur in equilibrium states. In the fourth

section, titled ‘‘Simpler and more general ways of

using the equilibrium formula proposed in the second

section’’, Lagrange proposed more general and sim-

pler formulae to resolve mechanical problems on the

basis of the méthode des variations, which is today

known under the name of Variational Calculus, thus

defined by the Author: ‘‘for the little there is at the

current of the principles of Differential Calculus, the

method to determine the largest and smallest ordinates

of the curves is known; but questions of maxima and

minima of a higher type exist, which, although

depending on the same method, are not so easy to

resolve. They are the ones in which one deals to find

the curves themselves, in which a certain integral

expression gives either a maximum or a minimum

with respect to all the other curves’’. The fifth

(‘‘Solutions of the different problems of Statics’’)

and the sixth sections (‘‘On the principles of Hydro-

statics’’) of the second edition instead only show slight

additions compared to the previous edition. In the

seventh section (‘‘On the equilibrium of incompress-

ible fluids’’) Lagrange proposes yet again, but with

renewed methodological rigour, the study of the

interaction between a fluid mass and a rigid body,

and the relative problem of their equilibrium. The

eighth section (‘‘On the equilibrium of compressible

and elastic fluids’’) remains practically unchanged

compared to what was written in the first edition.

1.5 Dynamics

The second part of the treatise, related to the problems

of Dynamics, shows a greater number of additions

than the first part. In the first section (‘‘On the different

principles of Dynamics’’), a more complete historical

review of the principles of Dynamics is given. In the

second section (‘‘General Dynamics formula for the

movement of a system of bodies animated by any

force’’), Lagrange demonstrates under what condi-

tions the general Dynamics formula is given and, as a

consequence, that the equations resulting from the

movement of a system of bodies are independent of the

chosen reference system in space. In the third section

(‘‘General properties of movement deduced from the

previous formula’’), more details are provided on the

properties of the movement of the centre of gravity and

on the trajectories of a system of bodies. In this

manner, the theory of the principal rotation axes is

introduced and some theorems on the rotation of a

rigid body or of a system of bodies, due to the action of

an external impulse, are demonstrated. The fourth

section (‘‘Differential equations for the solution of all

Dynamics problems’’) remains almost unchanged

compared to the previous edition.

The fifth section (‘‘General approximation methods

of dynamics problems, on the basis of variations of the

arbitrary constants’’) is instead completely new and it

proposes a re-elaboration of the theory of variations of

the arbitrary constants applied to mechanics which had

been the subject of three articles that appeared

between 1808 and 1811 in the dissertation presented

at the Institut de France (Fig. 2). This contribution to

analytical mechanics links up with the great research

by Lagrange on Celestial Mechanics dating back to the

period in Berlin, but also with his research related to

the differential equation theory from the same period.

On 22 August 1808 Lagrange presented his ‘‘Disser-

tation on the theory of variations of the elements of the

planets’’ [15]. This dissertation was then followed by

that ‘‘On the general theory of variations with arbitrary

constants’’ [16], which was presented on 13 March

1809 at the Institut de France, in which the method is

generalized to all mechanics problems. Finally,

Lagrange presented an even more simplified and

definitive version of the theory on 19 February 1810,

entitled ‘‘Second dissertation on the general theory of

the variations of arbitrary constants in all mechanics

problems’’ [17], which then became the basis of the

second edition of Mécanique Analytique.

The sixth section (‘‘On small oscillations of any

system of bodies’’), which corresponds to the fifth

section of the first edition of Mécanique Analytique, is

expanded with various examples and it concludes with

the theory of vibrating chords, a subject which had

already been studied by the Author in Mémoires de

Turin.

2 The influence of Lagrange’s studies on modern

mechanics

The derivation of most of the fundamental laws that

govern solid and fluid mechanics, through the

Meccanica (2014) 49:1–11 5
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application of the Calculus of Variations to mechanics

problems, are due to Lagrange. For many, starting

from Mach ([18], p. 457), ‘‘analytical mechanics has

reached the highest degree of perfection thanks to the

work of Lagrange’’. Hankins ([19], p. 29) even wrote

that Lagrange ‘‘brought rational mechanics to the

maximum generality and abstraction that could be

reached in the Enlightenment era’’. On the other hand,

d’Alembert (1717–1783) had already proposed re-

establishing the theory of mechanics in a new way

from the Newtonian theory. However, only Lagrange

was able to formulate a complete and precise theory,

declaring it as an alternative to that of Newton

([11, 12], p. 159): ‘‘Mechanics became a new science

in the hands of Newton… I have here offered you a

new means to facilitate this research’’.

2.1 The principle of virtual work

In the new formulation of mechanics proposed by

Lagrange, the quantity of primary importance is no

longer the force, but the work done by forces for

infinitesimal arbitrary movements. On the other hand,

various scholars have discussed about whether

Lagrange’s formulation is or not equivalent to New-

ton’s and whether it can accordingly be considered as a

real innovation (see, for example, the review by

Truesdell [6]). Lagrange stated that ‘‘the work will

unify and present the various principles so far found

under the same point of view [of the principle of

virtual work]’’ ([11, 12], p. 2).

However, it is interesting to observe how Lagrange,

though declaring that he based himself on the principle

of virtual work (or, as it was called then, of the virtual

velocities), which was generally considered ‘‘as a kind

of axiom of mechanics’’, attempted just the same to

deduce it from other more general principles ([11, 12],

p. 12). ‘‘[…] we shall expound this formula in all its

interpretations; we shall try to present it in an even

more general way than has been done up to now’’.

Lagrange thus arrived at the formulation of the

following expression ([11, 12], p. 21): ‘‘the principle

of virtual velocities can be considered as very general

by expressing it in the following manner: if any

system, composed of any number of points or bodies,

each of which solicited by any force, is in equilibrium;

and if this system is given any small movement, in

virtue of which each point travels by an infinitely small

displacement, which shall express its virtual veloc-

ity—then the sum of the forces, each one multiplied by

the displacement travelled (in its direction) from its

point of application, shall always be equal to zero;

considering the displacements travelled in the same

direction of the forces as positive and small; and the

travelled displacements in opposite direction as neg-

ative’’ .

Fig. 2 Title page of the dissertation presented by Lagrange at the Institut de France, currently collected in the VI volume of the work

Oeuvres de Lagrange
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As observed by Drago [20], this demonstration in

fact did not succeed for Lagrange nor for the others

who later undertook the same task. Jacobi

(1743–1819) stated that this was ‘‘a proposition

without demonstration’’, since ‘‘no demonstration is

possible’’. Some 30 years after Lagrange’s work

appeared, Cossali (1745–1815), referring about the

famous virtual work equation, exclaimed: ‘‘Oh

awesome equation! Oh immense equation! Equation

enriched with truth, full of light! I cannot express

your vastness and, at the same time, your simplicity,

but to give you an image (such that human intellect

can be granted) of that infinite and so simple act,

with which the Supreme Being contemplates all

equilibria, and the movements in the Earth, in each of

the innumerable Suns, in each of the planets acting as

their corona, in the entire machine of the universe, in

the infinite possible machines throughout the world

[…]’’. More recently, Levi-Civita and Amaldi ([21],

vol. 1, p. 708) considered it a principle and not a

theorem: ‘‘from the physical point of view, the

principle of virtual work is justified by showing that

it takes place (that is, appears to comply with

experience) in many particular cases which, by

natural and almost necessary deduction, can be

considered valid in general’’. In a similar way,

Sommerfeld ([22], p. 51) considers it a premise that

cannot be demonstrated: ‘‘we are very far from

giving a general demonstration of this premise’’.

Recent developments on this theme have con-

cerned the study of the characteristics of duality

between static matrix operator, which relates the

constraint reactions with the applied external loads,

and kinematic matrix operator, that connects the

movements of a generic point of a rigid body to those

of a representative pole (or reduction centre) of the

system [23]. This property, which is expressed by

the fact that the static matrix is the transpose of the

kinematic one, implies the principle of virtual work

for rigid body systems, and viceversa. Moreover, the

duality of static and kinematic operators arises as a

direct consequence of the equations that describe the

equilibrium and the kinematics of a rigid body. If we

consider a plane rigid body subject to the action of n

generalized forces of components Hi, Vi and Mi with

respect to the Cartesian reference system defined by

the versors, i~, j~, the resultant {R} of this system of

forces shall be given by:

Rf g ¼
Fx

Fy

M

2
4

3
5 ¼

X
i

1 0 0

0 1 0

�Dyi Dxi 1

2
4

3
5

Hi

Vi

Mi

2
4

3
5

¼
X

i

Ai½ �TfFig; ð1Þ

where (Pi–O) represents the position vector of the

application point of the generic force (Hi, Vi)
T with

respect to the pole O. In a similar way, the kinematic

equations that connect the generalized movements of a

generic point Pi of the rigid body with those of the pole

O give:

sif g ¼
ui

vi

ui

2
4

3
5 ¼

1 0 �Dyi

0 1 Dxi

0 0 1

2
4

3
5

uO

vO

uO

2
4

3
5

¼ Ai½ �fsOg; 8i ¼ 1; . . .; n: ð2Þ

The work done by the resultant {R} for the

movement of pole O can now be related to the total

work done by the single applied forces:

Rf gTfsOg ¼
X

i

Ai½ �TfFig
� �T

Ai½ ��1fsig
� �

¼
X

i

fFigT
Ai½ � Ai½ ��1fsig

¼
X

i

fFigTfsig: ð3Þ

Should the resultant {R} vanish in order to

guarantee equilibrium of the rigid body, the first

member of Eq. (3) is annulled and the equation of the

principle of virtual work is derived:

fRg ¼ f0g ,
X

i

fFigTfsig ¼ 0: ð4Þ

The property of duality of the static and kinematic

matrices is also verified for a three-dimensional body,

for which, in lieu of Eqs. (1) and (2), the following

expressions are obtained:

R

M

� �

6�1

¼
X

i

½1�
3�3

½0�
3�3

ri^½ �
3�3

½1�
3�3

2
4

3
5 Fi

Mi

� �

6�1

; ð5Þ

and

si

ui

� �

6�1

¼
½1�
3�3

� ri^½ �
3�3

½0�
3�3

½1�
3�3

2
4

3
5 sO

uO

� �

6�1

; 8i ¼ 1; . . .; n;

ð6Þ
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where the operator ri^½ � is an antisymmetric matrix

derived directly from the definition of the operator of

vectorial product:

ri^½ � ¼
0 �Dzi Dyi

Dzi 0 �Dxi

�Dyi Dxi 0

2
4

3
5: ð7Þ

Finally, it can be noted how the definition of

vectorial product, which represents the essence of the

previous demonstration, was introduced by Hamilton

(1805–1865) only in 1843 [24, 25] and became widely

used in engineering practice just in the second half of

the twentieth century [26, 27]. Such a formulation can

also be extended to rigid body systems connected to

each other through internal constraints, as has been

illustrated extensively in [23].

The property of duality has also been verified in the

various types of deformable solids [23]. In this

context, the principle of virtual work represents an

essential instrument for the correct determination of

the static matrix, which, in this case, connects the

internal forces to the external ones, and the kinematic

matrix, which relates the deformation characteristics

to the generalized displacements of the system. In this

way, it is possible to deduce the static and kinematic

matrix operators for all structural elements, such as

beams of straight or curvilinear axis, plates or shells,

as well as for three-dimensional solids, with important

implications concerning the Finite Element Method

[23].

2.2 The calculus of variations

In Lagrange’s time, the theory of the calculus of

variations was inspired by the metaphysic principle of

least action, which affirms that the history of motion

chosen by a mechanical system is such as to minimise

the integral S of the Langrangian of the system,

L = T - V, where T represents the kinetic energy and

V the potential energy:

S ¼
Z t

0

L dt: ð8Þ

Lagrange, in his treatise Mécanique Analytique,

proposed describing the configuration of a generic

mechanical system, defined by function L, through the

use of generalized coordinates, among which, apart

from the space coordinates qi, time t was included for

the first time. Applying the calculus of variations to the

functional S, Lagrange determined the conditions that

are necessary and sufficient for the lagrangian to

satisfy so that S is an extremum. These conditions are

today called Lagrange equations:

d

dt

oL

o _qi

� oL

oqi

¼ 0 ð9Þ

The innovations brought about by this theory of

mechanics, compared to that of Newton, have been

highlighted by Lanczos [28] and they concern several

aspects. First of all Lagrange’s analytical mechanics

proposed studying a system as a whole, rather than the

single mass-points. It considers a scalar function, the

Lagrangian L, which determines the entire dynamics

of the problem, instead of a force acting on each

moving particle. Such a formulation does not explic-

itly consider the constrain reactions and develops the

whole system of equations of motion starting from a

unitary principle, which minimises a certain quantity,

i.e., ‘‘the action’’, which can be expressed in general-

ized coordinates. Maurice also observed that, ‘‘after

having recognised, in his work on the motion of the

moon [29], the dependence of the principle of least

action on that of the virtual velocities, Lagrange, in

Mécanique Analytique, fully demonstrated that the

principle of least action is a consequence of that of the

virtual velocities’’.

The calculus of variations introduced by Lagrange

has inspired many important studies, not only pertain-

ing to the mechanics of rigid bodies, but also to that of

deformable bodies. In this wider field, the role of

action S for which the extremum is searched, is

represented by the total potential energy of the elastic

body, W, defined as the difference between the elastic

deformation energy and the potential energy of the

applied external forces. Again in this case, in close

analogy with the study of rigid bodies, the variational

formulation implies the operational formulation of the

elastic problem, which is represented by Lamé’s

equation and by the equivalence conditions at the

boundary, as the least action S implies Lagrange’s

differential equations (9), and viceversa [23].

The main consequences of these implications regard

the possibility of utilizing integral (or global) formula-

tions as an alternative to differential (or pointwise)

formulations, with a consequently minor request of

regularity of the physical fields involved. Integral

formulations in fact allow all the intrinsic relations of
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the dealt with problem to be synthesized in a single

functional: field equations, boundary conditions, initial

conditions, conditions dictated by the constraints and

even conditions of discontinuity or non derivability of

the involved physical fields. Finally, among the most

peculiar current properties, integral formulations rep-

resent a very natural criterion to derive approximate

methods. In the second half of the nineteenth century,

the calculus of variations was applied by Kirchhoff

(1824–1887) to the plate theory, by Green (1793–1841)

and Kelvin (1824–1907) to the theory of elasticity, and,

through the studies of Castigliano (1847–1884) and

Menabrea (1809–1896), to structural mechanics. At the

beginning of the twentieth century, the approximate

solution methods by Rayleigh (1842–1919), Ritz

(1878–1909) and Galerkin (1871–1945), from which

the more recent finite element method is derived [30],

were on one hand developed, while, on the other,

greater theoretical foundation was given to variational

methods with the contributions of Volterra

(1860–1940), Fréchet (1878–1973), and Hilbert

(1862–1943).

Again in the ambit of calculus of variations, another

important contribution by Lagrange to Mechanics,

which is still today a fruitful field of research, concerns

the study of the extremum of a functional subject to

constraint conditions. Both Euler (1707–1783) and

Lagrange analysed this problem and arrived at the

formulation of the multiplier concept. In mechanical

jargon, the variations of the auxiliary conditions

expressed by the constraints, each of which multiplied

by a constant that has to be determined, which is

known as the Lagrange multiplier, must be added to

the infinitesimal virtual work.

In the Mécanique Analytique, Lagrange proposes

an original physical interpretation of the multipliers:

such constants can be considered as moments of force

acting on the moving particle, in order to maintain the

kinematic conditions expressed by the constraints

satisfied. Lagrange analysed the problems character-

ised by constraints expressed in terms of equalities,

and only in 1951 did Khun and Tucker [31] extend the

multiplier method to constraints expressed in terms of

inequalities. These developments, inspired by the

work of Lagrange, are particularly relevant from an

engineering point of view and concern many different

aspects. For example, in the field of the plasticity

theory, Lagrange’s multiplier method can be used to

impose the satisfaction of the inequality constraint due

to the fact that the stress state in each point of a body

should fall within the yield surface [32, 33]. On the

other hand, in contact mechanics, the condition of

unilateral constraint on the border of the domain [34]

is a typical example of constraint expressed in terms of

inequality. Lagrange’s multiplier method has also

been used in optimisation problems subject to con-

straints; reference can be made, for example, to Sacchi

Landriani [35] and to Cinquini and Rovati [36].

Finally, this method has recently been applied to

impose boundary and interface conditions in the

meshless type finite element formulations that are

used in fracture mechanics [37].

2.3 The method of variation of the arbitrary

constants

As far as the integrations to the second part of the

Mécanique Analytique treatise are concerned, the

theory of variations of the arbitrary constants surely

represents one of the most important innovations, so

much so that Lagrange can be considered the

forerunner, ahead of his time by almost a century

and a half, of that branch of differential geometry that

goes under the name of Symplectic Geometry [38, 39].

In this theory, considered in the field of mechanics,

the arbitrary constants are the constants that appear in

the expression of the general solution of Lagrange’s

equations. In this context, Lagrange attempted to

propose a simplified method to deal with the complex

problem of the movement of the planets. It was in fact

well known that, in order to characterise the motion of

a body subject to the universal law of gravity, six

integration constants are necessary, five of which are

necessary to identify the conic that describes the

trajectory of the celestial body in space, and one which

is needed to define the position at a given instant on

such an orbit. Kepler (1571–1630), neglecting the

effect of the interaction of the planets, solved this

problem and summarised it in fundamental laws.

In order to describe the motion of the celestial

bodies in a more accurate manner, Lagrange thought

of considering the influence of the set of planets on one

of these planets as a perturbation. The orbit of the

planet can be considered as momentarily influenced by

the perturbation, but after the collision, which is

comparable to the instantaneous impact of a small

asteroid with the celestial body, it goes back to being a

crossed conic that respects Keplero’s laws. The effect
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of the permanent perturbations suffered by the celes-

tial body, due to the interaction between the planets,

can be considered as the result of a series of

infinitesimal impulses received in a continuous way

by the planet. The effect of the perturbing forces on the

planet is therefore reduced to an infinitesimal and

continuous variation of its orbit and the perturbed

movement of the planet is thus described, in the space

of the six integration constants, by a differential

equation.

On the basis of mechanics laws, the variation of the

coordinates that describe the position of the planet (or,

in jargon, its elements) are generally proportional to

the resultant of the perturbing forces and the coeffi-

cients of proportionality are in turn a priori of the time

functions, of the position and of the velocity. Through

the use of the theory of variation of the arbitrary

constants, Lagrange demonstrated how this differen-

tial system can be transformed into another, appar-

ently more complex system in which, however, the

coefficients of the perturbing forces become indepen-

dent of time, thus simplifying the problem consider-

ably. Lagrange also underlined how this method can

be applied to any mechanics problem, regardless of

the number and type of parameters necessary to

describe it.

The transformation proposed by Lagrange leads to

the definition of the so-called ‘‘Lagrange parenthesis’’.

In short, Lagrange defined the following differential

operator, where ri and vi are, respectively, the

components of the position vector and the velocity

vector with respect to the Cartesian reference system:

½a; b� ¼
X3

i¼1

ori

oa

ovi

ob
� ovi

oa

ori

ob
: ð10Þ

The three remarkable properties this parenthesis

benefits from were used as the basis of Symplectic

Geometry, a name coined by the mathematician

Hermann Weyl (1885–1955) in 1939 [40], on the

basis of the Greek root rtlpkejsijof, a translation of

the Latin word complexus. This generalisation has

become the foundation of an active field of mathe-

matical topology which deals with the study of non

degenerate differential manifolds of equal sizes. In this

generalisation, the notion of distance is lost, while at

the same time the notion of orientated area is

conserved. Furthermore, as no simplex forms defined

on the differential manifold of odd dimensions exist,

and as the two-dimension is completely banal, it is

possible to comprehend how this form of geometry,

unlike that of Euclid, is not easy to represent.
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della Scienza, vol 6 (L’Età dei Lumi). Istituto Enciclopedico

Treccani, Roma, pp 388–414

5. Burzio F (1963) Lagrange. UTET, Torino

6. Truesdell C (1968) Essays in the history of mechanics.

Springer, New York

7. Bell ET (1986) A lofty pyramid: Lagrange. Cap. 10 in men

of mathematics: the lives and achievements of the great

mathematicians from Zeno to Poincaré. Simon and Schus-
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40. Weyl H (1939) Classical groups: their invariants and rep-

resentations. Princeton University Press, Princeton

Meccanica (2014) 49:1–11 11

123


	Lagrange and his Mécanique Analytique: from Kantian noumenon to present applications
	Abstract
	Introduction
	Biographical review and cultural influences
	The philosophical context of Lagrange activity
	The second edition of Mécanique Analytique
	Statics
	Dynamics

	The influence of Lagrange’s studies on modern mechanics
	The principle of virtual work
	The calculus of variations
	The method of variation of the arbitrary constants

	Acknowledgments
	References


