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Abstract We apply the boundary layer equations to
inertial flow in wall bounded films that might be char-
acterized as ‘thin’, say ε ≤ 0.1 where ε is the ratio
of the characteristic lengths, yet to which the lubrica-
tion approximation of Reynolds no longer applies. Two
particular flow geometries are investigated, nominally
parallel plates and nominally inclined plates, both with
and without spatially periodic perturbation of the sta-
tionary plate. A Galerkin-B spline formulation of the
governing equations is employed, and we rely on para-
metric continuation to obtain solutions at higher values
of the Reynolds number. In particular, we are able to
demonstrate that the boundary layer equations yield
accurate results for a wide range of Reynolds numbers
when the aspect ratio is less than 1/10. We also find
that in both nominally parallel and nominally inclined
geometries the sign of the inertial force correction is
determined by the film contour in the neighborhood
of the exit, this result might have implications in the
design of MEMS devices.
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Introduction

The equations that describe the motion of viscous fluids
are difficult to solve, thus, whenever feasible, we search
for ways to simplify them. Lubricant flow in bear-
ings affords particularly easy simplification because
two widely differing length scales characterize con-
ventional lubricant films. Reynolds took advantage of
this when he developed the ‘lubrication approximation’
and constructed what is now called the Reynolds theory
of lubrication [1]. In the ensuing decades, the lubrica-
tion approximation has been widely used far outside
the confines of lubrication, becoming one of the corner
stones of fluid mechanics [e.g. 2–5]. Now that research
focus is being increasingly directed to flow on the small
scale and in narrow channels, a new look at the thin film
approximation is justified [6, 7].

The Reynolds theory is a low Reynolds number,
quasi two-dimensional theory, valid when the ratio of
the characteristic lengths is vanishingly small. It breaks
down where there is a sudden change in film thick-
ness, as this violates the small slope condition locally,
or when the Reynolds number increases significantly
above zero. It is of interest then to know at just what
aspect ratio and Reynolds number will this breakdown
occur. The first of these breakdowns of Reynolds’
assumptions suggests extension to three-dimensional
Stokes flow, while the second indicates that extension to
two-dimensional Navier–Stokes flow might be appro-
priate.



474 Meccanica (2006) 41:473–482

Investigation into the effects of fluid inertia in thin
films has a long and distinguished history. The first
applications of the boundary layer equations to lubrica-
tion problems employed the method of averaged inertia
[8–11]. The boundary layer equations for wall bounded
thin film flows were solved recently by Pozzi and To-
gnaccini [12]. DiPrima and Stuart [13] computed iner-
tial corrections to the linearized Navier–Stokes
problem at small clearance ratios and at small val-
ues of the modified Reynolds number; the zero or-
der approximation is identical to lubrication theory.
Malvano et al. [14] investigated the effect of the ram
pressure at inlet. San Andres and Szeri [15] worked
out an accurate numerical solution of the exact equa-
tions and applied it to the flow between eccentric
cylinders.

Our objective in this paper is to investigate the range
of applicability of the boundary layer equations to nar-
row channel flows. In Section 2, we discuss the various
limits provided by the prevailing flow conditions. We
then study the quasi two-dimensional flow model that
is applicable to thin-film flows at non-zero Reynolds
number. In Section 3, we present a stream function—
Galerkin formulation of the model derived in Section
2 and compare its predictions with finite element solu-
tions of the full Navier–Stokes equations. In Section
4, we discuss typical solutions for flow between both
nominally parallel and nominally inclined wavy bound-
aries.

Analytical

The equations of motion and continuity governing the
flow of constant property Newtonian fluid can be writ-
ten as

ρ
dvi

dt
= ∂

∂x j

(−pδi j + 2μDi j
)

∂vi

∂xi
= 0

(1)

where Di j = 1
2

(
vi, j + v j,i

)
is the symmetric part of

the velocity gradient tensor. These equations will be
normalized with characteristic length scales Lxz and
L y and characteristic velocity scales U∗ and V∗ =(
L y/Lxz

)
U∗

{x1, x2, x3} = Lxz {X, εY, Z}
{v1, v2, v3} = U∗ {U, εV,W }

(2a)

Here ε = L y/Lxz is the ratio of characteristic lengths.
Time and pressure are non-dimensionalized according
to

t =
(

U∗
Lxz

)
τ, p = ρU 2∗

Re∗ P (2b)

where

Re = U∗L y

ν
, and Re∗ = εRe,

are the Reynolds number and the reduced Reynolds
number, respectively. Note that this choice of normali-
zation leaves the continuity equation formally invariant
and retains the pressure term in the limit Re∗ → 0.
Recasting the Navier–Stokes equations and the equa-
tion of continuity in terms of normalized variables, one
obtains

−ε2
(
∂2U

∂X2 + ∂2U

∂Z2

)
+ Re∗ dU

dτ
= −∂P

∂X
+ ∂2U

∂Y 2

(3a)

ε2
{
−ε2

(
∂2V

∂X2 + ∂2V

∂Z2

)
− ∂2V

∂Y 2 + Re∗ dV

dτ

}
= −∂P

∂Y
(3b)

−ε2
(
∂2W

∂X2 + ∂2W

∂Z2

)
+ Re∗ dW

dτ
= −∂P

∂Z
+ ∂2W

∂Y 2

(3c)

∂U

∂X
+ ∂V

∂Y
+ ∂W

∂Z
= 0 (4)

The system represented by Eqs. (3) and (4) con-
tain two parameters, the aspect ratio ε and the reduced
Reynolds number Re*. We will now investigate the sig-
nificance of two asymptotic cases provided by limiting
values of these parameters.

Case (A): Re∗ > ε2 → 0
Neglecting terms multiplied by ε2 Eq. (3) yields

Re∗ dU

dτ
= −∂P

∂X
+ ∂2U

∂Y 2 (5a)

P = P (X, Z , τ ) (5b)

Re∗ dW

dτ
= −∂P

∂Z
+ ∂2W

∂Y 2 (5c)

The second of these equations, Eq. (5b), informs
that the flow is a quasi two-dimensional Navier–Stokes
flow: the pressure is invariant along L y . Clearly, it is not
possible to characterize this flow by a single equation
in pressure. However, the pressure may be eliminated
by differentiation with respect of y, leaving three equa-
tions to solve for the remaining three unknowns U, V, W.
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Equations (5a–c) are recognized as the 3-dimensional
boundary layer equations [16].

It is only a second approximation, Re∗to0, that makes
possible the derivation of a single pressure equation, the
Reynolds equation of lubrication [1, 17, 18]

∂

∂x

(
h3 ∂p

∂x

)
+ ∂

∂z

(
h3 ∂p

∂z

)
= 6μU0

∂h

∂x
(6)

Here h is the film thickness and U0 is the effective
velocity of the surfaces, which has values

U0 =
{

U1 + U2, relative rotation
U1 − U2, relative translation

Case (B): ε2 > Re∗ → 0
Neglecting terms multiplied by Re* in Eq. (5) leads

to a three-dimensional Stokes flow

∇2V = −∇ P (7)

It is, again, not possible to characterize the flow by a
single equation in pressure and the full three-dimen-
sional problem must be solved. However, in lubrica-
tion this limit is of interest only in the most unusual of
circumstances.

Numerical

For infinite extent of the flow domain in the z-direction
in Eq. (5), the flow becomes quasi one-dimensional [8]

Re∗
(

U
∂U

∂X
+ V

∂U

∂Y

)
= −∂P

∂X
+ ∂2U

∂Y 2

∂U

∂X
+ ∂V

∂Y
= 0

(8)

Much of the calculations will relate to flow between
inclined, nominally flat planes (the ‘plane slider’). In

terms of the outlet film thickness, h1, and the vari-
ous non-dimensional quantities, the flow geometry is
shown in Fig. 1. Here we put h1 = h(x1) = L y H1 and
h2 = h (x2) = L y H2 for the film thickness at outlet
and inlet, respectively, and defined the length scales by
L y = (h1 + h2) /2 and Lxz = B = x2 − x1.

Definition of a stream function

U = ∂�

∂Y
, V = −∂�

∂X
(9)

and elimination of P by differentiation leads to a single
equation in �(X,Y ). At this stage, we also introduce
the change of variables

ξ = X − X1

η = Y/H (X), H (X) = h(x)/L y
(10)

and transform Eq. (8) to

Re∗
(

H
∂�

∂η

∂3�

∂η2∂ξ
− 2

dH

dX

∂�

∂η

∂2�

∂η2 − H
∂�

∂ξ

∂3�

∂η3

)

−∂
4�

∂η4 = 0, 0 ≤ ξ, η ≤ 1 (11)

The boundary conditions on the solid boundaries are

� = 0,
∂�

∂η
= −H, at η = 0

� = Q∗, ∂�

∂η
= 0, at η = 1

(12)

where Q∗ represents the flow rate.
The boundary condition specified for the upper plate,

Eq. (12), introduces a new unknown, Q∗, into the set of
unknowns. To insure that the problem remains mathe-
matically well posed we need to increase the number
of independent equations by one. We accomplish this
by constraining the average pressure at outlet (ambient
pressure) to be the same as the average pressure at inlet
(ambient pressure):

Fig. 1 Flow geometry
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1∫

0

1∫

0

H(X)
∂P

∂ξ
dξ dη = 0 (13)

We specify inflow and outflow boundary conditions
at inlet, X = X2, and outlet, X = X1, respectively, by
equating the second derivative of the X component of
the velocity, U , to zero at both outlet and inlet

∂3�

∂X2∂Y

∣∣∣∣
ξ=0

= ∂3�

∂X2∂Y

∣∣∣∣
ξ=1

= 0 (14)

We intend to approximate � (ξ, η), which is given
only implicitly as solution of Eqs. (11–14), by piece-
wise polynomial functions [19] and apply Galerkin’s
method to evaluate the coefficients in the approxima-

tion. Denote the B-spline basis in ξ by A = {Ai }Nξ
1 and

in η by B = {Bi }Nη
1 , then the basis for approximating

� (ξ, η) is A ⊗ B and the expansion

� (ξ, η) =
Nξ∑

i=1

Nη∑

j=2

ψi j Ai (ξ) B j (η) (15)

satisfies the equation of motion, Eq. (11), the pressure
constraint, Eq. (13), and the boundary conditions, Eqs.
(12) and (14), provided that the �i j are chosen such
that
(1) from equation of motion

Re∗
Nξ∑

i,m=1

Nη∑

j,n=2

ψi jψmn

[(
H (1)

rim − 2H (2)
rim

)
B(4)s jn

+H (1)
rmi

(
B(4)jsn + B(4)s jn

)]
+

Nξ∑

i=1

Nη∑

j=2

ψi j H (3)
ri b(5)s j = 0

3 ≤ r ≤ Nξ − 2; 3 ≤ s ≤ Nη − 2 (16)

(2) from pressure constraint

Re∗
Nξ∑

i,m=1

Nη∑

j,n=2

ψi jψmn

[
(h(1)im − 2h(2)im )b

(3)
jn − h(1)mi b(2)jn

]

Nξ∑

i=1

Nη∑

j=2

ψi j h
(3)
i B

′′
j

∣∣∣
1

0
= 0

1 ≤ r ≤ Nξ ; 2 ≤ s ≤ Nη (17)

(3) from conditions at solid boundaries:

ψi1 = 0, 1 ≤ i ≤ Nξ
Nξ∑

i=1
ψi2a(0)mi + c(1)m = 0, 2 ≤ m ≤ Nξ − 1

ψi Nη = ψi Nη−1 = Q∗, 1 ≤ i ≤ N

(18)

(4) from entrance and exit conditions:
Nη∑

j=2

b(0)nj

Nξ∑

i=1

ψi j A′′
i (0) = 0, 3 ≤ n ≤ Nη − 2 (19)

Nη∑

j=2

b(0)nj

Nξ∑

i=1

ψi j A′′
i (1) = 0, 3 ≤ n ≤ Nη − 2 (20)

Here arrays such as H (1)
rim, . . . , B(4)s jn, . . . represent

constant coefficients that result from an application of
Galerkin’s method to Eqs. (11–14).

The system of non-linear algebraic equations, Eqs.
(16–20) can be written in the form

G (μ) = 0, μ = (u, σ ) , (21)

where u is the vector of state variables
{
ui jk,i jk, wi jk ,

pi jk
}

and σ ∈ ∑
is the vector of parameters X1, Re∗,

. . . The computational scheme for solving Eq. (21),
i.e., parametric continuation followed by the Gauss–
Newton method, has been described elsewhere [15].

Results and discussion

The thin film approximation, one of the corner stones
of fluid mechanics, has been used countless times and
on a wide variety of problems. At vanishing reduced
Reynolds number it yields the Reynolds theory of lubri-
cation, while at large values Prandtl applied it to char-
acterize the boundary layer next to a solid wall.

Lubrication problems are customarily modeled with
the Reynolds equation, even when some of the assump-
tions of the underlying theory are invalidated through
having a ‘large’ reduced Reynolds number Re∗ = ε Re
or a ‘large’ aspect ratio ε, or even when the viscos-
ity is strongly dependent on the pressure [20]. Many
of these lubrication problems have great practical and
economical significance; in spite of this, there are no
theoretical or experimental guides as to the errors in-
curred when applying the Reynolds equation outside its
domain, or what the first order extension of it should
be when its assumptions are violated. Many researchers
for example retain the zero modified Reynolds number
assumption of the theory and look for removing the
constraint on the aspect ratio. We, in contrast, intend
to demonstrate that the zero Reynolds number assump-
tion is easier to violate in lubrication practice than the
assumption of thin film, and in such cases, the boundary
layer equations, Eq. (5), could be applied.
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We wish to employ our stream function-Galerkin
formulation of Eqs. (8) for the study of inertial flow
in ‘thin’ films, say ε ≤ 0.1. Before we can do that,
however, two objectives must be met, validation of
the model embodied in Eqs. (5), and validation of the
numerical method employed for solving that model.
To this end, we make use of both analytical and finite
difference solutions of the Reynolds equation, Eq. (6),
and finite element solutions of the complete Navier–
Stokes and continuity equations, Eq. (1).

The principal conclusion from Eq. (5) is invariance
of the pressure across the film. To investigate the up-
per bound of ε for this conclusion to hold, we look at
flow between inclined planes of various aspect ratios,
as indicated in Fig. 1. As long as Eq. (5) holds, the pres-
sure on the upper plate, P(h), and the pressure on the
lower plate, P(0), is approximately equal, becoming
identical in the limit ε → 0. This idea may be made
quantitative by introduction of a pressure difference
coefficient, dp

dp = |P (h)− P (0)|max /P (h)max (22)

where the subscript designates maximum values.
In Fig. 2, we indicate the value of dp , calculated from

the three-dimensional Navier–Stokes problem employ-
ing the finite element software FIDAP, as a function of
the parameters ε and Re∗. Attention here is arbitrarily
restricted to Re > 10, accepting this as a lower bound
on the Reynolds number for applications. For ‘small’
values of the aspect ratio, Fig. 2 appears to support

the assertion of Eq. (5): for ε≤ 0.05, dp ≤ 0.01, and
even for the wider range ε≤ 0.1, dp < 0.16, though the
increase in dp for ε > 0.05 is quite rapid. Thus, for
ε≤ 0.1, we have the approximate relationship dp ≈
ϕ (Re∗). This conclusion seems to hold well for Re∗
≤ 100. Figure 3 plots the ratio of actual pressure maxi-
mum, Pmax, over its zero Reynolds number value,
P0,max, against Re∗, as calculated by FIDAP from the
three- dimensional problem at various values of ε ≤
0.1. Data for different ε values collapse onto a single
curve, confirming, again, that under the stated condi-
tions the aspect ratio is not a strong parameter of the
flow, that is Pmax/P0,max ≈ π(Re∗).

Based on Figs. 2 and 3 we accept the boundary layer
equations, Eqs. (5), as adequate for the characterization
of thin film flows as long as ε ≤ 1/10, though we will
be returning to this question in Fig. 5.

The next task is to provide evidence for the accu-
racy of the stream function-Galerkin solution of Eqs.
(21). This will be attempted in Table 1 and Fig. 4 when
Re∗ = 0, and in Fig. 5 when Re∗ > 0.

Table 1 provides a comparison of non-dimensional
forces, as calculated from our Galerkin formulation and
from the Reynolds equation, respectively, for differ-
ent channel geometries. Figure 4, on the other hand,
contrasts pressure distributions for nominally parallel
surfaces, one of which is perturbed sinusoidally, from
the same two sources. The Reynolds equation is solved
analytically in Table 1, and by the method of finite

Fig. 2 Pressure difference coefficient dp for various values of the aspect ratio, ε, and reduced Reynolds number Re∗ (FIDAP)
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Fig. 3 Variation of Pmax/P0,max with Re∗, FIDAP (+, ε = 0.005; o, ε = 0.05; ∗, ε = 0.08; ×, ε = 0.1)

Fig. 4 Pressure distribution, nominally parallel plates (X1 = 300, n = 5, Re∗ = 0.0, δ = 0.1 :—, Galerkin’s method; - - -, Reynolds
equation)

differences in Fig. 4. In Fig. 5 we compare force f ,
at Re∗ > 0 from two sources, FIDAP solution of the
full Navier–Stokes problem and our stream function-
Galerkin formulation of Eq. (8). In this plot, we normal-
ized the force with f0, its value Re∗ = 0, and looked at
two channel geometries, h2/h1 = 2 and h2/h1 = 3/2,
under the condition ε ≤ 0.1. It may be concluded

from Table 1 and Figs. 4 and 5 that the stream
function-Galerkin formulation is an acceptable method
of solution of the problem.

Having demonstrated both the validity of the model,
Eqs. (5), and the accuracy of our numerical method, Eq.
(15), we proceed to investigate the influence of Re∗,
that is the effect of convective inertia, on thin film flows.
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Fig. 5 Normalized force. Inclined flat plates, ε ≤ 0.1. (◦, Galerkins’s method; x, FIDAP)

Table 1 Dimensionless force for plane slider (Re∗ = 0)

h2/h1 Galerkin formulation Reynolds Equation

11.00 1.3226 1.5795
3.00 0.5658 0.5917
2.25 0.4137 0.4228
2.00 0.3521 0.3575
1.50 0.2038 0.2049
1.20 0.0913 0.0914
1.10 0.0477 0.0477
1.01 0.0050 0.0050

(a) Flow between nominally parallel planes

We may note from Fig. 1 that parallel plate geometry
can be approximated by X1 → ∞.We take X1 = 300,
or h2/h1 = 1.0033, and perturb the film thickness
according to H (ξ) = X1 + δ cos (nπξ). Figure 6 dis-
plays results for n = 5, δ = ±0.1 and Re∗ = 4.0.
When δ > 0, the film shape is convergent (in the flow
direction) at inlet and divergent at outlet, we charac-
terize this as a c/d film shape. When δ < 0, the film
shape is d/c. For Re∗ = 0.0 the average pressure is
zero, but for film shape c/d the effect of convective
fluid inertia is to lower the pressures below ambient

within the channel, while for film shape d/c the pres-
sure is raised relative to inertialess flow. By changing to
n = 5.5, Fig. 7, δ > 0 yields a d/d film shape, resulting
in the channel walls being drawn together. In contrast,
δ < 0 establishes a c/c film and a loading of the channel
walls in the sense opposite to the d/d film case, the walls
are being forced apart. For diverging (converging) film
shape at outlet, the effect of inertia is to decrease (in-
crease) the pressure everywhere, thus creating a force
that will tend to draw together (drive apart) the solid
boundaries.

(b) Flow between nominally inclined planes

Setting X1 = 2.0, we obtain the channel geometry
h2/h1 = 3/2. Figure 8 displays results for n = 5,
δ = ±0.1, and Fig. 9 for n = 5.5 and δ = ±0.1.
The conclusions from these figures are similar to those
drawn previously. The sign of the inertia force is dic-
tated by the local film geometry approaching the outlet
from upstream. Though the resulting forces are rela-
tively small, in very narrow channels, such as occur-
ring in MEMS, their effect may become significant and
could be regulated by choosing the correct film profile
at outlet.



480 Meccanica (2006) 41:473–482

Fig. 6 Nominally parallel channel, Galerkin’s method (n = 5, X1 = 300, δ = ±0.1, Re∗ = 4.0). Channel geometry:—convergent at
inlet, divergent at outlet; ... divergent at inlet, convergent at outlet

Fig. 7 Nominally parallel channel, Galerkin’s method (n = 5.5, X1 = 300, δ = ±0.1, Re∗ = 4.0). Channel geometry:—divergent
at, inlet divergent at outlet; ... convergent at inlet, convergent at outlet
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Fig. 8 Nominally inclined channel, Galerkin’s method (n = 5, X1 = 2.0, δ = ±0.1, Re∗ = 4.0). Channel geometry:—convergent at
inlet, divergent at outlet; ... divergent at inlet, convergent at outlet

Fig. 9 Nominally inclined channel, Galerkin’s method (n = 5.5, X1 = 2.0, δ = ±0.1, Re∗ = 4.0). Channel geometry:—divergent at
inlet, divergent at outlet; ... convergent at inlet convergent at outlet

Conclusions

We demonstrate here that the boundary layer equa-
tions, Eq. (5), may be applied with confidence to wall-
bounded thin film flows at non-zero Reynolds number,
provided that the aspect ratio ε does not exceed 1/10.
In that case, the normalized maximum pressure is a
function of the reduced Reynolds number alone

Pmax

P0,max
≈ π(Re∗); ε ≤ 1/10

We further find that in two-dimensional flow
between nominally flat walls, one of which is period-
ically perturbed, the sign of the inertia force is dic-
tated by local film shape approaching outlet, in the
manner
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sgn( f − f0) = −sgn
dh

dx

∣∣∣∣
xout

;

where x is now increasing in the flow direction, i.e.,
x > 0 when U > 0.
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