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Abstract The paper presents the author’s method of
numerical modelling multi-body systems of a rail ve-
hicle class. The method exploits dynamics of relative
motion, which describes perturbations in general mo-
tion of the vehicle. Quite a few original elements are
included in the author’s approach. This approach is
compared to other possibilities of describing dynam-
ics of multi-body systems in relative motion. The au-
thor’s method makes use of Kane’s equations that are
opposed in the paper to the Newton-Euler approach
that is used most often in the analogous applications.
Numerical implementation of the theoretical results is
also presented and a sample of the corresponding nu-
merical analysis. Both these show the particular way to
model dynamics of such systems efficiently and what
consequences might be of the simplification in the de-
scription of relative motion. This appears to be more
important than it is usually believed, particularly when
accelerating or breaking the vehicle.
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1 Introduction

This paper concerns the dynamics of discrete mechan-
ical systems in relative motion. The methods of mod-
elling being discussed arise from needs of the rail ve-
hicle dynamics. These needs come out from descrip-
tion of the dynamics relative to the frames moving
along track centre line, from significant dimension of
the vehicle-track systems, and from need of automatic
generation of equations of motion (AGEM) for such
systems. Recently many issues of the rail vehicle dy-
namics can be resolved with the commercial software
packages as ADAMS, MEDYNA, SIMPACK, VAM-
PIRE and many others [1, 2] that build equations of
motion automatically. Therefore many people think
wrongly that there is no need to build such equations
and the corresponding software individually and hence
this issue became out of date. In the authors opinion
most of the engineering problems can be treated in
this way, while many advanced research problems of
the rail vehicle dynamics cannot. This is mainly be-
cause of the so called black-box problem that makes
it impossible to arbitrary user to get the insight into
the code of the package and to make direct changes
in this code. In research such possibility is the neces-
sity very often. Consequently, there is no any problem
to cite very many recent publications were their au-
thors needed to build their own models and simulation
software in order to perform their studies, e.g. [3–18].
This encourages the author of this paper to present the
method he uses.
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Fig. 1 Idea of an open loop multi-body system S

General review of options for the description of
multi-body system (MBS) in relative motion is made
in the paper. It makes the background for present-
ing the author’s own method. This method is based
on Kane’s equations [19–21], in the version adapted
to description of relative motion. It is opposed to
Newton-Euler formalism (e.g. [22, 23]) used most of-
ten in computer applications of such type [24]. The
considerations are of general character as long as pos-
sible. At the advanced stage however, it is possible
to increase numerical efficiency in applications spe-
cialised to rail vehicles by exploitation of the specific
features of such systems. Next the author’s software
for computer generation of equations of motion and
example of the numerical analysis with its use are pre-
sented.

In the present paper we treat in fact the systems
of an open structure [25–28]. Example of such sys-
tem S is shown in Fig. 1. It is composed of n bod-
ies Bj of mass centres Cj (where j = 1, . . . , n) and
interconnecting elements. It is assumed for the sys-
tems of closed structure, which sometimes correspond
to rail vehicle systems, that they can be represented
by the appropriate open systems, however completed
with the so called closing constraints [25, 27, 28]. We
also confine ourselves to systems of rigid bodies, leav-
ing out of consideration systems with the flexible bod-
ies [20, 27, 29]. The systems composed of rigid bodies
(discrete systems) are those most often used in mod-
elling railway vehicle motion (dynamics). Quite often
also the track model supplemented to vehicle model

in order to consider both systems jointly is of discrete
type.

The aim of current paper is first of all to represent
the methods used by present author to model the sys-
tems of rail vehicle or rail vehicle-track class. These
methods originate in dynamics of relative motion, of
the bases known. On the other hand, however, the set
of presented methods includes many original compo-
nents by present author. These original constituents
can be presented in the points as follows.

− Derived and used in the method the general equa-
tions of relative motion for MBS, which are based
on the Kane’s equations concept. They repre-
sent the Kane’s equations adapted to description
of multi-body systems in the moving reference
frames.

− Derived and used in the method the equations of
relative motion based on Huston’s results, suitable
in the AGEM approach. Except extension of these
results for dynamics of relative motion the exten-
sion from scleronomic (or free) systems to rheo-
nomic systems is done through that derivation.

− Derived and used in the method the general for-
mulae that enable to build the adapted equations
for holonomic and non-holonomic system, based
on the equations for the free system. These formu-
lae can also be applied selectively to particular type
of the forces (inertia, external, and imaginary ones)
rather than to the whole equations. It was shown
that such approach is particularly effective for the
systems of rail vehicle class.

− Formulated and applied the general method for de-
termining the components of linear and angular ve-
locities of transportation. These kinematical quan-
tities are indispensable when considering mechani-
cal systems in motion relative to moving reference
systems. Besides, this method was applied to sev-
eral shapes of transition curves (TCs) for which the
corresponding components were determined. The
circular curve (CC) and straight track (ST) are spe-
cial cases of the 3-d curve (TC with its supereleva-
tion ramp) and their components were also deter-
mined.

− Numerical implementation of theoretical results
listed above in the simulation software. Numerical
implementations represent the software for partic-
ular 2-axle non-traction vehicles and the software
in AGEM’s type where structure and dimension of
the vehicle model can change.
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− Extensive verification of the method through simu-
lation studies with the software as described above.
Number of the problems studied in such a way runs
into tens. Their most recent examples are given fur-
ther on.

In most cases the original elements specified above
were discussed individually. When the author hap-
pened to discuss some of them together they were pre-
sented partly at most. In the configuration presented in
this article they are presented for the first time. Such
joint presentation makes a new contribution because of
two facts. First, it is impossible to identify the method
by present author basing on very many sources on
quite different topics. One should not expect the reader
to read all these sources and combine them in the sin-
gle coherent method. Note that these sources: treat par-
ticular issues in detail (comprehensively), some are in
the author’s native language, and many do not refer to
the complete modelling method as presented here at
all. Second, here the information is carefully selected.
Thanks to it the modelling method as a whole, rather
than comprehensive details of the particular issues, is
presented to the reader.

The advantage of the presented material is its com-
pleteness. Both the dynamical and kinematical issues
of modelling the systems in view are treated in present
article. This gives a chance for the reader to eventually
adopt (become familiar with) the presented methods,
basing on the single publication. In fact, the kinemati-
cal part of the considerations gives a chance to use the
method in practice. Without presenting it, the really
objective assessment of the discussed methods would
be doubtful. Therefore, presentation of the method in
the single source is one of this paper’s aims.

2 Methods describing dynamics of multi-body
systems in relative motion and their connection
with railway vehicle dynamics

In spite of rough similarity of rail vehicle to other mov-
ing objects, such as the rest of vehicles (e.g. road and
off-road ones), airplanes and so on, two specific fea-
tures distinguish its dynamics. The first one is descrip-
tion of phenomena in wheel-rail contact. The methods
of that description are useful nowhere else. Therefore,
if one wants the model and software to cover rail ve-
hicles then one has to supplement more versatile el-
ements with the specific ability of wheel-rail contact
description.

Fig. 2 System S of bodies in relative motion

The second distinguishing feature concerns the
subject being considered in rail vehicle dynamics.
Contrary to other objects, the subject for considera-
tions is rarely absolute motion in relation to the Earth
(i.e. relative to system A in Fig. 2). Here, there is no
selection of motion trajectory or its freedom, as for
motor cars on road or airplanes in space respectively,
but there is the motion predefined in advance by the
existing shape of the track. Thus, most often one is
not interested in the known predefined motion (called
the basic one). Instead he is interested in the perturba-
tions of some ideal motion (basic motion) along track
centre line. If reference systems in type of A′ (Fig. 2)
follow the basic motion, then description of motion in
relation to these systems is actually description of the
perturbations (vehicle oscillations) [16, 22, 30].

Figure 2 represents the same as in Fig. 1 system
S of n rigid bodies Bj , however with the intercon-
necting elements omitted just to reduce details num-
ber. The OXYZ co-ordinate system denoted by A is the
fixed (absolute) system. The systems O1j xyz denoted
by A′

j represent reference systems moving along track
centre line (or trajectories parallel to it), which corre-
spond to particular bodies Bj (j = 1, . . . , n). In case
of general body Bj the subscript j can alternatively be
omitted for convenience. Note also that there is no ab-
solute need for each body Bj to have its own moving
reference system A′

j . In general, the bodies can also
share them quite arbitrarily if it is eventually useful.
The vectors rj , r ′

j , and ro1j represent the radius vec-
tors of mass centres Cj in A and in A′, and origin O1j

of A′ in A, respectively.
Description of motion in the systems moving along

track centre line, that is a space curve in general, gen-
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erates some difficulties in comparison to description in
the fixed (inertial) systems. In the most general view
there are three possibilities of describing the perturba-
tions understood as above, which are in one’s disposal
and in practical use. And so, description of motion
in the (absolute) reference system is possible. Then,
however, one needs possibility to deduct given basic
motion (transportation) from absolute motion to de-
termine the perturbations. Alternatively, the dynamics
of an object can be directly the dynamics of relative
motion [22, 30, 31], i.e. in moving (non-inertial) refer-
ence systems. Except the above two possibilities there
exists also the third one. Here, equations describe ab-
solute motion, while co-ordinates taken (at least some)
refer to motion in relation to moving reference frames.
It is obvious that differently constructed equations cor-
respond to these three possibilities [31].

Possibility 1 Co-ordinates relative to inertial refer-
ence system in type of A (Fig. 2) and any formalism
valid for motion relative to A (absolute motion).

f dB = f dZ ⇒ {x = x(t), ẋ = ẋ(t)}
⇒ {x′ = x − s(t), ẋ′ = ẋ − v(t)} (1)

where: f d—operator representing any formalism;
B—inertia forces of motion in A; Z—external forces;
x, ẋ—co-ordinates and velocities, respectively; u(t),
v(t), w(t)—given functions of time representing dis-
placements, velocities, and accelerations of transporta-
tion, i.e. of A′ relative to A.

Possibility 2 Co-ordinates relative to non-inertial ref-
erence system in type of A′ (Fig. 2) and any formalism
adapted to description in A′ (direct methods of the dy-
namics of relative motion).

f dB′ = f dZ + fpP(v,w)

⇒ {x′ = x′(t), ẋ′ = ẋ′(t)} (2)

where: B′—inertia forces in motion relative to A′; P—
imaginary forces (inertia forces arising from and de-
pending on the transportation); fp—imaginary forces
operator, appropriate for selected formalism.

Possibility 3 Co-ordinates relative to A′, as well as
any formalism valid in A. In practice it is variational

principle or formalism directly based on it.

f zB = f zZ
x = x′ + s(t)

ẋ = ẋ′ + v(t)

ẍ = ẍ′ + w(t)

⎫
⎪⎪⎬

⎪⎪⎭

⇒ {x = x(t), ẋ = ẋ(t)}
{x′ = x′(t), ẋ′ = ẋ′(t)} (3)

where f z—operator for variational principle.

As (1)–(3) are recorded in the most general form
possible, thus their deeper discussion is a must. Let us
start it with the equalities on the very left-hand sides of
(1)–(3). In fact they represent dynamical equations of
motion. In case of (3) equations of motion are supple-
mented with the algebraic kinematical relations. They
relate absolute and relative variables (displacements,
velocities and accelerations). These kinematical rela-
tions must be substituted into the differential equa-
tions in order to solve them. The mentioned equations
of motion can be either vectorial or scalar (matrix) in
their form. The vectorial equations have to be trans-
formed into the scalar ones, when one is going to solve
them with respect to the co-ordinates and velocities
adopted. Obviously, the scalar equations take a form
of the second order ordinary differential equations.

Now let us discuss the braces on right-hand sides of
the equations of motion (after the arrows). They repre-
sent both the linear and the angular direct solutions of
the equations of motion. These are displacements (co-
ordinates) and velocities, relative to inertial (OXYZ)
or/and to non-inertial (O1j xyz) systems. In case of (1)
the direct solution x(t), ẋ(t) is further processed in or-
der to get relative displacements (co-ordinates) x′(t)
and velocities ẋ′(t). One can note that the same kine-
matical relations as those used in (3) enable to do it.
Unlike (1), in case of (2) and (3) relative co-ordinates
x′(t) and velocities ẋ′(t) are the direct solution of the
equations of motion.

Third, the differential equations have got typical
physical interpretation of the dynamical equations
of motion. This becomes obvious when meaning of
forces B, B′, Z and P is taken into account. As ex-
plained above the first two represent inertia forces, the
third external forces, and the last one imaginary forces.
The operators f d , fp and f z do not change that inter-
pretation. Just mentioned operators indicate that men-
tioned forces must be expressed in accelerations, ve-
locities, and co-ordinates adopted in accordance with
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the formalism chosen. In particular, these could be
Cartesian co-ordinates, generalised co-ordinates, gen-
eralised velocities, quasi-velocities, and so on. The
general form of formulae (1)–(3) makes the equations
of motion valid for both unconstrained and constrained
systems. When the constraints exist in the system, then
operators f d , fp and f z represent also the operations
necessary to take account of them, appropriate for the
formalism in use. These operations are quite typical
(identical with those for the absolute motion analysis)
and will be explained further on, when example equa-
tions of motion are presented. Then information on
parameters the forces B, B′, P and Z depend on is also
given.

It is rather clear that some formalisms are better and
some worse suited to the roles corresponding to Pos-
sibilities 1–3. The literature analysis shows that num-
ber of applications (numerical implementations) in the
particular roles is quite different and their type as well.
These problems are continued in the next subsection
and at the beginning of Sect. 3.

2.1 Application of the methods based on equations of
absolute motion

Current subsection refers to application of Possibili-
ties 1 and 3 formulated above. Note, that for both cases
equations of motion, precisely their initial forms re-
spectively in (1) and (3), are the same. Substantial dif-
ferences exist however, that we treat below.

Within Possibility 1, the equations of motion are
solved first and next deduction of functions defining
transportation s(t), v(t) and w(t) from the solution is
made. As an effect we get a chance to determine co-
ordinates, velocities, and even accelerations in relation
to moving reference systems. Such procedure does not
find many supporters and is the most rare in applica-
tions concerning rail vehicle systems. The examples
can be found in [1, 32]. It is like that probably because
the co-ordinates and velocities we obtain directly from
integration of the equations are not those rail vehicle
dynamics is interested in. Secondly, it seems that such
way of obtaining the co-ordinates and velocities can
lead to the biggest errors. The cause could be very big
possible difference in values of co-ordinates and ve-
locities in absolute (inertial) and relative (non-inertial)
systems.

Within Possibility 3, prior the equations of motion
are solved, relationships linking up absolute and rel-
ative quantities through functions s(t), v(t) and w(t)

are introduced into some of these equations. The equa-
tions being subject to such operation become equa-
tions of relative motion. They are not, however, gen-
eral equations of relative motion with terms depen-
dent on transportation explicitly recorded (separated),
as it is in (2). They are valid for the particular case
only, defined with the given s(t), v(t), w(t) functions.
Each time these functions change, the equation must
be build from the beginning and the absolute motion
determined. It is some disadvantage of this method ad-
ditionally intensified if one is interested in the easy
determination of imaginary forces (for instance cen-
trifugal ones) and moments. On the other hand, the
advantage here is identical initial form of the equa-
tions related to absolute and relative motion. This ad-
vantage manifests especially when we need to anal-
yse systems where partially absolute and partially rel-
ative motions are of interest. Some versatility visible
here is one of the reasons for use of Possibility 3 by
many MBS formalisms exploited in commercial pack-
ages that are capable of analysing relative motion, e.g.
[22, 25, 33–35].

At the end note that there are the sources where in-
terest in motion relative to the track-based moving ref-
erence frames is expressed, nevertheless no particular
method of the description is chosen, e.g. [36].

2.2 The methods based on equations of relative
motion represented in literature

Current subsection is a review for the literature exam-
ples of usage of Possibility 2 formulated at the begin-
ning of Sect. 2. No works by the author of present arti-
cle are embodied, however. And so, in the early mono-
graphic works treating MBS formalisms, e.g. [25, 30],
the starting point for the equations of relative motion
are vectorial equations for a single free rigid body. Let
us exploit their form related to [37], however exactly
as it is presented in [38].

ma′
C = RC − mao1 − mε × r ′

C

− mω × (ω × r ′
C) − 2mω × v′

C (4)

Jε′ + ω′ × Jω′ = T C − Jε − ω × Jω

− 2ω′ × (J − 0.5ϑE)ω (5)

where: r ′
C—radius vector of mass centre C of body

in O1xyz system; m, J—body mass and inertia ten-
sor with respect to mass centre C; v′

C , a′
C—velocity
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and acceleration of C in relative motion (relative to
O1xyz); ω′, ε′—body’s angular velocity and acceler-
ation in relative motion; ao1, ω, ε, RC , T C—absolute
acceleration of origin O1 (relative to OXYZ), angu-
lar velocity and acceleration of transportation (i.e. of
O1xyz in OXYZ), resultant of external forces acting on
body and resultant of external torques acting on body
with respect to the centre C; and E, ϑ—unit tensor and
the trace of J, so ϑ = J11 + J22 + J33.

While deriving (4) and (5) the fundamental rela-
tionships were used that enable to express the abso-
lute kinematical variables through the relative ones.
The absolute acceleration pC of mass centre C can be
expressed as a following sum (e.g. [19, 37])

pC = a′
C +ao1 +ε×r ′

C +ω×(ω×r ′
C)+2ω×v′

C (6)

Above, the undefined third addend is the acceleration
caused by the angular acceleration ε of A′, the forth
addend represents centrifugal acceleration due to rota-
tion of A′, and the last addend is the Coriolis acceler-
ation. Besides, if we denote absolute angular velocity
and acceleration of B with respect to A by θ and α

then they can be expressed as follows [39]

θ = ω + ω′ (7)

α = dθ

dt
= dω

dt
+ dω′

dt
= ε + d ′ω′

dt
+ ω × ω′

= ε + ε′ + ω × ω′ (8)

where (d ′ω′/dt) indicates local time differentiation of
ω′ with respect to A′. In order to get (4) the relation-
ship (6) was introduced into the original vector form
of Newton dynamical equation. In order to get (5) the
relationships (7) and (8) were introduced into the orig-
inal vector form of the Euler dynamical equation. It
is seen that final form of (4) is the direct result of the
operations described above. Unlike (4), in order to get
final form of (5) intensive manipulation and use of the
identity known in the tensor calculus were necessary.

Next, making use of (4) and (5), matrix form of
the equations is recorded. In some recent monographs
(e.g. [34, 35]) such matrix form is recorded directly
without explicit reference to equations in type of (4)
and (5). Explicitly the passage from vector to matrix
representation of the equations of relative motion was
done in [25]. The set of the equations as in [25], how-
ever including the term missed for spherical motion

there, has got the form as given below.

ma′
C = −m(ao1 +�r′

Cε + �ω�ωr′
C + 2�ωv′

C) + RC

= Q1 + RC (9)

Jε′ = −�θJθ − Jε − J(�ωω′) + TC = Q2 + TC (10)

In the analogous equations represented in [34, 35] the
relationship (7) is used and some manipulation done in
the equation of spherical motion. Matrices in (9) and
(10) have got their counterparts in vectors and tensors
present in (4) and (5). Obviously, some vector bases
have to be chosen to express these matrices. In partic-
ular, in case of (9) they can be are expressed for the ba-
sis matching the transportation system O1xyz (Fig. 1).
In case of (10) they can be expressed in the body-fixed
reference frame. For any of the bases im (m = 1,2,3)

and arbitrary vector c that means c = (im)Tc, and
for dyadic J̆ that means J̆ = (im)TJim. At the same
time c = [cα], J = [Jαβ ] where (α,β = 1,2,3), and �b
represents skew-symmetric matrix of arbitrary vector
b = (im)Tb.

If we denote [a′
Cj ,ε

′
j ]T = [v̇′

Cj , ω̇
′
j ]T = [ẋIIi]T =

ẋII (i = 1, . . . ,6; j = 1,2,3) and

I =
[
mE 0
0 J

]

; Q =
[

Q1

Q2

]

� =
[

RC

TC

] (11)

then (9) and (10) recorded jointly take a form of the
dynamical equations, as in [22, 25].

IẋII = Q + � (12)

where Q is matrix of inertia forces and � is matrix
of external (active) forces. Matrix of inertia I is not
symmetric in general. The variables are represented in
matrices xI, xII here. Kinematical equations for these
variables are as follows: ẋI = XI(xI,xII) = X̂I(xI)xII =
K(xI)xII. Note that physical interpretation of these
variables has much in common with that for the orig-
inal Newton-Euler equations. The difference is their
definition with respect to the moving (non-inertial) ref-
erence frames but not with respect to the absolute (in-
ertial) reference frames. The common feature is that
in case of the dynamic equations for the mass centre
translational motion, the relative translational velocity
components are still the generalized velocities. In case
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of the dynamic equations of rotational motion with re-
spect to the mass centre, the relative rotational veloc-
ity components are still quasi-velocities. In order to
emphasize relative sense of these variables let us use
the following identities: xI ≡ x′

I, xII ≡ x′
II, ẋI ≡ ẋ′

I, and
ẋII ≡ ẋ′

II. Here and further on superscript “′” is used to
distinguish the relative variables.

Note that (12) possess the general form that is the
same for the relative and absolute variables, i.e. rela-
tive to the absolute and relative reference frames. For
the absolute systems simply Q1 and some terms in ex-
plicit form of Q2 vanish. Hence, further considerations
in [25, 34] are performed without distinguishing both
this cases, i.e. without any next comments on the rel-
ative motion or more specifically the relative dynam-
ics. Due to subject of this paper we will do differently.
Now, we will built the explicit equations (explicit
multi-body formalisms) for description of motion rela-
tive to moving reference frame(s). Such explicit equa-
tions are also derived (presented) in [22, 30], however
the concept of notation is different there.

When it is needed, it is possible to extend the con-
siderations and change the variables, of the interpreta-
tion as described above, for any set of the generalized
co-ordinates and velocities that describes univocally
state of the system in relative motion. Number of these
new variables has to be the same as before. General
form of (12) remains still valid when we introduce ar-
bitrary generalised co-ordinates w′

I and velocities w′
II.

When assuming that K(xI) is non-singular,

x′
I = XWI(w′

I, t), ẋ′
I = H(w′

I, t)ẇ′
I + h(w′

I, t)

and kinematical equations

ẇ′
I = WI(w′

I,w′
II) = ŴI(w′

I)w
′
II = G(w′

I)w
′
II

it can be recorded that

x′
II = K−1ẋ′

I = K−1(Hẇ′
I + h)

= (K−1HG)w′
II + K−1h = �w′

II + ς (13)

ẋ′
II = �ẇ′

II + �̇w′
II + ς̇ (14)

After introduction of (14) into (12) matrix equation the
system takes the form

Îẇ′
II = Q̂ + �̂ (15)

where

Î = I�; Q̂ = [Q − I(�̇w′
II + ς̇)]

�̂ = �
(16)

The system considered till now is a single free
rigid body. Assume now, that holonomic and non-
holonomic constraints appear of the implicit form

fp(w′
I, t) = 0; fg(w′

I,w′
II, t) = 0 (17)

It is a well known fact (e.g. [25]) that after differenti-
ation of the first item in (17) with respect to time we
obtain the constraints on the velocity level linear in
velocities (velocity variables). It is also known that in
case of the mechanical problems non-holonomic con-
straints are linear in velocities, too. These facts are of-
ten used to represent both types of the constraints in
the unified form. Here, assuming number of all con-
straints equal to r , it can be done as below

�(w′
I, t)w′

II + γ(w′
I, t) = 0 (18)

where � is constraints matrix (r ×6n) and γ is column
matrix (r × 1) that vanishes for stationary constraints.
In such circumstances the matrix equation of motion
can be recorded. Thus it is

Îẇ′
II = Q̂ + �̂ + �T(w′

I, t)λ = Q̂ + �̂ + �̂z (19)

where λ is column matrix (r × 1) of Lagrange’s mul-
tipliers λ = [λ1λ2 · · ·λr ]T and �̂z represents a vector
of the generalized constraint reaction (passive) forces
that act in the directions defined by the wII variables.

When one wants to solve (15) or (19) then one
should note that Î is not symmetrical matrix in gen-
eral case. This problem can be handled by left-hand
side multiplication of these equations (all their terms
on both sides) through the transpose matrix �T. Then
on the left-hand side the modified symmetrical matrix
Ĭ = �TÎ = �TI� appears and Ĭ−1 can be determined.
The operation of this multiplication is simple so there
is no need to present other terms of the equations ex-
plicitly, here.

To describe relative motion of the constrained sys-
tem by the reduced matrix equation in generalised in-
dependent co-ordinates y′

I and velocities y′
II, (19) need

to be converted. First, the constraint forces �̂z have
to vanish. Second, variables w′

I and w′
II need to be



1534 Meccanica (2012) 47:1527–1551

replaced with y′
I and y′

II. Third, number of the equa-
tions shell be reduced. It is shown for absolute sys-
tems in many publications, also in [25, 30], that such
conversion is possible. Now, we will adopt these re-
sults for the needs of the relative motion dynamics.
It was shown that general solution of (18) is neces-
sary to achieve the goal. It leads to the explicit con-
straint equations at the velocity level. A big challenge
is usually the derivation of such explicit constraint
equations, which are often obtained from the implicit
form (17). The derivation is usually possible for the
case of simple (linear in velocities) non-holonomic
constraints, and not for the general (non-linear) ones
as introduced in (17). As non-holonomic constraints in
the railway systems do not happen in practice, we can
assume that such operation is possible. Then the ma-
trix representation of the explicit constraint algebraic
equations on the velocity level is as follows

w′
II = ϕy′

II + ξ (20)

It is here the proper place to remind that for the system
subjected to the holonomic and non-holonomic con-
straints number of the independent co-ordinates and
velocities differ. That is why in general case dimension
of the y′

I vector is bigger than of the y′
II vector by the

number of the non-holonomic constraints. Also num-
ber of yI variables is smaller than of wI by the number
of the holonomic constraints, while number of yII vari-
ables is smaller than of wII by the total number of the
constraints.

The corresponding equations of motion in inde-
pendent generalized velocities (state-space equations)
with variables w′

I, w′
II replaced with y′

I, y′
II are

Ĩẏ′
II = Q̃ + �̃ (21)

Now inertia matrix Ĩ is symmetrical thanks to left-
hand side multiplication by ϕT within (21). Make note
the following relationships are present in (21):

Ĩ = ϕTÎϕ; Q̃ = ϕT[Q̂ − Î(ϕ̇y′
II + ξ̇)]

�̃ = ϕT�̂
(22)

Kinematical equations linking state variables yI and
yII up, which correspond to (21) can be expressed
in the form ẏ′

I = YI(y′
I,y′

II) = ŶI(y′
I)y

′
II. When solv-

ing (21) in the presence of non-holonomic constraints
their equations ought to be enclosed in the system. For

example they can be extracted from (18) or taken as
the second item in (17).

The equations presented so far treated the single
body. It was shown in [25] that forms of (12), (15),
(19) and (21) can be generalised for any number of
bodies. In terms of notation it is trivial and does not
move us forward from the point of view of imaginary
forces and torques form.

Let us now discuss form of the imaginary forces in
the just presented equations. In spite of illusory sep-
aration of the imaginary forces and torques (i.e. those
dependent on the transportation) in (12), (15), (19) and
(21), the corresponding Q terms do not contain just the
forces and torques dependent on transportation. This is
because Q2 contains matrices dependent on absolute
angular velocity θ = ω + ω′ and on ω × ω′, being a
sum and vector product of the transportation and rel-
ative angular velocities, respectively. It results in Q2

being a mixture of imaginary forces with non-linear
kinematics terms, e.g. [34]. Adoption of generalised
co-ordinates can intensify such mixing, what is explic-
itly seen in the second items of (16) and (22). Conse-
quently, it is impossible (at least difficult) to extract
the imaginary forces’ terms from the equations for
such their representation. For instance, calculation of
wheelsets’ gyroscopic moments, connected with their
rotation during vehicle motion, is not possible without
the additional measures. Not as drastic example, but
still similar, is the centrifugal forces in Q1. The reason
is calculation of the matrix being a sum of the terms
within brackets in (9) before the multiplication by in-
ertia matrix is done. The imaginary forces and torques
happen sometimes to be a matter of interest in railway
vehicle dynamics, however (e.g. [16, 40]). As we can
see, adoption of computationally optimal form of (9)
and (10) cannot be always treated as the ideal one.

Equations just presented form the recipe for com-
puter generation of dynamical equations of relative
motion with the use of multi-body formalisms orig-
inated from the Newton-Euler equations. Note that
building the equations is operation on the matrices
present in (9)–(22). In order to perform it, these ma-
trices have to be calculated first. This calculation is
possible after unit vector bases connected with refer-
ence systems are chosen. At the same time, the bases
for Newton equations (linear motions) and Euler equa-
tions (rotations) can be different. It means in case of
numerical generation of equations that each launch of
the software requires repetition of: vector bases’ se-
lection, calculation of all matrices for these bases, and
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finally operations on these matrices in order to build
equations. It is seen that building the equations are the
operations on objects dependent on the selected vec-
tor bases. It will be shown further on that such feature
does not concern the method by present author.

In view of numerical applications, at least two facts
should be reminded related to solving the presented
equations. Firstly, in case of (19) it is significant num-
ber of the equations. It arises from number of co-
ordinates utilised in a formalism, called the maximum
number in [1, 2, 24, 41], and from number of equa-
tions of constraints. Secondly, it is solving the set of
differential-algebraic equations (DAE) in case of (19).
It still presents quite a big trouble in general case
[24, 42]. Within the domain of rail vehicles [43] refers
to it. Discussion of that issue exceeds the framework of
this paper. In conclusion, if constraint reaction forces
are of no interest and no non-holonomic constraints
exist, then it is better to use the formalisms employing
the independent co-ordinates. Their number is called
in [1, 2, 24, 41] the minimum number, and accordingly
reduced number of the ordinary differential equations
(ODEs) describes the system.

3 The author’s method exploiting adapted Kane’s
equations for computer modelling systems
of rail vehicle class

Equations of motion valid in absolute reference frames
can be adapted, so as they enable to describe multi-
body system in moving reference frames (co-ordinate
systems). Then they can be applied according to Pos-
sibility 2 defined at the beginning of Sect. 2. In other
words direct methods of the dynamics of relative mo-
tion can be utilised. Example of such adaptations was
shown in Sect. 2.2. Below we refer to the adaptation of
Kane’s equations, with main emphasis on their form
suitable in the AGEM.

The formal adaptation of original Kane’s equations,
i.e. in the vectorial form, was performed by the author
twice. It was done in his D.Sc. thesis and in [39]. Ob-
tained equations of relative motion make it possible
to describe any discrete system composed of particles
and rigid bodies. At the same time, description of the
systems composed exclusively of the particles and ex-
clusively of the bodies is possible. Despite the same
result, different methods of the derivation were applied
in both cases. In the thesis, the starting point was orig-
inal Kane’s equations for a system of particles. In [39]

that was Jourdain’s principle for a system of rigid bod-
ies. Both used formalisms are obviously valid in iner-
tial reference systems. Fundamental for the derivation,
no matter which method is used, was determination
of the relative partial velocities [39]. Invoke this result
now for so called simple non-holonomic system [19]
of n rigid bodies.

v′
j =

l∑

ρ=1

∂v′
j

∂ujρ

uρ + ∂r ′
j

∂t
=

l∑

ρ=1

v̂′
jρ

uρ + v̂′
jt

(23)

ω′
j =

l∑

ρ=1

∂ω′
j

∂ujρ

uρ + ∂ϕ′
j

∂t
=

l∑

ρ=1

ω̂′
jρ

uρ + ω̂′
jt

(24)

where: v′
j , ω′

j —relative velocity of the centre Cj

and angular velocity of body j (in A′); u1, . . . , ul—
independent quasi-velocities; j—body indicator
(j = 1, . . . , n); l—degrees of freedom number; v̂′

jρ
,

ω̂′
jρ

—correspondingly, ρ-th relative non-holonomic
partial velocity of mass centre Cj of body j relative
to A′

(j) and ρ-th relative non-holonomic partial an-
gular velocity of body Bj relative to A′

(j), being the
functions of generalised co-ordinates q1, . . . , qk ; k—
number of independent co-ordinates q; v̂′

jt
, ω̂′

jt
—free

terms, being the functions of time t ; r ′
j , ϕ′

j —radius
vector of Cj with respect to origin of A′

(j) system
and vector of infinitesimal rotation of Bj with respect
to A′

(j); and “ˆ”—indicator of non-holonomic system
variable.

Here let us base on Jourdain’s principle that the vir-
tual power of reaction forces and moments resulting
from constraints vanishes. The virtual velocity of rigid
body’s mass centre and virtual angular velocity of any
rigid body Bj in the absolute reference system are

δvj =
l∑

ρ=1

∂vj

∂uρ

δuρ =
l∑

ρ=1

v̂jρ δuρ

(j = 1, . . . , n) (25)

δθ j =
l∑

ρ=1

∂θ j

∂uρ

δuρ =
l∑

ρ=1

θ̂ jρ δuρ

(j = 1, . . . , n) (26)

where δ is symbol of variation, vjρ , θ jρ denote partial
velocities of mass centre and partial angular velocities
of the j -th body. Jourdain’s principle for the system of
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n rigid bodies can be expressed as follows:

n∑

j=1

[(−mjaj + RCj

) · δvj

+ (−Jjεj − θ j × Jj θ j + T Cj

) · δθ j

]= 0 (27)

The new denotations mean: mj —mass of the body
j , aj —absolute acceleration of the centre Cj (in A),
εj —absolute angular acceleration of body j , and Jj

inertia tensor of body j .
If the quasi-velocities uρ are taken in a specific

way, i.e. relative to noninertial system of A′ type
(Fig. 2), then (27) still holds. Then, however, relative
partial velocities appear in (25), (26) since relative ve-
locities v′

j ,ω
′
j are those of interest and those depen-

dent on such specific generalized velocities. Note, that
according to Fig. 2 the absolute position of mass cen-
tre Cj and consequently the absolute velocity of Cj

are as follows:

rj = ro1j (t) + r ′
j (28)

vj = vo1j + ωj (t) × r ′
j + v′

j (u) (29)

Substituting (29) in (25), and then (7), for j -th body, in
(26) one can write for translational and angular virtual
velocities, respectively:

δvj ≡ δv′
j =

l∑

ρ=1

∂v′
j

∂uρ

δuρ

=
l∑

ρ=1

v̂′
jρ

δuρ (j = 1, . . . , n) (30)

δθ j ≡ δω′
j =

l∑

ρ=1

∂ω′
j

∂uρ

δuρ

=
l∑

ρ=1

ω̂′
jρ

δuρ (j = 1, . . . , n) (31)

Substituting (30) and (31) in (27) one can write

n∑

j=1

[
(−mjaj + RCj

) ·
l∑

ρ=1

v̂′
jρ

δuρ

+ (−Jjεj − θ j × Jj θ j + T Cj

) ·
l∑

ρ=1

ω̂′
jρ

δuρ

]

=
l∑

ρ=1

{[
n∑

j=1

v̂′
jρ

· (−mjaj + RCj

)

+
n∑

j=1

ω̂′
jρ

· (−Jjεj − θ j × Jj θ j + T Cj

)
]

δuρ

}

=
[

n∑

j=1

v̂′
j1

· (−mjaj + RCj

)

+
n∑

j=1

ω̂′
j1

· (−Jjεj − θ j × Jj θ j + T Cj

)
]

δu1

+ · · · +
[

n∑

j=1

v̂′
jl

· (−mjaj + RCj

)

+
n∑

j=1

ω̂′
jl

· (−Jjεj − θ j × Jj θ j + T Cj

)
]

· δul = 0 (32)

For any set of l independent variations δu1, δu2,

. . . , δul , (32) is valid if and only if the l equations
given below are satisfied.

n∑

j=1

v̂′
jρ

· (−mjaj + RCj

)

+
n∑

j=1

ω̂′
jρ

· (−Jjεj − θ j × Jj θ j + T Cj

)= 0

(ρ = 1, . . . , l) (33)

After introduction of (6)–(8) for each body j in these
l equations and manipulation analogous to that ex-
plained below (8) one can obtain the adapted Kane’s
equations in the form as follows.

n∑

j=1

v̂′
jρ

· (−mja
′
j

)

+
n∑

j=1

ω̂′
jρ

· (−Jj · ε′
j − ω′

j × Jj · ω′
j

)

+
n∑

j=1

v̂′
jρ

· Rj +
n∑

j=1

ω̂′
jρ

· T j

+
n∑

j=1

v̂′
jρ

· [−mjao1j − mjεj × r ′
j − mjωj
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× (ωj × r ′
j

)− 2mjωj × v′
j

]

+
n∑

j=1

ω̂′
jρ

· [−Jj · εj − ωj

× Jj · ωj − 2ω′
j × (Jj − 0.5ϑj E

) · ωj

]

=
n∑

j=1

v̂′
jρ

· R∗
j +

n∑

j=1

ω̂′
jρ

· T ∗
j +

n∑

j=1

v̂′
jρ

· Rj

+
n∑

j=1

ω̂′
jρ

· T j +
n∑

j=1

v̂′
jρ

· R∗∗
j

+
n∑

j=1

ω̂′
jρ

· T ∗∗
j = 0 (ρ = 1, . . . , l) (34)

where new denotations: a′
j —relative acceleration of

the centre Cj (in A′); ε′
j —relative angular acceler-

ation of body j ; ao1j , ωj , εj —linear acceleration
and angular velocity and acceleration of transporta-
tion, i.e., of A′

j relative to A, respectively; Rj , T j —
general denotation of resultants of forces and torques;
E, ϑj —unit tensor and first invariant of Jj .

First four terms in (34) have got their absolute
counterparts in the original Kane’s equations, i.e. in
those valid in inertial systems. The first two are forces
and torques of inertia, respectively, coming out from
relative motion, i.e. motion relative to the reference
systems of A′ type (see Fig. 2). The third and forth
terms are external (active) forces and torques, identical
with those in inertial system. The fifth and sixth terms
have got no counterparts and are of the correction char-
acter. They include imaginary forces and torques of
inertia, which depend on the transportation. Note also,
that despite presence of vectors and tensors of rank
two in (34) these equations are in fact the scalar ones,
since calculation of the scalar products is the last per-
formed operation.

Equations obtained on the basis of (34) are equa-
tions of relative motion, which can be built with use
of the formal steps typical for the Kane’s method
[19, 20], and which are valid for non-holonomic sys-
tem. Solving these equations is possible only with
equations of non-holonomic constraints [39]. It can be
demonstrated [39], like for inertial systems, that here
also the case of non-holonomic system is the most gen-
eral one. The cases of holonomic and free systems are
its special cases. Therefore (34) is valid also for such
systems. The basic difference consists in adoption of

relative partial velocities adequately to the case. It can
be seen that (34) have got the form not suitable for a
computer generation of equations.

If we combine in (34) forces and torques of the
same type then we will get notation that refers to orig-
inal matrix form of Kane’s equations [19, 20]

F̂ ∗
ρ + F̂ρ + F̂ ∗∗

ρ = 0 (ρ = 1, . . . , l) (35)

Consequently, the sum of scalar products of forces
by linear- and of torques by angular relative non-
holonomic partial velocities in (34) contributes to gen-
eralised forces of inertia in relative motion F̂ ∗

ρ . The
sum of analogous products for external forces and
torques contributes to generalised external forces F̂ρ .
Finally, the sum of analogous products for imaginary
forces and torques contributes to the generalised imag-
inary forces F̂ ∗∗

ρ .
In spite of matrix notation, (35) has not found its

place in the computer modelling. It is like that because
they are a direct outcome of the vectorial notation of
(34). They are not a recipe, that enables to realise op-
erations on components of all vectors and tensors in
direct and easy way, what is indispensable in the com-
puter generation of equations of motion.

3.1 The method for computer generation of equations
of relative motion

The key element while obtaining adapted Kane’s equa-
tions, in the form suitable in computer generation of
equations, is expressing the relative velocity v′

j of
mass centre and relative angular velocity ω′

j of j -th
body in relative partial velocities. Starting from (23)
and (24) one can get [39]

v′
j =

l∑

ρ=1

v̂′
jρ

uρ + v̂′
j t

=
l∑

ρ=1

(
v̂′
jρ1i

(j)

1 + v̂′
jρ2i

(j)

2 + v̂′
jρ3i

(j)

3

)
uρ

+
(
v̂′
j t1i

(j)

1 + v̂′
j t2i

(j)

2 + v̂′
j t3i

(j)

3

)

=
(
v̂′
jρmuρ + v̂′

j tm

)
i
(j)
m (36)

ω′
j =

l∑

ρ=1

ω̂′
jρ

uρ + ω̂′
j t
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=
l∑

ρ=1

(
ω̂′

jρ1i
(j)

1 + ω̂′
jρ2i

(j)

2 + ω̂′
jρ3i

(j)

3

)
uρ

+
(
ω̂′

j t1i
(j)

1 + ω̂′
j t2i

(j)

2 + ω̂′
j t3i

(j)

3

)

=
(
ω̂′

jρmuρ + ω̂′
j tm

)
i
(j)
m (37)

where v̂′
jρm, ω̂′

jρm are components of relative linear

and angular partial velocities v̂′
jρ

, ω̂′
jρ

, called alterna-
tively their coefficients. Note explicit dependence of
coefficients v̂′

j tm, ω̂′
j tm on time t . Indicators m define

directions of unit vectors i
(j)
m (m = 1,2,3) for axes of

reference systems, where v′
j and ω′

j are expressed.
Relationships (36) and (37) make it possible to con-

vert scalar components in (35), that arise directly from
(34), into the following form:

F̂ ∗
ρ =

n∑

j=1

(R∗
j · v̂′

jρ
+ T ∗

j · ω̂′
jρ

)

= R∗
jmv̂′

jρm + T ∗
jmω̂′

jρm (38)

F̂ρ =
n∑

j=1

(Rj · v̂′
jρ

+ T j · ω̂′
jρ

)

= Rjmv̂′
jρm + Tjmω̂′

jρm (39)

F̂ ∗∗
ρ =

n∑

j=1

(R∗∗
j · v̂′

jρ
+ T ∗∗

j · ω̂′
jρ

)

= R∗∗
jmv̂′

jρm + T ∗∗
jmω̂′

jρm (40)

where: R∗
jm, Rjm, R∗∗

jm, T ∗
jm, Tjm, T ∗∗

jm—components
in transportation systems (moving reference frames
defined by i

(j)
m ) of resultant forces R∗

j , Rj , R∗∗
j and

torques T ∗
j , T j , T ∗∗

j . In the very last forms of rela-
tionships (36)–(40) summing up over repeated indices
was used. It enabled to eliminate some sum signs. We
use this type of notation also in (41)–(44) and (46).

In order to shorten a process of building the equa-
tions let us make use of the correction character of
imaginary forces, explained under (34). As a conse-
quence, we can adopt form of external forces and
forces of inertia valid in inertial systems, replacing
only the absolute variables (in OXYZ) with the rela-
tive ones (in O1xyz). According to the above we can
make use of the results presented by Huston for the
inertial (absolute) systems, e.g. [33, 44], and next sup-
plement them with the imaginary forces. Thus we can

write down

Θρπ u̇π = fρ (ρ = 1, . . . , l) (41)

and

Θρπ = mj v̂
′
jρmv̂′

jπm + Jjsmω̂′
jρsω̂

′
jπm (42)

fρ = F̂ρ + F̂ ∗∗
ρ − (mj v̂

′
jρm

ˆ̇v′
jπmuπ

+ Jjsmω̂′
jρs

ˆ̇ω′
jπmuπ

+ ersmJjswω̂′
jπwω̂′

jqr ω̂
′
jρmuπuq

)

− [mj v̂
′
jρm

ˆ̇v′
j tm + Jjsmω̂′

jρs
ˆ̇ω′
j tm

+ ersmJjswω̂′
jρm

(
ω̂′

jπwω̂′
j truπ

+ ω̂′
jqr ω̂

′
j twuq + ω̂′

j tr ω̂
′
j tw

)]
(43)

where Jjsm and Jjsw are components of inertia tensor
of the body j and eabc is permutation symbol. Com-
pared to the original Huston’s result some important
differences are present in (43). First, index (′) was used
to indicate relative variables. Second, the record was
completed with correction forces of inertia F̂ ∗∗

ρ (imag-
inary forces and torques). Third, terms in the last three
rows of (43) are extension of the original equations
to rheonomic systems and vanish for scleronomic sys-
tems. This extension was originally carried out in [39].
It arises from use of v′

j and ω′
j as in (36) and (37)

in the derivation process. They include coefficients
v̂′
j tm, ω̂′

j tm explicitly dependent on time and which are
valid for rheonomic systems. Originally, expressions
for v′

j and ω′
j do not include such coefficients and are

valid for scleronomic systems. Step by step derivation
of (41)–(43), i.e. their formal adaptation, is presented
in [39]. Its essential element is differentiation of (36)
and (37) in order to define the accelerations of bod-
ies, the linear ones a′

j of mass centres and the angular
ones ε′

j .
The supplement to (10) are the kinematical equa-

tions. Their general form is

q̇σ = Pσρ(q, t)uρ + pσ (q, t)

(σ = 1, . . . , k), (ρ = 1, . . . , l) (44)

that is valid in scleronomic and rheonomic systems.
This form simplifies for scleronomic systems as last
terms of the sum vanish, i.e. pσ (q, t) = 0.

Equations (41)–(43) supplemented with final form
of (39) enable computer generation of external and in-
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ertial forces and torques in relative motion. The neces-
sary effort is identical with that for the inertial systems.
Now, let us present imaginary forces and torques in
the form corresponding to (39), (41)–(43), so that their
computer generation is also possible. In order to do it
let us extract generalised imaginary forces from (34).
After some manipulation it is:

F̂ ∗∗
ρ =

n∑

j=1

{−mjao1j · v̂′
jρ

− mj

[
ωj × (ωj × r ′

j )
]

· v̂′
jρ

− (ωj × Jj · ωj ) · ω̂′
jρ

− mj(εj × r ′
j ) · v̂′

jρ
− (Jj · εj ) · ω̂′

jρ

− 2mj(ωj × v′
j ) · v̂′

jρ

− 2
[
ω′

j × (Jj − 0.5ϑj E) · ωj

] · ω̂′
jρ

}

(ρ = 1, . . . , l) (45)

According to [37] the terms of the generalized forces
are called as follows: the first term are inertia forces of
translation, the second and third terms represent cen-
trifugal forces of inertia, the forth and fifth ones are in-
ertia forces of rotation, and the sixth and seventh ones
are gyroscopic forces. Now, substituting (36) and (37)
into (45) and using matrix calculus yields an expres-
sion we are interested in.

F̂ ∗∗
ρ = −mjao1j mv̂′

jρm

− eswmmjωjs(ewrqωjrr
′
jq)v̂′

jρm

− ersmJjswωjwωjr ω̂
′
jρm

− eswmmjεjsr
′
jwv̂′

jρm

− Jjmsεjsω̂
′
jρm − 2eswmmjωjs v̂

′
jρmv̂′

jπwuπ

− 2ersm(Jjsw − 0.5ϑjEsw)ωjwω̂′
jρmω̂′

jπruπ

− 2eswmmjωjs v̂
′
jρmv̂′

j tw

− 2ersm(Jjsw − 0.5ϑjEsw)ωjwω̂′
jρmω̂′

j tr

(ρ = 1, . . . , l) (46)

Formulae (41)–(43) and (46) express generalised
forces, including imaginary ones, explicitly by quasi-
velocities. All components in the mentioned equations
are defined for directions defined by i

(j)
m . These com-

ponents represent vectors and tensors present in (34).
Discussed formulae are extension of Huston results,

e.g. [33, 44], to rheonomic systems and to description
in non-inertial (moving) reference systems [39].

3.2 General comments on using the methods based
on the Kane’s equations

Presented form of the adapted Kane’s equations might
be to some people a little discouraging. This is be-
cause of inherent complexity of (34), (41)–(43) and
(46), especially when compared to (19) and (21). It is
going to be explained below that this first impression is
misleading and some important advantages come out
from the equations as presented. To take advantage of
these advantages the equations have to be used in the
software. Eventual fully matrix form of the equations
would probably kill the advantages Kane’s equations
possess. Such a form would only shorten the notation
in the paper rather than is necessary while building the
software for computer generation of equations of mo-
tion. Note also, that useful elements of the matrix for-
mulation are in fact already present in the formulae
provided. For example these are (38)–(41). Also many
of the quantities present in the discussed equations are
represented in the software as arrays that in general
also represent matrices.

Quite fundamental feature (34) and (41)–(43) pos-
sess is the same general form for free, holonomic
and non-holonomic systems. For a holonomic system
k = l, while for a free one k = l = 6n; where n is num-
ber of rigid bodies in the system. The cases distinguish
from each other in the form of matrix of partial veloci-
ties’ coefficients v̂′

jρm, ω̂′
jρm. In case of free and holo-

nomic systems equations (41) and (44) are sufficient
to find the solution. In case of non-holonomic system
(k− l) equations of non-holonomic constraints supple-
ment (41) and (44).

Equation (41) together with (42), (43) and (46) is
the recipe for computer generation of dynamical equa-
tions of motion. This recipe is valid for any unit vec-
tor basis since it comes out directly from vectorial
counterpart (34). It is seen from (41)–(43) and (46)
that building the equations consists of operations on
the components of vectors and tensors present there.
Thanks to it, record of quantities in the form dependent
on the taken vector bases, takes place at the very end of
process of building the equations. It is not at the very
beginning like in the formalisms based on Newton-
Euler equations presented in Sect. 2.2. Just described
advantage of Kane equations, distinctive for this for-
malism, is the reason for frequent use of that type of



1540 Meccanica (2012) 47:1527–1551

equations in the software for computer generation of
equations of motion.

Besides, the methods exist for Kane equations of
determining constraint reaction forces. We mean two
methods described in [19] and [33, 43], respectively.
They make possible both the overall determination and
the selective determination of the constraint forces.
However, the method in [33, 43] is better suited in
the first case, while in [19] is better for the second
case. Note also, that Newton-Euler equations trans-
formed into (19) enable just the overall determination
of constraint forces. The methods for Kane equations
are suitable in numerical implementation due to their
arrangement and clarity. Moreover, when determining
the constraint forces differential equations of motion
are solved independently of algebraic equations, what
is not the case for Newton-Euler equations. Discussed
methods can be applied only if any of the external
forces acting on the system does not depend on the
constraint reaction forces. If it is not the case, there
are no general methods suitable for separating the dif-
ferential and algebraic equations in case of numerical
applications. Unfortunately, in rail vehicles the tan-
gential wheel-rail contact forces depend on the normal
forces (being in fact the constraint reaction forces). So,
use of the described methods for the mentioned types
of forces and for simultaneous numerical generation
of equations of motion of rail vehicles is not possible.

3.3 Utilising specificity of systems of a rail vehicle
class

Despite above explained general advantages, it does
not mean that (41)–(43) and (46) have no weak points
at the closer look. It can be expected that especially
the last one of the mentioned equations has got certain
disadvantages [39] connected with its numerical effi-
ciency. One can see that determination of imaginary
forces according to (46) means carrying out operations
on components of vectors and tensors. In case of big
systems it is many quite complex, but also recurrent
operations. For instance, matrices of v̂′

jρm, ω̂′
jρm coef-

ficients are large 3-dimensional objects multiplied by
themselves in some of (46) components. Any simplifi-
cation in numerical calculation of imaginary forces is
therefore desirable, here.

In this context, the alternative method was pro-
posed by the author. Originally it was formulated as
a theorem. Here, as in [31, 39], we shall confine our-
selves to analytical formulae that constitute base of its

proof. In order to get to these formulae we shall start
from demonstration of relationships between relative
partial velocities for non-holonomic, holonomic and
free systems.

Let us impose q = 6n − k holonomic constraints
on system of n free rigid bodies and next m = k − l

non-holonomic constraints on the holonomic system.
If both types of constraints are linearly dependent
on quasi-velocities, then expressing dependent quasi-
velocities uσ through independent ones uρ we obtain

uσ =
k∑

ρ=1

Aσρuρ + Cσ (σ = k + 1, . . . ,6n) (47)

uσ =
l∑

ρ=1

Bσρuρ + Dσ (σ = l + 1, . . . , k) (48)

where: k, l—numbers of degrees of freedom for holo-
nomic and non-holonomic systems; Aσρ , Bσρ and
Cσ , Dσ —functional coefficients of generalised co-
ordinates q1, . . . , qk and time t . Introducing denota-
tion “∼” for free system variables let us express for-
mulae (23) and (24) for such a system. In this case free
terms depending on time equal zero.

v′
j =

6n∑

ρ=1

ṽ′
jρ

uρ (49)

ω′
j =

6n∑

ρ=1

ω̃′
jρ

uρ (50)

In case of holonomic system formulae (23) and (24)
take the following forms:

v′
j =

k∑

ρ=1

v′
jρ

uρ + v′
jt

(51)

ω′
j =

k∑

ρ=1

ω′
jρ

uρ + ω′
jt

(52)

Substituting now formula (47) in (49) yields:

v′
j =

6n∑

ρ=1

ṽ′
jρ

uρ

=
k∑

ρ=1

ṽ′
jρ

uρ +
6n∑

σ=k+1

ṽ′
jσ

(
k∑

ρ=1

Aσρuρ + Cσ

)
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=
k∑

ρ=1

ṽ′
jρ

uρ +
k∑

ρ=1

6n∑

σ=k+1

ṽ′
jσ

Aσρuρ

+
6n∑

σ=k+1

ṽ′
jσ

Cσ

=
k∑

ρ=1

(

ṽ′
jρ

+
6n∑

σ=k+1

ṽ′
jσ

Aσρ

)

uρ +
6n∑

σ=k+1

ṽ′
jσ

Cσ

(53)

Comparison of (53) to (51) enable to record the rela-
tion between relative linear partial velocities of holo-
nomic and of free systems. At the same time analo-
gous steps can be applied to (47) and (50) for relative
angular velocities. Thus

v′
jρ

= ṽ′
jρ

+
6n∑

σ=k+1

ṽ′
jσ

Aσρ (ρ = 1, . . . , k) (54)

ω′
jρ

= ω̃′
jρ

+
6n∑

σ=k+1

ω̃′
jρ

Aσρ (ρ = 1, . . . , k) (55)

Introduce now formula (48) into (51). It yields

v′
j =

k∑

ρ=1

v′
jρ

uρ + v′
jt

=
l∑

ρ=1

v′
jρ

uρ +
k∑

σ=l+1

v′
jσ

(
k∑

ρ=1

Bσρuρ + Dσ

)

+ v′
jt

=
k∑

ρ=1

v′
jρ

uρ +
l∑

ρ=1

k∑

σ=l+1

v′
jσ

Bσρuρ

+
k∑

σ=l+1

v′
jσ

Dσ + v′
jt

=
l∑

ρ=1

(

v′
jρ

+
k∑

σ=l+1

v′
jσ

Bσρ+
)

uρ

+
(

v′
jt

+
k∑

σ=l+1

v′
jσ

Dσ

)

(56)

Comparison of (56) to (23) enable to record the rela-
tion between relative linear partial velocities of non-
holonomic and of holonomic systems. At the same
time analogous steps can be applied to (48) and (52)

for relative angular velocities. Hence:

v̂′
jρ

= v′
jρ

+
k∑

σ=l+1

v′
jσ

Bσρ (ρ = 1, . . . , l) (57)

ω̂′
jρ

= ω′
jρ

+
k∑

σ=l+1

ω′
jσ

Bσρ (ρ = 1, . . . , l) (58)

Let us now search for relation between arbitrary
type of generalised forces for free and holonomic sys-
tems. Take any of the generalised forces (38)–(40),
leaving out index for a given force type, and substitute
(54) and (55) in it. In instance of the holonomic sys-
tem replacement of v̂′

jρ
, ω̂′

jρ
and l for v′

jρ
, ω′

jρ
and k,

respectively, is also needed. Thus we get

Fρ =
n∑

j=1

(v′
jρ

· Rj + ω′
jρ

· T j )

=
n∑

j=1

(

ṽ′
jρ

+
6n∑

σ=k+1

ṽ′
jσ

Aσρ

)

· Rj

+
n∑

j=1

(

ω̃′
jρ

+
6n∑

σ=k+1

ω̃′
jσ

Aσρ

)

· T j

=
n∑

j=1

ṽ′
jρ

· Rj +
n∑

j=1

ω̃′
jρ

· T j

+
6n∑

σ=k+1

[(
n∑

j=1

ṽ′
jσ

· Rj +
n∑

j=1

ω̃′
jσ

· T j

)

Aσρ

]

(59)

Utilising definitions (38)–(40), the forces for holo-
nomic system can now be expressed by those for free
system as follows

Fρ = F̃ρ +
6n∑

σ=k+1

F̃σ Aσρ (ρ = 1, . . . , k) (60)

Analogously to (60), generalised forces for non-
holonomic system can be expressed by those for holo-
nomic system. Again we have to take any of the gen-
eralised forces (38)–(40), and next substitute (57) and
(58) in it. We get

F̂ρ =
n∑

j=1

(v̂′
jρ

· Rj + ω̂′
jρ

· T j ) = · · ·
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= Fρ +
k∑

σ=l+1

Fσ Bσρ (ρ = 1, . . . , l) (61)

Finally introduce (60) into (61) in order to express
forces for non-holonomic system by those for free one.
Hence it is

F̂ρ = Fρ +
k∑

σ=l+1

Fσ Bσρ

= F̃ρ +
6n∑

s=k+1

F̃sAsρ

+
k∑

σ=l+1

(

F̃ρ +
6n∑

s=k+1

F̃sAsρ

)

Bσρ

= F̃ρ +
6n∑

s=k+1

F̃sAsρ +
k∑

σ=l+1

F̃ρBσρ

+
k∑

σ=l+1

6n∑

s=k+1

F̃sAsρBσρ (ρ = 1, . . . , l) (62)

It is seen in (62) that generalised forces of any
type for non-holonomic or holonomic system are lin-
ear combinations of forces of the corresponding type
for free system. Quantities Asρ , Bσρ and AsρBσρ take
a role of coefficients in this relationship, while equa-
tions of constraints (47) and (48) are their origin. Ad-
vantage of use of (62), referring to significant increase
in numerical efficiency and simpler algorithmization
of numerical generation of equations, are described
in [39]. We will return to them briefly in Sect. 5. It is
worthy of notice that expressing forces for constraint
system by forces for free system can simplify if the
forces in free system are analogous for each body. This
condition is easily satisfied [31, 39] for the systems in
rail vehicle type. It is also worthy to realise that (62)
refers any type of the forces, so complete equations of
motion of constraint system can be expressed as linear
combinations of equations for free system.

Result shown above is an effect of the operations
carried out on Kane’s equations, however it can be
generalised. Generalised forces are in fact projections
of forces and torques on directions of generalised co-
ordinates and velocities or quasi-velocities. In Kane’s
approach these co-ordinates and velocities can be cho-
sen arbitrarily. So it is obvious that (62) is valid if
directions of these projections coincide with axes of

Fig. 3 Centre line of track of any shape and its geometrical
relation with co-ordinate systems

Cartesian and body fixed reference frames. Conse-
quently it is seen that Newton-Euler (N-E) equations
can be utilised to build the equations for the free sys-
tem. Next equations for constraint system can be ob-
tained according to (62) or (60). Such an approach is
true for any formalism coming out directly from N-E
equations and for those exploiting generalised forces.
It can be used selectively to determine the imaginary
forces in order to adapt the equations to non-inertial
systems. It can also be used comprehensively to build
complete equations of motion. Since (62) easily un-
dergoes algorithmization [31, 39], so this generalized
result can be also numerically implemented.

4 Kinematical elements of computer modelling
relative motion with regard to needs of rail
vehicles

No matter which possibility of relative motion descrip-
tion from Sect. 2 is chosen, in any instance there is a
need to define s(t), v(t) and w(t) functions that char-
acterise transportation. It is seen in (4), (5) and (34)
that a matter of interest in this context are components
of vectors ao1, ω,ε. It shall appear later that velocity
v and its components are of practical importance, too.

In order to calculate mentioned components let us
introduce known in differential geometry natural sys-
tem O1xnynzn (the Frenet’s trihedron). It is related to
transportation system O1xyz as shown in Fig. 3. Track
centre line that defines position of both these systems
origin O1, being a 3-dimensional curve in general, is
drawn with dash-dot line in Fig. 3. Describe it in the
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absolute OXYZ system with use of parametric equa-
tions as follows:

x = x(l), y = y(l), z = z(l) (63)

where l is natural parameter equal to curve running
length, measured e.g. from origin of the OXYZ. If “′”
represents derivative with respect to l, then basic quan-
tities characterising curve given by (63), i.e. curvature
κ and torsion τ , can be expressed in the following way:

κ =
√

x′′2 + y′′2 + z′′2 (64)

τ = 1

κ2
·
∣
∣
∣
∣
∣
∣

x′ y′ z′
x′′ y′′ z′′
x′′′ y′′′ z′′′

∣
∣
∣
∣
∣
∣

(65)

From point of view of purely kinematical con-
siderations (63) may be quite arbitrary. From point
of view of proper shape of a railway track, how-
ever, some demands are formulated. First are demands
for boundary conditions for adjacent points of track
sections of different shape (straight sections, circular
curves, and transition curves). Additionally for tran-
sition curves so called consistency conditions hold.
They require the same courses (functions) of curva-
ture κ , superelevation ramp 2z, and unbalanced lateral
acceleration. All these demands are well known in lit-
erature, e.g. [31, 45].

Note, that vectors v, ao1 of velocity and accelera-
tion of translatory motion for origin O1 of transporta-
tion system are tangent to track centre line. They are
tangent to O1x axis at the same time. Taking account
of identity for axes O1xn ≡ O1x (see Fig. 3) compo-
nents of the mentioned vectors in natural and trans-
portation systems can be expressed as follows

v(xnynzn) = v(xyz) = v(v,0,0) (66)

ao1(xnynzn)
= ao1(xyz)

= ao1(a,0,0) (67)

where v, a are instantaneous velocity and acceleration
of natural system origin. It is worthy of notice that va-
lidity of (66) and (67) spreads on arbitrarily defined
change of v = v(t) or v = v(l) (including v = const)
and change of a corresponding to it, since a = dv/dt .
It can be agreed, that if functions l = l(t) and v are
known then problem of v,ao1 components is solved.
Note, that they do not depend on the curve shape.

Determination of components for vectors ω,ε of
angular velocity and acceleration of transportation is

much more complex. Making use of κ and τ , the vec-
tor ωF of angular velocity of natural system O1xnynzn

can be expressed through components in this system

ωF = (dl/dt)(t · τ + b · κ) = t · vτ + b · vκ (68)

where t , b, n are versors of tangential, binormal and
normal axes (of O1xnynzn), respectively.

In view of O1xn ≡ O1x and tangency of these axes
to the curve, the angular velocity ω expressed by com-
ponents ωt , ωn, ωb in natural system can differ from
above expressed velocity ωF for tangential component
only. Consequently, the remaining components stay
unchanged. So,

ω = t · ωt + n · ωn + b · ωb = t · ωt + b · vκ (69)

General form of vector for angular acceleration of
transportation ε, expressed by components εt , εn, εb

in natural system, is represented by relationship as fol-
lows.

ε = dω

dt
= d

dt
(t · ωt + b · ωb)

= dt

dt
· ωt + t · dωt

dt
+ db

dt
· ωb + b · dωb

dt

=
(

d ′t
dt

+ ωF × t

)

· ωt + t · dωt

dt

+
(

d ′b
dt

+ ωF × b

)

· ωb + b · dωb

dt

= t · dωt

dt
+ (ωF × t) · ωt + b · dωb

dt

+ (ωF × b) · ωb

= t · (dωt/dt) + n · vκ · ωt + b · (dωb/dt)

+ n · vτ · ωb

= t · (dωt/dt) + n · (vκωt + vτωb) + b · (dωb/dt)

= t · εt + n · εn + b · εb (70)

The final form in (70) was obtained by: differentia-
tion of (69), use of local differentiation with respect to
natural system, and components of ωF given in (68).
The last two rows in (70) define components εt , εn, εb .
Note that in order to determine them, the components
ωt and ωb have to be known. Component ωb is given
in (69), while missing component ωt is time deriva-
tive of angle γt (see Fig. 3) of O1xyz system rotation
around tangential direction t .
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Formulae (69) and (70) define vectors ω, ε univo-
cally by components in the natural system. It is the
most universal representation and we could stop with
it. However, for vectors v,ao1 also components in
transportation system O1xyz were determined. Con-
sidering further application of the obtained results, the
determination of ω,ε components in O1xyz, as it was
done for v,ao1, gives possibility of direct substitut-
ing all the components into equations of motion ex-
pressed in the transportation system. Such equations
are the most commonly used form of equations in rail-
way vehicle dynamics. Therefore below we give the
recipe for transformation of components ωt , ωn, ωb

and εt , εn, εb into components ωx , ωy , ωz and εx , εy ,
εz, respectively. Corresponding direction cosine ma-
trix arises from Fig. 3. Thus for any vector c one can
write
⎡

⎣
cx

cy

cz

⎤

⎦=
⎡

⎣
1 0 0
0 cos(γt − ϕt ) − sin(γt − ϕt )

0 sin(γt − ϕt ) cos(γt − ϕt )

⎤

⎦

×
⎡

⎣
ct

cn

cb

⎤

⎦ (71)

All considerations and relationships we obtained hith-
erto in this subsection are of general nature. Let us ex-
ploit now properties of the track used by rail vehicles.
Note at the beginning that values of angle β (Fig. 3)
are very small [16, 31]. Consequently values of angle
γt differ just slightly from values of angle γ that cor-
responds to track superelevation, i.e. γt

∼= γ . Thus the
following relationship can be recorded

ωt = dγt/dt ∼= dγ /dt (72)

To make use of (72) it is necessary to determine an-
gle γ . It is given as follows

γ = arcsin[z(l)/b] ≈ z(l)/b (73)

where z(l) is change of track centre line vertically
(a half value of the superelevation ramp [45]) and b

is half of the track gauge. The approximate relation
in (73), which is utilised in practice, can be applied
thanks to real values of angle γ ≤ 6◦.

Small values of angle β enable to draw similar con-
clusion for angles ϕt , ϕ (Fig. 3) as for angles γ , γt , that
is to say ϕt

∼= ϕ. Angle ϕ can be reckoned [31] basing
on the formula:

ϕ = arcsin(z′′/κ) (74)

Carrying out matrix multiplication according to (71)
and taking account of γt

∼= γ,ϕt
∼= ϕ, ωn = 0 for ve-

locities and of γt
∼= γ , ϕt

∼= ϕ for accelerations one
obtains components of ω and ε:

⎧
⎨

⎩

ωx = ωt

ωy = − sin(γ − ϕ) · ωb

ωz = cos(γ − ϕ) · ωb

⎧
⎨

⎩

εx = εt

εy = cos(γ − ϕ) · εn − sin(γ − ϕ) · εb

εz = sin(γ − ϕ) · εn + cos(γ − ϕ) · εb

(75)

In case one is interested in components of ω, ε for
other directions, one should proceed analogously start-
ing from determination of the corresponding direction
cosine matrix.

It is seen that in order to perform numerically ef-
ficient calculation of ωx , ωy , ωz and εx , εy , εz it is
enough to apply (75), making use of (73) and (74) at
the same time. Calculation of the necessary values of
ωt , ωn, ωb and εt , εn, εb ought to be done according
to (69), (70), and (72).

Above given formulae are valid in any conditions of
motion, i.e. in straight track, circular curve, and transi-
tion curve (no matter what shape the last have). It was
shown in [16, 31] that cases of the circular curve and
straight track, representing one- and two-dimensional
curves, can be treated as the special cases of three-
dimensional curve (railway transition curve with su-
perelevation ramp). In work [31] both the parametric
equations of railway transition curves were presented
as well as explicit form of the components for the
3-rd order parabolic, cosine, and sinusoidal transition
curves. The components for circular curve and straight
track were presented, too.

One may conclude that elaboration of the soft-
ware for numerical calculation of components in ac-
cordance with (75) for quite arbitrary shape of the
track centre line is not easy. On the other hand, intro-
duction of the analytical results obtained traditionally
[31] into simulation programmes, which is an alterna-
tive here, does not seem laborious. It arises from small
number of the real transition curve types. Eventual non
standard track shapes demand supplementary determi-
nation of the components and the corresponding ex-
tension in the software, however.
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Fig. 4 Block diagram of the TITAN programme

5 Numerical implementation of the theoretical
results

Author of present article is co-author of software pack-
age ULYSSES for computer (automatical) generation
of equations of motion. Some details about this soft-
ware and corresponding references can be found in
[31, 39]. It is aimed at rail vehicles, nevertheless it
possess ability for other objects to be modelled in the
relative motion. This package is numerical implemen-
tation of theoretical results from Sect. 3.

A core of the package is TITAN programme of
scheme shown in Fig. 4. Subroutines mentioned there
accomplish the following tasks. The CONTFORC pro-
cedure calculates wheelsets’ external forces (contact,
track flexibility and gravitational ones). The GRAVFO
adds gravitational forces other than those affecting
wheelsets. The IMAGFORC calculates imaginary
forces. The procedure calculating forces in flexible
connections between the bodies is named GENSIL.

Notice in Fig. 4, that in case of inertia forces (non-
linear kinematics terms) they are calculated directly,

taking account of all bodies and the constraints, in ac-
cordance with (42) and (43). In case of external and
imaginary forces it is done differently. They are reck-
oned for the free system at first. In instance of the
imaginary forces (46) is applied, though in a simplified
form that matches single free rigid body. This step is
repeated as many times as the number of bodies in the
system is. Last of all account is taken of the system’s
constraints in conformity with (60). This formula is
used as non-holonomic constraints are unusual in rail
vehicle systems and consequently capabilities of the
programme were limited to the holonomic constraints.

Described algorithm gives some numerical benefits
in terms of the efficiency. Namely, it is possible to
count the generalized correction forces, in full range
of their calculation, with use of the same subroutines
for each of the bodies treated as free. Consequently,
we obtain vector (matrix) of the generalized forces for
the free system. Next, to match the constrained sys-
tem, we reduce this vector using (60) to determine the
corresponding reduced components. Building the re-
duced vector is highly optimised in the code by copy-
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ing the unchanged components directly into this vec-
tor and by avoiding the multiplication by those of Asρ

coefficients which equal zero. Furthermore, this idea
was extended to the external forces, so in fact the
summed vector of the generalized external and cor-
rection forces is processed in such a way (Fig. 4). The
method just described is much more efficient than or-
dinary multiplication of transpose of Jacobian matrix
by the vector of forces for a free system, which can be
used as an equivalent here.

Another advantage in terms of efficiency can be
seen by an analysis of the components v′

jρm, ω′
jρm,

where (j = 1, . . . , n), (ρ = 1, . . . , l), (m = 1,2,3).
For non-holonomic (holonomic) and free systems
of rigid bodies each corresponding matrix has got
n × l(k) × 3 and n×6n×3 = 18n2 such components,
respectively. In case of the free bodies, however, one
can consider each body separately. Then for the sin-
gle body (n = 1) number of the components in each
v′
ρm,ω′

ρm matrix equals 6 × 3 = 18, while for n bod-
ies it equals 18 × n = 18n, respectively. As the equa-
tions for the system of free bodies, either treated to-
gether or separately, have to be the same it is obvious
that (18n2 − 18n) among all 18n2 components for the
bodies treated together must be equal to zero. Since
number of constraints in case of railway vehicle mod-
els is not great, so majority of these zero components
will be preserved in the reduced matrices v′

jρm,ω′
jρm.

The efficient way to avoid multiplication by these zero
components, according to (39) and (40), is calculation
of the forces with use of (60) or (62). For the systems
of dimension corresponding to a single rail vehicle,
such avoiding these unnecessary multiplication is less
complicated and time consuming than check of a fac-
tor value before multiplication or use of techniques for
spare matrices multiplication.

6 Application of computer methods of modelling
in simulation of rail vehicle motion

It is obvious that models of railway vehicle dynamics,
also those being built numerically, are mainly created
to project behaviour of real objects. The most com-
mon and relatively cheep solution for such projection
are numerical simulations. The applications of simu-
lation of rail vehicle motion could be grouped as fol-
lows: traditional, in research and engineering issues; in
animation of rail vehicle motion; in professional sim-
ulators of rail vehicles; and in computer games. Scope

Fig. 5 Imaginary torque of vehicle body around vertical axis
for different accelerations versus distance

of simulation applications by present author was pre-
sented in [31]. They all concern the research issues.
Decent sample of such studies is Sect. 6.1 as well as
some are represented in [16–18, 40]. They treat for
example: railway vehicle lateral stability in a curved
track [18, 40]; optimisation of shape of railway transi-
tion curves [17]; and importance of imaginary forces
in rail vehicle dynamics in a curved track [16, 40].

6.1 Sample of the author’s numerical analysis of
railway vehicle dynamics

The question being presented here was chosen as that
of strong relation to theoretical results treated earlier
in present article. The example is use of the ULYSSES
package in numerical (simulation) studies on influence
of complete and incomplete inclusion of imaginary
forces and torques in description of rail vehicle dy-
namics. The main idea of these studies is comparison
of the simulation results from the complete dynamical
model and the model with the imaginary terms omit-
ted. Differently to the earlier studies [39], current ones
[16, 40] refer to transient states of motion (vehicle ac-
celerating and braking). There is no chance to present
the results comprehensively in this article. Therefore
we shall limit to sample of the results, which reveals
univocally that this problem may be of practical na-
ture. More results of such type are presented and dis-
cussed in [16, 40]. The discussion is performed in [16]
of importance of all the imaginary forces terms. It is
specified clearly which of them and in what conditions
should never be neglected.

Figure 5 represents courses of the selected omit-
ted torque. Its omission is the cause for the differences
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Fig. 6 Yaw angle of vehicle body (rotation around vertical axis)
for different accelerations versus distance

shown in Fig. 6. Figure 6 illustrates spectacular differ-
ences in simulation results from both models. It rep-
resents car body yaw co-ordinate (angle of rotation
around vertical axis) for 2-axle freight car. Parameters
of this model and details of the real object are given in
[18, 40]. The model passes the route composed in con-
tinuation of straight track, short transition curve, and
circular curve. The solid line refers to complete model,
while dashed one to the model with the imaginary
torque omitted. Values of accelerations (vehicle speeds
up here) are given in the figures in brackets in [m/s2].
The differences shown in Fig. 6 arise from omission of
imaginary torque about vertical axis acting on the ve-
hicle body. The disparity in solutions visible in Fig. 6
is a result of the author’s intentional simplifications in
modelling the relative motion. In many applications by
other authors similar simplifications happen quite of-
ten. They are usually done without complete knowl-
edge what consequences of particular simplifications
might occur, however. Publications [1, 30, 46, 47] can
be mentioned as the examples where such simplifica-
tions could be identified.

7 Conclusion

The survey of the methods present in literature, which
utilise the dynamics of multi-body systems in relative
motion was done. The survey is limited by this paper’s
needs, however. The methods under consideration are
applied to computer modelling dynamics of rail vehi-
cles. At first, the methods that originate in Newton-
Euler MBS formalisms were of interest. With these

methods as background and in contrast with them,
the author’s approach was presented with many orig-
inal elements. General method of describing discrete
multi-body systems in relative motion was elaborated
within this approach, which can be used in computer
generation (or analytical derivation) of equations of
motion. It is based on the Kane’s approach. An alterna-
tive method of building the equations for the systems
of rail vehicle type was also shown, distinguished by
higher numerical efficiency. The general method of de-
termining the components of linear and angular veloc-
ities and accelerations of transportation is presented.
These quantities are necessary in any method consid-
ering the relative motion, not only in that used by the
present author. Basing on these results, the software
was built to automatic generation of equations of mo-
tion (AGEM) for MBS in relative motion. Despite its
generality it is specialized to rail vehicles. The selected
sample of the author’s results from simulation stud-
ies was also shortly discussed. These numerical stud-
ies showed that rigorous modelling the relative motion
in railway vehicle dynamics is of much higher sig-
nificance that it is commonly believed [16, 40]. This
refers especially to vehicle motion in transition curves
and in particular with variable velocity (accelerating
or braking) [16]. The most important term in this re-
spect are inertia forces of rotation (as defined below
formula (45)) present in the equations describing ve-
hicle body’s rotational motions.

The author hopes that this paper can make the help
and inspiration to all those who need to build their
own rail vehicle simulation software. In case of the
research purposes such needs are more numerous than
it is sometimes believed.

8 Notations

A, OXYZ inertial co-ordinate system attached
to the earth (absolute system);

A′, O1xyz non-inertial moving co-ordinate sys-
tem following the transportation
(transportation system)—track sur-
face oriented;

Aσρ,Asρ,Bσρ functional coefficients in equations of
constraints expressing dependant ve-
locities by the independent ones, for
holonomic (A) and non-holonomic
(B) constraints;
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ao1, ao1, linear acceleration of transportation
for A′, i.e. acceleration of A′ in A,
and its matrix representation, respec-
tively;

ao1j , ao1j linear acceleration of transportation
for j -th A′, i.e. acceleration of A′

j

in A; and its matrix representation,
respectively;

a′
C , a′, a′

j relative (i.e. in A′) acceleration of
mass centre C of rigid body and Cj

of j -th body;
a, ε values of linear and angular accelera-

tions of transportation in general, re-
spectively;

B, B′ inertia forces of motion in A and
in A′, respectively; additionally for
body(ies), corresponding moments of
forces come within this definition;

B , Bj rigid body and j -th rigid body, re-
spectively;

b half of a track gauge;
C, Cj mass centres of rigid body and j -th

rigid body, respectively;
E, eabc unit tensor and permutation symbol,

respectively;
F ∗

ρ , Fρ , F ∗∗
ρ generalised forces of inertia (with

respect to A′), generalised external
forces, and generalised imaginary
forces (inertia forces depending on
transportation), respectively;

F̃ρ , Fρ , F̂ρ generalised forces of any type for
free, holonomic and non-holonomic
systems, respectively;

f d , f z operators representing any formal-
ism and variational principle, respec-
tively;

fp imaginary forces’ operator, appropri-
ate for the formalism selected;

I, Î , Ĭ, Ĩ non-symmetrical (the first two) and
symmetrical (the last two) matrices of
inertia;

J, ϑ inertia tensor of rigid body and first
invariant of J, i.e. ϑ = J11 +J22 + J33;

j rigid body indicator (j = 1, . . . , n);
J moment of inertia and components of

the inertia tensor J;
K, G, H functional matrices;
k, l number of system’s degrees of free-

dom; in case of l also natural pa-
rameter equal to curve running length

(measured from origin of OXYZ sys-
tem);

k, p when used as indices trailing and
leading wheelsets’ indicators, respec-
tively;

l0 track section length or total length of
transition curve;

m rigid body mass; direction index of
unit vectors i

(j)
m (m = 1,2,3) for axes

of reference systems, where v′
j and

ω′
j are expressed;

n number of rigid bodies;
O1xnynzn natural system (moving trihedral sys-

tem)—track centre line oriented;
P, P(v,w) imaginary forces (inertia forces aris-

ing from and depending on trans-
portation); additionally for body(ies),
corresponding moments of forces
come within this definition;

Pψb imaginary torque around O1z the
transportation system axis;

pC,p absolute acceleration of rigid body
mass centre C;

Q, Q̂, Q̃ matrices of inertia forces;
RC , RC resultant vector of external (active)

forces acting in body mass centre C

and the corresponding column matrix
of these forces, respectively;

R∗
j , Rj , R∗∗

j resultant vectors of inertia, external
and imaginary forces, respectively;

r ′
C , r ′, r ′

j radius vector of mass centre C of
rigid body and Cj of j -th body in A′
system;

r , rj radius vector of mass centre C of
rigid body and Cj of j -th body in A

system;
ro1, ro1j radius vector of origin of A′ system

and of j -th A′
j system, respectively;

s(t), v(t), w(t) given functions of time representing
displacements, velocities, and accel-
erations of basic motion (of trans-
portation in kinematics), i.e. for mo-
tion of A′ in A;

T C , TC resultant moment of external forces
with respect to body mass centre C

and the corresponding column matrix
of these forces, respectively;

T ∗
j , T j , T ∗∗

j resultant vectors of inertia, external
and imaginary torques, respectively;
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t , b, n versors of tangential, binormal and
normal axes of O1xnynzn system, re-
spectively;

t , b, n directions of tangential, binormal and
normal axes of O1xnynzn system, re-
spectively; also used as indices; in
case of t also time;

u, uπ , uρ generalised quasi-velocities (nomen-
clature from [37]) or generalised ve-
locities (nomenclature from [19]);

v′
C , v′, v′

j relative velocity of mass centre C of
rigid body and Cj of j -th body;

v′
C , r′

C matrix representations of vectors v′
C

and r ′
C , respectively;

v′
jρ

, ω′
jρ

relative holonomic linear and angular
partial velocities;

ṽjρ , ω̃′
jρ

relative linear and angular partial ve-
locities for free system of bodies;

v̂′
jρ , ω̂′

jρ relative non-holonomic linear and an-
gular partial velocities;

v, a values of instantaneous velocity and
acceleration of natural system’s ori-
gin O1 (in direction t tangent to track
centre line);

v̂′
jρm, ω̂′

jρm components of relative partial veloci-

ties v̂′
jρ

, ω̂′
jρ

, called alternatively their
coefficients;

v̂′
j tm, ω̂′

j tm coefficients, as above but those ex-
plicitly dependent on time;

w′
I, w′

II matrix representations of equations’
relative generalised variables chosen
arbitrarily, co-ordinates and veloci-
ties, respectively;

xI, xII, x′
I, x′

II matrix representations of relative vari-
ables in Newton-Euler equations
adapted to description of relative mo-
tion, co-ordinates (I) and velocities
(II);

y′
I, y′

II matrix representations of equations’
relative independent generalised vari-
ables, co-ordinates and velocities, re-
spectively;

x, ẋ absolute linear and angular co-ordi-
nates and velocities; (i.e. in OXYZ
system); x used as index indicates
longitudinal direction in O1j xyz sys-
tems;

x′, ẋ′ relative linear and angular co-ordi-
nates and velocities; (i.e. in O1j xyz

systems);

x(l), y(l), z(l) co-ordinates of 3-dimensional curve
in the absolute system; in case of rail-
way track z(l) is a change of track
centre line vertically (a half value of
the superelevation ramp [45]);

y, z indices denoting corresponding direc-
tions of transportation system O1xyz

axes;
Z external (active) forces; additionally

in case of body(ies), corresponding
moments of forces come within this
definition;

α absolute angular acceleration of rigid
body;

δ symbol of variation;
ε, εj angular acceleration of transporta-

tion, i.e. of A′ and A′
j relative to A,

respectively;
ε′, ε′

j relative angular acceleration of rigid
body and of rigid body j , respec-
tively;

ψb yaw angle of vehicle body;
ϕ, β orientation angles of natural system

O1xnynzn with respect to horizontal
plane;

γ variable angle corresponding to track
superelevation ramp;

γt , ϕt rotation angles around t , the tangent
to track centre line, of transporta-
tion system O1xyz and natural sys-
tem O1xnynzn, respectively;

κ , τ curvature and torsion of 3-dimen-
sional curve, respectively;

�, �̂, �̃ matrices of external forces;
θ , θ absolute angular velocity of rigid

body and the corresponding matrix;
ρ, σ indicators for vectors and scalars, re-

lated to ρ-th and σ -th velocity (or de-
gree of freedom), respectively;

�, �, ϕ functional matrices (�—constraints
matrix);

ω, ωj angular velocity of transportation, i.e.
of A′ and A′

j relative to A, respec-
tively;

ωF angular velocity of natural system;
ω′, ω′

j relative angular velocity of rigid body
and of j -th rigid body, respectively;

ω, ω′, ε, ε′ matrix representations of vectors ω,
ω′, ε, ε′, respectively;



1550 Meccanica (2012) 47:1527–1551

ω, ε components of vectors ω and ε, re-
spectively; most often accompanied
with single index defining direction
of the component; in case of two
indices the first indicates particular
rigid body.
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