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Abstract This paper introduces an improved friction

model accounting for elastoplastic behavior of inter-

acting asperities along contiguous rough surfaces for a

line contact solution. It is based on Greenwood and

Tripp’s original boundary friction model and specif-

ically tailored for a boundary regime of lubrication.

The numerical solution of Reynolds’ equation is

achieved by implementing Elrod’s cavitation algo-

rithm for a one dimensional line contact. The

transience in the numerical solution is retained by

accounting for the squeeze film term in Reynolds’

equation under fixed loading conditions and varying

sliding motion. A sliding bearing rig is used to

measure friction and compare the results with the

prediction made using the approach highlighted

above. The numerical/experimental results show good

agreement.

Keywords Elastoplasticity � Elrod’s Cavitation

Algorithm � Boundary lubrication � Slider

bearing

Nomenclature

D Influence coefficient (–)

E* Reduced modulus of elasticity (Pa)

F Residual function (–)

H Non-dimensional elastic film shape (–)

HG Limiting average pressure (Pa)

J Jacobian matrix (–)

L Length of contact geometry (m)

N Number of grid points (–)

Rx Contact geometry equivalent curvature radius (m)

S Squeeze term (–)

Sy Yield strength (Pa)

Wh Hertzian load (N)

X Non-dimensional contact length domain (–)

Z Viscosity-pressure index (–)

ac Critical contact radius (m)

c Crown height (m)

d Gap between two rough surface reference

planes (m)

dAa Single asperity contact area (m2)

dAact Total asperity/Actual contact area (m2)

dAapp An element of apparent contact area (m2)

dd Deflection for a single asperity contact (m)

dfm Viscous friction for an element of apparent

contact area (N/m2)

dfb Boundary friction for an element of apparent

contact area (N/m2)
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dftot Total friction for an element of apparent

contact area (N/m2)

dPa Single asperity contact load (N)

dPc Critical contact load (N)

dWact Total asperity contact load (N)

g Switch function (–)

h Elastic film shape (m)

h0 Undeformed central lubricating film

thickness (m)

i, j Points along contact domain (–)

p Contact pressure (Pa)

pc Cavitation pressure (Pa)

s Initial contact profile (m)

t Time domain (s)

uav Lubricant entraining speed (m/s)

wp Asperity inteference (m)

x Contact length domain (m)

�z Non-dimensional individual asperity height (–)

z Individual asperity height (m)

a Viscosity coefficient (Pa1)

a0 Viscosity coefficient at p = 0 and 60 �C (Pa1)
�b Non-dimensional lubricant bulk modulus (–)

b Lubricant bulk modulus (Pa.s)

beq Equivalent asperity curvature radius (m)

d* Non-dimensional asperity deflection, dd/dc (–)

d Elastic deformation (m)

ic Critical deflection (m)

dt Deflection transition from elastic-

elastoplastic (m)

g Lubricant viscosity (Pa.s)

g0 Lubricant viscosity at p = 0 and 60 �C (Pa.s)

j Pressure coefficient for boundary shear

strength (–)

m Poisson’s ratio (–)

x Relaxation factor (–)

/0 Asperity distribution (–)

�qc Non-dimensional lubricant density at p = pc

and constant temperature (–)

q Lubricant density (kg/m3)

qc Lubricant density at p = pc and constant

temperature (kg/m3)

q0 Lubricant density at p = 0 and constant

temperature (kg/m3)

r RMS surface height (m)

s Lubricant shear stress (Pa)

s0 Eyring limiting shear stress (Pa)

h Fractional film content-Cavitation, if h\ 1.0

(–)

h Non-dimensional density-Full Film, if

h C 1.0 (–)

n Surface density of asperity peaks (–)

1 Introduction

A multi-scale physical approach is required to under-

stand the tribological characteristics of engineering

conjunctions such as cam-tappet and piston ring/liner

contacts. For example, in the piston ring/liner con-

junction, piston speed at macroscopic level dominates

the kinematics of the contact. The ring-liner conjunc-

tion is at microscopic level and ensures the formation

of a thin lubricant film, which for the most parts

inhibits direct contact of the surfaces and hence

reduces friction. However, the thickness of the

lubricant film formed depends on the kinematics of

the piston motion, leading to a multi-scale contact

problem. At low sliding speeds coupled with heavy

load, the ring/liner contact might even undergo mixed

lubrication (Fig. 1), inducing higher friction as a result

of direct surface asperity interactions.

The Stribeck curve only provides an indication of

the regime of lubrication, based upon the ratio of

lubricant film thickness to the asperity heights on the

counterface surfaces (Fig. 1). Evidently, in order to

predict friction between nominally lubricated sliding

surfaces, one must first be able to predict the lubricant

film thickness. The most commonly used approach is

to compute the film thickness and contact pressure

distribution through solution of Reynolds’ equation

[1] using the Swift-Stieber exit boundary conditions

[2, 3].

Fig. 1 Lubrication regimes for various engineering applica-

tions—Stribeck curve
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Since the inception of Reynolds’ equation [1] in

1886, various modifications have been proposed in

order to suit it to particular conditions or include

certain salient features of analysis. For instance,

Reynolds’ equation is adopted to include the influence

of two phase flow or cavity formation by Elrod [4].

Recently, Chong et al. [5] proposed a modified Elrod’s

cavitation algorithm to predict contact pressure and

film thickness along the piston ring/liner conjunction.

The model is extended for use in applications such as

transmission gear contact [6] and cam-tappet con-

junction [7]. Patir and Cheng [8, 9] also modified the

Reynolds’ equation for rough surfaces, taking into

consideration shear flow factors as a result of lubricant

entrainment across surface features. Rahmani et al.

[10], based on Patir and Cheng’s approach, proposed

an analytical solution to study the influence of surface

texturing on the friction of slider bearings. Their

approach is recently extended to predict friction along

the ring/liner conjunction [11].

Lubricant film thickness for typical engineering

applications, such as piston ring/liner conjunction, is

normally in the range of a few micrometers. At such

scale, engineering surfaces are rough. Randomly

distributed peaks (known as asperities) and valleys

combine to form the roughness of a surface. Along

mixed lubrication regime, the lubricant film thickness

is comparable to the height of these surface features.

Mechanisms contributing to friction include: (1)

viscous friction and (2) boundary friction. As the

contact tends to boundary interactions, the latter

becomes more significant. Greenwood and William-

son [12] proposed one of the earliest rough surface

contact models, valid for engineering applications and

for the fundamental theories of elastic contact and

friction. The model showed dependency of the contact

on the topography of the surface. Greenwood and

Tripp [13] demonstrated that an equivalent single

rough surface model can always be found, which

predicts the same behaviour as that of a two-rough

surface model (e.g. Greenwood and Williamson

approach [12]).

Regardless of the geometrical size of the contact,

the asperity contact area (summation of all contacting

asperities) is significantly smaller than the apparent

contact footprint, often introducing localised high

compressive stresses at each asperity pair contact. This

can induce asperity level yielding, possibly leading to

plastic deformation and wear. However, both the

rough surface models mentioned above assume elastic

Hertzian contact for asperity pairs, which might lead

to inaccuracies when predicting rough surface contact

characteristics.

Fuller and Tabor [14] proposed an alternative

rough surface contact model to account for adhesive

contact between asperities [using Johnson, Kendall

and Roberts’ (JKR) contact model [15]]. Based on

statistical representation of surface roughness,

Chang et al. [16] derived a friction model for rough

metallic surfaces taking into account surface adhe-

sion and also plasticity. The model better known as

the CEB model was later extended by Polycarpou

and Etsion [17] to include sub-boundary lubrication.

Using finite element analysis, Kogut and Etsion [18]

derived analytical expressions to describe the elas-

toplastic deformation of asperity pair interaction for

a Hertzian type contact. Their approach was

extended to include boundary adhesion [19] using

the DMT (Derjaguin et al. [20]) assumption. The

model assumes that adhesion forces may be signif-

icant with respect to the contact load in the elastic

region of deformation and also in the early stages of

elastoplastic behaviour. However, the model is

limited to the use for features of stiff materials

with sufficiently small curvature radii. In a later

study, Shi and Polycarpou [21] combined the

Maugis-Dugdale [22] adhesion model for elastic

region with the elasto-plastic adhesion model

together with the Lennard-Jones potential to con-

sider the existence of a thin layer of lubrication film

along rough surface interactions.

Jackson and Green [23] also proposed a set of

expressions to describe the elastoplastic deformation

of a sphere contacting a rigid semi-infinite flat plane.

Their model was developed in a manner which would

be useful for both macro-scale and also micro-scale

contacts. The von Mises criterion was used to describe

yielding of the material. The model embeds the

elastoplastic deformation of a single asperity pair

contact in the expressions which were eventually

derived. On the other hand, Green [24] and Vi-

jaywargiya and Green [25] studied the elastoplasticity

deformation of dry sliding cylindrical contacts. These

models could also be adapted for asperity level

contacts if necessary. Adapting the fractal approaches

proposed by Yan and Komvopoulos [26] and later

extended by Morrow and Lovell [27] for rough surface

adhesion, Chong et al. [28] applied the elastoplasticity
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deformation asperity model proposed by Jackson and

Green [23] to predict friction in fractal-represented

surfaces. They considered nano-scale wet asperity

interactions using a molecular level simulation via

statistical mechanics for idealised fluid molecules [29,

30].

From an experimental perspective, there are plenty

of ready made tribometers that can be used to measure

friction of sliding surfaces. These vary from a pin-on-

disk friction machine [31] to low frequency recipro-

cating wear testers [32], high frequency oscillatory

rubbing wear [32], Cameron-Plint T-77 [33], to name

but a few. Other authors have developed in-house rigs

to meet their specific requirements [34, 35], allowing

for a greater flexibility of use and development. It

seems appropriate, then, that a rig tailored to the

specific operating conditions of boundary friction had

to be developed.

As an initial approach to predict friction more

accurately, the current study proposes an integrated

modified Elrod’s algorithm with a modified Green-

wood and Tripp model for a line contact sliding

bearing configuration. The aim of the study is to

validate the friction computed, based upon the

proposed model using a precision sliding bearing

mechanism. The model predicts the thickness of the

lubricating film and also includes a modified elasto-

plasticity model for asperity interactions along rough

surfaces for the studied line contact problem, which

considers the transition of the asperity contact defor-

mation from elastic to elastoplastic and finally fully

plastic states.

2 Mathematical model

2.1 Contact conjunction

In this study, the shearing of the lubricant film in the

contact conjunction (Fig. 2) is predicted through a

simultaneous one-dimensional solution of Elrod’s

equation and the elastic film shape. The length-to-

width ratio of the experimental sliding strip is large,

thus a one-dimensional solution of Elrod’s equation

is assumed in the direction of the contact face-

width, x. Ignoring any side leakage of the lubricant

film normal to the direction of the entraining

motion, then [4]:

o

ox

qch3

g
gb

dh
ox

� �
¼ 12

o

ox
hqch uavð Þ½ � þ d

dt
hqchð Þ

� �

ð1Þ

where d(hqc h)/dt refers to the squeeze film term,

making for a transient analysis of the studied problem.

The instantaneous contact kinematics is due to the

speed of entraining motion, uav and the squeeze film

velocity, dh/dt. The time history of any formed

lubricant film is, therefore, retained. The inclusion of

this term also takes into account the vertical floatation

of the ring strip, as described in Sect. 3.

To include the effect of cavitation at the trailing

edge of the contact, Elrod [4] defined the contact

pressure, p as a result of a fluid film, comprising some

liquid lubricant content, h. The implication in Elrods

definition is that some fraction of the lubricant film

content may be as a result of vapour or gaseous

medium below the lubricant vaporisation/cavitation

pressure, pc. Therefore,

p ¼ gb ln hþ pc ð2Þ

with b being the lubricant bulk modulus. The term g is

the switching term and can be expressed as:

g ¼ 1) Full film, if h� 1

0) Cavitation, if 0\h\1

�
ð3Þ

when 0 \ h\ 1, the switching term g = 0, suggest-

ing a two-phase flow below cavitation pressure.

Fig. 2 Sliding contact
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The elastic film shape, h is:

hðxÞ ¼ ho þ sðxÞ ð4Þ
With the initial contact profile, s(x) being defined as:

sðxÞ ¼ cx2

ðL=2Þ2
ð5Þ

The lubricant viscosity–pressure variation can be

predicted using the Roelands’ equation [36]:

g ¼ goea ð6Þ

where a ¼ ðln go þ 9:67Þf½1þ p=ð1:98� 108Þ�Z �
1g=p and Z ¼ ao=½5:1� 10�9ðln go þ 9:67Þ�:

Lubricant density variation with contact pressure,

p is given by Dowson and Higginson [37] as:

q ¼ qo 1þ 0:6� 10�9p

1þ 1:7� 10�9p

� �
ð7Þ

The combined solution of Eqs. (1–7), described

above, determines the contact pressure distribution,

p(x, t) at any instant time. The solution clearly shows

that along the cavitation region (g = 0), the Poiseuille

flow term on the left hand side of the Eq. (1)

diminishes. Therefore, the mass flow rate through

the cavitation region is a balance between the Couette

flow as a result of lubricant film entrainment and any

mutual approach or separation of contiguous surfaces.

2.2 Friction model

Engineering surfaces are microscopically rough, consist-

ing of peaks (also known as asperities) and valleys.

During contact, both surfaces of the studied conjunction

are rough. Viscous friction dominates when the lubricant

film is thick. However, when the lubricant film is thin and

comparable to the surface roughness, asperity interaction

can no longer be avoided. Hence, this would lead to

boundary friction. As a result, the total friction for an

element of apparent contact area, dAapp (=L.dx) is as:

dftot ¼ dfm þ dfb ð8Þ

with dfb referring to the boundary friction component

and dfm as the viscous friction component, the viscous

friction, dfm for a Newtonian fluid can be computed as:

dfm ¼ s dAapp � dAa

� 	
ð9Þ

where dAapp is the apparent contact area, dAa is the

actual contact area and s = guav/h(x).

Boundary friction arises from shearing of a very

thin film, which prevails along contacting asperity

tips. This molecular thin film is non-Newtonian and

can be predicted using the classical Eyring thermal-

activation model [38]. Therefore, the boundary fric-

tion, dfb can be expressed as:

dfb ¼ dAact so þ j
dWact

dAact

� �
ð10Þ

where so referring to the Eyring shear stress of the

lubricant, j the pressure coefficient for boundary shear

strength of the bounding surfaces and dWact is the

share of elemental contact load carried by the

asperities.

Greenwood and Tripp [13] described the load

carried by the asperities along a rough surface contact,

dWact and the actual contact area, dAact as

dWact dð Þ ¼ n:dAapp

Z1

d

dPo z� dð Þ/o zð Þdz ð11Þ

dAact dð Þ ¼ n:dAapp

Z1

d

dAo z� dð Þ/o zð Þdz ð12Þ

where the term /o refers to the asperity distribution

and is described as follow:

/o zð Þ ¼ 1ffiffiffiffiffiffi
2p
p exp � s2

2

� �
ð13Þ

The terms dPo and dAo are

dPo wp

� 	
¼ 2pn

Z1

0

dPa wp � 2f ðr=2Þ; r
� 	

r:dr ð14Þ

dAo wp

� 	
¼ 2pn

Z1

0

dAa wp � 2f ðr=2Þ; r
� 	

r:dr ð15Þ

with wp being the asperity interference as shown in

Fig. 3.

In Eqs. (14) and (15), dPa and dAa refer to the single

asperity pair load carrying capacity and the actual

asperity-pair contact area. Assuming that the asperity

contact is fully elastic, Greenwood and Tripp [13]

applied the Hertzian theory to compute these two

parameters. They also considered an elastic-fully

plastic model to describe plastic deformation of

asperities in contact. However, in this study, the terms

Meccanica (2014) 49:1177–1191 1181

123



dPa and dAa are predicted based on the approach

proposed by Chong et al. [28] using the elastoplastic-

ity model of Jackson and Green [23]. The model

considers the elastoplasticity transition of contact

deformation instead of assuming an elastic then fully

plastic asperity deformation.

According to Chong et al. [28], when the norma-

lised deflection dd/dc is less than the deflection

transition from elastic to elastoplastic, dt, Hertzian

theory applies for both terms of dPa and dAa (Fig. 4).

dPa wð Þ ¼ 4

3
E� beq

� 	1=2
ddð Þ3=2 ð16Þ

dAa wð Þ ¼ pbeqdd ð17Þ

when dd/dc C dt, the equations proposed by Jackson

and Green [23] are applied to describe the load

carrying capacity, dPa and the actual contact area, dAa

of the asperity interaction.

dPa ¼ dPc

e�0:25 d�ð Þ5=12ðd�Þ3=2

þ 4HG

CSy
1� e�0:04 d�ð Þ5=9
h i

d�

( )
ð18Þ

dAa ¼ pa2
cdt

d�

dtdc

� �Bþ1

ð19Þ

The coefficients used in Eqs. (16) to (19) are

explained and given in Appendix (Table 1).

From the modified Greenwood and Tripp model

described above, the total friction, ftot along the

contact can be computed as

ftot ¼ Ring length�
ZL=2

�L=2

dftotdx ð20Þ

Figure 3 also shows that under certain conditions,

asperities might come into contact along the shoulders.

The asperities given by Greenwood and Tripps [13]

approach and also in this paper are assumed to be

hemispherical, having similar curvature radii. Based

on the assumption, initial contact will occur midway

between the centres of opposing asperities. For the

misaligned asperities, which might interact along the

shoulders, the normal forces will not be acting

vertically and a tangential component will exist.

However, according to Greenwood and Tripp [13],

the slopes of asperities along physical rough surfaces

are so small that the errors are miniscule and can be

ignored. Hence, this leads to the assumption that all

asperities will be normally loaded.

2.3 Numerical procedure

2.3.1 Contact conjunction

The transient contact pressure distribution, p(x, t) and

the corresponding lubricant film thickness, h(x, t) are

first computed. Applying the discretisation by Chong

et al. [5], Eq. (1) is written as:

o

oX

�qcH3

�g
ogðh� 1Þ

oX

� �
¼ w

o

oX
h�qcH½ � þ Rx

b
S h�qcð Þ

� �

ð21Þ

where gdh=dx ¼ dgðh� 1Þ=dx;w ¼ 12 Rx=bð Þ3=�b
and S ¼ dh=dtð Þ=uav:

Reference 
plane 1

Reference 
plane 2

d
z1

z2

r

wp=d-z1-z2

2

1

Fig. 3 Contact of two rough surfaces

Fig. 4 Asperity deflection considering elastoplasticity

deformation
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Equation (21) is then solved using the finite

difference scheme suggested by Jalali et al. [39].

The Poiseuille term (left hand side of Eq. 21) is

discretized using central finite differencing. This

provides second order accuracy, as the solution along

the full film region must consider all the neighbouring

nodes. For the Couette term, which is predominant in

the the cavitation region (right hand side of Eq. 21), a

backward differencing scheme with first order accu-

racy is deployed.

The numerical algorithm is divided into two

consecutive loops (a pressure and a load loop). The

pressure loop uses the iterative approach proposed by

Jalali et al. [39] for integrating Reynolds equation as a

starting point. However, the convergence used in this

study is focused on h and the lubricant pressure is

computed after the convergence is achieved. The

Jacobian matrix, J for this case is expressed as:

Ji;j ¼
oFi

o½gh�j
ð22Þ

where Fi is the residual term (see Appendix 1), and

i, j are grid points along the contact width. The value

of hi
k at iteration k can be computed as:

hk
i ¼ hk�1

i þ xDhk
i ð23Þ

where x is the relaxation factor and Dhk
i ¼ �ðFi

þJi;i�1Dhk
i�1 þ Ji;iþ1Dhk

iþ1Þ=Ji;i: The convergency cri-

terion for h is:
P

hk
i � hk�1

i

� 	0:5
=N� 1:0� 10�7;

where N is the number of mesh points (N = 200). In

the load loop the contact load is compared with the

reference load. The convergence criterion is j
R

Pdx�
W j= W � 0:01:

2.4 Friction model

The integrals in Eqs. (11) and (12) of the modified

Greenwood and Tripp friction model are improper

integrals. Therefore, to solve these equations using the

Gauss–Legendre quadrature, the limits of the integral

are modified as follow

dWa dð Þ ¼ g:dAapp

ð1� �zÞ2
Z1

0

dPo

�z

1� �z

� �
/o d þ �z

1� �z

� �
d�z

ð24Þ

dAa dð Þ ¼ g:dAapp

ð1� �zÞ2
Z1

0

dAo

�z

1� �z

� �
/o d þ �z

1� �z

� �
d�z

ð25Þ

where z ¼ d þ �z=ð1� �zÞ:
The integrals in Eqs. (14) and (15) describing both

terms dPo and dAo have infinite intervals. Hence, these

are solved numerically using the Gauss–Laguerre

quadrature. The choice for solving the modified

Greenwood and Tripp friction model numerically

instead of finding an exact solution is to ensure

flexibility in the use of desired single asperity pair

interaction models in order to compute dPa and dAa.

3 Experimental procedures

3.1 Precision slider bearing mechanism

The experimental techniques used comprise of a

purpose built friction measurement rig. The reason

for building this rig is twofold. The first aspect is for

the validation of the presented friction. The second

area of interest is to study various surface textures and

their effect on friction reduction [35]. Other studies

using similar rigs are also available in literature, such

as the work by Ryk and Etsion [40]. All the

experimental results shown in this paper correspond

to the validation of the model only.

Figure 5 presents the test rig as a series of schematic,

not to scale drawings. Figure 5a is a top view of the

aforementioned rig. It attempts to describe the test bed in

its most generic form. The optical table where the rig is

placed is shown, together with the control mechanism

(CPU). The control and data acquisition systems are

both written within the Labview environment.

A National Instruments DAQ-card is used to send and

receive data from the CPU to the rig. The encoder placed

at the end of the lead screw serves two main functions:

(1) acts as a feedback to the control system and (2)

synchronizes the data acquisition, saving friction and

speed on an encoder count base. A proportional-

integral-derivative (PID) controller was introduced in

an attempt to minimize response times. The direction of

motion is controlled by a digital channel.

The speed is accurately captured with a two-beam

laser vibrometer and the friction values are measured

Meccanica (2014) 49:1177–1191 1183
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with the aid of two load sensors. These are located at

both ends of the substrate plate and pre-loaded to

eliminate any possible excess clearances. The test

sample is rigidly clamped onto the substrate plate. The

reciprocating slider part holds the flat test ring.

Figure 5b shows a side view of the assembly. In this

image, the test sample and substrate plates are

presented in a clearer manner, together with their

corresponding load sensors. Also, the loading mech-

anism is introduced. To further understand this

function, one should refer to Fig. 5c, where a detailed

view of the reciprocating slider/ring holder is shown.

The test ring is attached to the floating ring holder. The

ring holder is essentially a cylinder inserted onto the

reciprocating slider. It is only allowed to float in the

vertical direction; all other degrees of freedom are

constrained. In this manner, a load can be applied,

retaining the fundamental squeeze action.

The bottom plate tested is made of EN 14 steel and

ground to an Rq value of 0.29 lm, with a flatness of

1 lm along the test area (26 9 35 mm2). The coun-

terpart sliding strip is made of hardened 440 C

stainless steel, with a hardness of 54 Rockwell C. A

parabolic profile of crown height radius 31 mm was

then cylindrically ground on the face-width of the

strip, resembling that of a compression ring in an

Fig. 5 Rig description,

schematically presented. a
Top view, b side view and c
detail of ring holder and

loading mechanism front

view
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internal combustion engine piston. The roughness

value of the strips profile was measured to be 0.18 lm

(Rq). The overall size of the strip is set to

1 9 31 9 17 mm, where the profile was introduced

along the 1 9 31 mm edge (contact strip).

4 Results and discussions

Figure 6 illustrates the multi-scale physical approach

applied in this study to predict the friction for a line

contact problem. The proposed numerical model

requires surface topographical parameters measured

using both an atomic force microscope (AFM) and the

Alicona infinite focus microscope. The friction pre-

dicted using the model is then compared with exper-

imentally measured values for validation.

4.1 Modified Greenwood and Tripp friction model

Before proceeding to predict friction for a line contact

slider bearing problem, the study first looks at the

elastoplastic single asperity friction model. Figure 7a

shows the actual contact area variation as a function of

contact load for a single asperity contact. It is observed

that with the initiation of plasticity, within the asperity

contact (dd/dc [ dt), an increase in contact load

produces a larger contact area as compared with an

assumed elastic contact. This contact characteristic

reflects the decrease in load carrying capacity of the

asperity contact once plasticity is initiated.

By distributing the single asperity contact along a

rough surface using Greenwood and Tripp’s approach

for rough surfaces, Fig. 7b illustrates the change in the

actual contact area with an increase in the applied load.

The contact area predicted for the rough surface

contact is larger for the elastoplastic model than that of

an elastic model, which is based on Hertzian theory.

This shows that the elastic deformation assumption

underestimates the contact area for a given applied

load when plasticity is initiated. Hence, this would

produce inaccuracies in the prediction of the frictional

characteristics along the rough surface contact. Fig-

ure 7c shows the contact area bearing ratio (actual

contact area/apparent contact area) with respect to

decreasing surface separation. Again, an elastic

approach seems to be misleading, since it over-

estimates the separation of bodies; leading to an

under-estimation of friction.

To predict friction for an element of a rough

surface, an experimental value for the term j, refer-

ring to the pressure coefficient for boundary shear

strength of the bounding surfaces is required (Eq. 10).

This is obtained empirically using the AFM by

applying the lateral force microscopy (LFM)

approach. The tip radius for the silicon nitride tip

(DNP-10) is small (&60 nm) as compared to the

surface roughness of the test plate (&0.33 lm).

Hence, this reduces the influence of surface roughness

(friction arising predominantly as a result of boundary

interaction) when measuring the friction using the

AFM, leading to a more accurate measurement for the

j term.

In this study, the slider rig represents a realistic

contact while the AFM tip resembles an asperity

contact. Hence, the Veeco 3.5 nano scope AFM with a

silicon nitride tip (DNP-10) is used to measure the

pressure coefficient, j on the test plate. Calibration of

Fig. 6 Analysis approach—flow diagram
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the tip is conducted using a silicon wafer by adopting

the approach proposed by Buenviaje et al. [41]. To

take into account the influence of the lubricant shear

along asperity interactions, it is appropriate to measure

the pressure coefficient of the boundary shear strength

in a lubricated condition using the fluid imaging

approach for the AFM. The friction force obtained

from the AFM measurements at different applied

loads are plotted in Fig. 8. The slope of the friction-

load curve gives the value of j required to predict the

boundary friction. One thing to note is that the

intersection of the friction-load curve is neglected

when defining the pressure coefficient, j. This is

because the intersection magnitude in nano-metric

range will be minute compared with the applied load

and is mathematically deemed to be negligible.

4.2 Numerical simulation and experimental

results comparison

Using the measured contact parameters in Appendix

(Table 1), the sliding speed profiles for the simulated

contact as a function of encoder count, under three

separate sliding conditions are shown in Fig. 9. These

are used as input for the contact kinematics in the

numerical model, simulating the real time experiment

conditions of the contact.

Elrod’s equation is solved numerically with an

initially assumed elastic Greenwood and Tripp friction

model. Figure 10a shows the pressure distribution of

the contact peaks at different magnitudes for varying

sliding speed profiles (along location X in Fig. 9).

The reduction in peak pressure is a result of the

increasing squeeze film effect with higher entraining

motion of the contact, leading to a thicker lubricant

film formation, hence reducing boundary friction of

the contact, which is reflected in Fig. 10b, c. In them,

the boundary shear component decreases significantly,
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while viscous shear increases with entraining speed of

the contact. One thing to note is that in the cavitation

region, rupture of fluid film occurs, leading to a

discontinuity in viscous shear (Fig. 10b).

By plotting the friction coefficient as a function of

the Stribeck oil film parameter, ks in Fig. 11, the

simulated sliding speed profiles are observed to shift

from mixed towards boundary lubrication regime as

the speed decreases. The shift towards boundary

lubrication is expected, because the decreasing sliding

speed reduces the entrainment of lubricant into the

contact, leading to a thinner lubricant film. By varying

the speed, it is noted that a thicker oil film, enhancing

the effect of viscous friction, may govern the con-

junctional behaviour. Therefore, a much slower speed

profile is preferred, where the fluid film formation is

assessed by means of Elrod’s cavitation algorithm,

retaining the effect of elastoplasticity. The validation

for the new modified Greenwood and Tripp model,

presented here, is solely conducted on speed profile A,

where a boundary regime of lubrication is clearly

attained.

Figure 12a compares the predicted friction using

the modified Elrod and the Reynolds’ solution, based

on the sliding speed profile A, with the measured

friction values. It is observed that by assuming elastic

deformation of asperities, the predicted friction by

both methods (the modified Elrod and Reynolds’

solution) is lower than that measured. By plotting the

friction coefficient as a function of the Stribeck oil film

parameter, ks, the experiment conducted using the

precision slider mechanism is shown to be well into

the boundary lubrication regime (Fig. 12b). This

shows that boundary interactions of asperities domi-

nate the underlying friction mechanism in the studied

conjunction. Figure 12c plots the friction coefficient
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against the Stribeck number, comparing the numerical

results with the experimental measurement.

Figure 12b clearly shows that the contact resides in

boundary lubrication regime and it seems crucial to be

able to evaluate the influence of elastoplastic defor-

mation of the interacting asperities. Considering only

the modified Elrod’s solution and comparing the

numerical prediction to the measured data, Fig. 13a

shows that the friction force given by the elastoplastic

model correlates reasonably well with the experimen-

tal values (particularly if compared to the elastic

model). This indicates that elastoplastic deformation

of interacting asperities plays a significant role in the

frictional characteristics of the studied tribological

conjunction. Figure 13b illustrates the friction coeffi-

cient in the function of the Stribeck number comparing

the experimental result with the numerical ones. The

boundary shear stress for both elastic and elastoplastic

asperity deformation are shown in Fig. 13c. The

viscous shear predicted for both friction models is the

same, because the minimum film thickness given

along location X remains unaltered. However, when

elastoplasticity is considered, the boundary shear

predicted increases when compared with the case of

an elastic contact friction model. This is because in the

operating condition investigated here, plasticity is

initiated, giving a larger contact area, leading to higher

contact friction. This observation is reinforced through

the measured topography for the unworn and worn

surfaces (Fig. 14). It is noted that in the worn surface,
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the asperity peaks and valleys have been smoothened,

indicating a high boundary interaction of contiguous

solids.

5 Conclusion

The work presented in this paper highlights the

necessity of including an accurate elastoplastic model

of asperity interactions. Otherwise, an underestima-

tion of real contact area of lubricated conjunctions

operating within a boundary regime of lubrication may

occur. The modified Greenwood and Tripp solution

has been validated against experimentally acquired

friction.

The experimental results have not only been useful

to validate the numerical model, but they have also

shown significant plastic deformation of asperities. A

purely elastic (Hertzian type) model would not be able

to predict this behaviour. It is also important to note

that the introduction of this model provides the

opportunity of extending the work for prediction of

wear.
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Appendix

Input parameters

See Appendix Table 1.
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Elastoplasticity model
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