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Abstract A level crossing predictor or alarm system with prediction horizon k is said
to be optimal if it, at time t detects that an upcrossing will occur at time t + k, with
a certain high probability and simultaneously gives a minimum number of false
alarms. For a Gaussian stationary process, the optimal level crossing predictor can
be explicitly specified in terms of the predicted value of the process itself and of
its derivative. To the authors knowledge this simple optimal solution has not been
used to any substantial degree. In this paper it is shown how a neural network can
be trained to approximate an optimal alarm system arbitrarily well. As in other
methods of parametrization, the choice of model structure, as well as an appropriate
representation of data, are crucial for a good result. Comparative studies are pre-
sented for two Gaussian ARMA-processes, for which the optimal predictor can be
derived theoretically. These studies confirm that a properly trained neural network
can indeed approximate an optimal alarm system quite well – with due attention paid
to the problems of model structure and representation of data. The technique is also
tested on a strongly non-Gaussian Duffing process with satisfactory results.
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1 Introduction

In a surveillance system one important objective is to predict whether or not a
critical variable will exceed some predetermined level sometime in the future. The
prediction horizon may depend on the purpose of the surveillance system, from being
an early warning system to an acute emergency alarm. In any case, it is the level
crossing events, not the exact value of the variable, that are of interest in this article.
To allude to the sometimes drastic consequences of a level crossing, we will use the
term catastrophe for the exceedance event. Practical examples are warning systems
for bad air quality, extreme floods, and health surveillance systems.

Neural network algorithms are often successfully used to produce predictions of
non-Gaussian time series, usually minimizing a quadratic loss function. When the aim
is to predict whether or not the time series will exceed a certain fixed level, the mean
square error is not very useful as a loss function, and several ad hoc modifications
of the standard neural network algorithms have been proposed in the literature to
improve performance.

An alarm system is a device which, based on current information, predicts whether
a catastrophe is going to occur at a specified time in the future. At each moment the
alarm system signals whether or not a catastrophe is going to happen. An alarm is
false if no catastrophe (level crossing) occurs at the specified time, a catastrophe is
undetected if the alarm is not sound at the required prewarning time. The success of
an alarm system is measured by its detection probability and its false alarm rate. The
following definition specifies what we mean by optimal alarm prediction.

Optimal alarm: An optimal alarm system for a specified set of available data is
defined as a system which, for a given probability of detecting a
catastrophe, has the highest probability of correct alarm.

By exploiting the analogy between alarm systems and hypothesis testing, de Maré
derived, in a general context, an optimal alarm system based on a likelihood-ratio
argument, and for prediction of level crossings in Gaussian processes, Lindgren
(1985) restated this result and gave an explicit formulation of the optimal alarm in
terms of the pair of the predicted value and the predicted growth rate of the process;
(de Maré 1980; Lindgren 1985). The optimal alarm system should give alarm when
the prediction exceeds a variable alarm level that adjusts according to the expected
growth rate of the process. Formulated in terms of the predicted value and growth
rate, the optimal alarm is simply defined by a certain region in R

2, the alarm region.
Central to the problem are the operating characteristics (OC) “probability of

correct alarm” and “probability of detected catastrophe”, introduced in Lindgren
(1975), also treated in Beckman et al. (1990). The idea of including the expected
growth rate of the process into the alarm system was exploited in Svensson et al.
(1996), which also contained a comparison with the naive alarm system, based solely
on predictions of the process-value. The works by de Maré and Svensson et al. are
those of most immediate concern to the investigations in this article.

The aim of the present article is to investigate how well an artificial neural network
can identify the optimal alarm region, both for the case when the full information is
used as input to the network, and for the restricted case when only the pre-calculated
value and growth rate predictions are used as inputs. For a Gaussian time series, the
correct form of the alarm region is exactly known, and hence one can directly check
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the accuracy. We also use the network on a highly non-Gaussian process, for which
no exact solution is known.

The article is organized as follows: In Section 2 the alarm problem is described
and the definition of an optimal alarm system is presented. In Section 3 the neural
network is introduced as an alarm system. The procedure of finding a good network is
quite involved, including considerations of model order and local minima of the error
function, and this is the theme of Section 4. Four examples are presented in Section 5.
Three of them are based on data generated by Gaussian ARMA-processes, which
makes it possible to compare our results with the results in Svensson et al. (1996) on
the optimal predictor. The fourth example is a non-linear process of Duffing-type,
and the aim is to see if the methodology based on the Gaussian theory can be of any
use in the study of a non-Gaussian process as well.

Most of the current neural network and forecasting literature deals with prediction
of future values of a time series, and most neural network algorithms aim at
minimizing the prediction error. The specific problem of warning for exceedance
of extreme levels has recently received attention in the environmetric literature by
suitable modifications of the network algorithms; see Nunnari (2006), Cawley et al.
(2007), Dutot et al. (2007).

2 The Optimal Catastrophe Predictor

2.1 Alarm Characteristics

We consider a stationary stochastic time series X(t), t ∈ Z. In this work a catastrophe
at time t is defined as the event that X(t) has an upcrossing of a critical level u at time
t, denoted

Ct = {X : X(t − 1) ≤ u < X(t)} .

An alarm system is then an algorithm which predicts such an event.
Let At,k denote the event that an alarm is given at time t − k, predicting a

catastrophe Ct at time t. Let ̂Xk(t) be a k-step prediction of X(t)—i.e. the process
̂Xk(t) predicts the value of X(t) using data from time t − k and older. A “naive”
approach to the alarm problem would be to use such a k-step predictor and give
alarm for a catastrophe Ct if and only if ̂Xk(t) has an upcrossing of some specified
alarm level û at time t. The event of alarm, defined in this way, can be written

Anaive
t,k = {

̂Xk : ̂Xk(t − 1) ≤ û < ̂Xk(t)
}

. (1)

When judging the performance of such an alarm system, the quantity of interest is
not so much how good ̂Xk(t) is as a prediction of X(t), but rather the ability of the
system to detect catastrophes without giving too many false alarms. Figure 1 shows
a simulated ARMA(6,4)-process together with mean-square optimal predictor. This
process is to be studied in more detail in Section 4.

For a good alarm system, the probabilities

P(Ct | At,k) = P(correct alarm)

P(At,k | Ct) = P(detected catastrophe)
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Fig. 1 Illustration of the
“naive” alarm approach. Top:
an ARMA(6,4)-process x(t)
and catastrophe level solid
line, u = 40. Bottom: two-step
prediction of the process and
alarm level broken line,
û = 25. asterisks = correct
alarm (two-step prediction, i.e.
k = 2), circles = false alarm
(the last alarm maybe should
be counted as late rather than
false, since it comes only one
time unit before the
catastrophe)

0 50 100 150 200 250 300
-100

-50

0

50

100

t

x(
t)

0 50 100 150 200 250 300
-100

-50

0

50

100

t

xh
at

(t)

both should be as high as possible. In Lindgren (1975) these were termed the operat-
ing characteristics, OC, of the alarm system. If we use these alarm characteristics as a
criterion, as in de Maré (1980) and Lindgren (1985), we can say that an alarm system
Ak = {At,k} is optimal, if for each t,

P(Ct | At,k)

= sup
Bt,k

{

P(Ct | Bt,k) : P(Bt,k | Ct) = P(At,k | Ct)
}

. (2)

With this definition, an alarm system is optimal if it, among all systems Bt,k with the
same ability to detect a catastrophe, has a the smallest false alarm probability.

2.2 Available Information and the Optimal Alarm

Now, let the information available at time t − k be condensed in the value at time
t of a stochastic process Y with values in R

n. This information process could, for
instance, consist of n consecutive values of the X-process: Y(t) = (X(t − k − n +
1), . . . , X(t − k))T, but it may also contain other explanatory variables. Then, let
alarm be given at time t − k for a catastrophe at time t if Y(t) ∈ At,k (cf. Eq. 1). The
formal similarity to power considerations in test theory suggests that some likelihood
ratio could be useful. According to de Maré (1980), an alarm system is optimal in the
above sense Eq. 2, if it gives alarm for all outcomes y = y(t) such that

dPY(t)(y | C∗
t )

dPY(t)(y | Ct)
≤ c′ = constant , (3)

where C∗
t is the complement of Ct, i.e. no catastrophe at time t, and PY(t)(y | Ct) is

the distribution of Y(t) conditioned on Ct. If the process X(t) is strictly stationary,
so that the probabilities P(Ct) and P(C∗

t ) are constant in time, it can be shown, as in
Svensson et al. (1996), that the inequality (3) is equivalent to

P(Ct | Y(t)) ≥ c . (4)

Thus, an optimal alarm system gives alarm when the conditional probability of
catastrophe, given the available information, exceeds a specified level. The constant
c determines the boundary of the alarm region in the “Y-space”, when we use the
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inequality (4) as an alarm criterion, and it will henceforth be called the boundary
probability.

2.3 The Alarm Region for the Gaussian Case

When X(t) and Y(t) are jointly Gaussian, with continuous time parameter t, optimal
alarm can be formulated simply. We get the most simple formulas for a differentiable
process in continuous time, and we state the explicit result for such a process.

Let x̂(t | y(t)) be the best linear predictor of x(t) given y(t), and write

x̂u,y(t)′ = x̂(t | y(t), x(t) = u)′

for the best linear predictor of the derivative x(t)′ given y(t) and given x(t) = u. This
means that

x̂(t | y(t), x(t) = u)′

is the expected growth rate given the available information, under the further
condition that there is actually an upcrossing by x(t). Further, let σ 2

x·y be the
conditional variance of X(t) given Y(t), σ 2

x′ ·xy be the conditional variance of X ′(t)
given X(t), Y(t), and write �(x) = φ(x) + x�(x), where φ(x) and �(x) are the
standardized normal density and distribution functions.

Theorem 1 (Corollary 4,6, (Lindgren 1985)) The optimal alarm for a u-upcrossing
starts as soon as the predicted value x̂(t | y(t)) exceeds the variable lower alarm level

u− = u − σx·y

√

2 log �

[

x̂u,y(t)′

σx′ ·xy

]

+ 2 log
σx′ ·xy

σx·y
+ K (5)

for some constant K.

Fig. 2 Example of an optimal
alarm region in two
dimensions. plus signs =
catastrophe points, dots =
non-catastrophe points,
broken line border of alarm
region (determined by the
boundary probability c, here
c = 0.3). The data are from the
same ARMA(6,4)-process as
was used in Fig. 1
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Table 1 Detection and reliability parameters for the ARMA(6,4)-process in Figs. 1 and 2 with
boundary probability c = 0.3

Alarms Catastrophes

Correct 11 (0.44) Detected 11 (0.52)
False 14 (0.56) Undetected 10 (0.48)
Total 25 Total 21

Numbers in parentheses give relative frequencies within each class. The OC-estimates (according to
Eq. 7) are ̂P(A2 | C) = 0.52 and ̂P(C | A2) = 0.44. The data set consists of 2000 points

(The alarm should stop when the the predicted value x̂(t | y(t) exceeds an upper
alarm level u + with the minus sign in Eq. 5 replaced by a plus sign.) This means
that it is expected that the process is already well above the catastrophe level, so
no upcrossing is foreseen!) The essence of this result is that the condition u − <

x̂(t | y(t)) < u + defines a condition on the y(t)-values that guarantees that Eq. 4 is
satisfied. The constant K depends on the boundary probability c.

Returning to the discrete time case we just replace the process value and derivative
by an average and a difference:

xL(t) = x(t) + x(t − 1)

2
,

xD(t) = x(t) − x(t − 1) .
(6)

The occurrence of a u-level upcrossing is then equivalent to the event |xL(t) − u| <

xD(t)/2, and the continuous time alarm condition (5) is replaced by a similar, but
less explicit expression for the alarm region. The pairs (̂xL(t), x̂D(t)) ∈ R

2 can be
represented as points in the plane, as in Fig. 2. Some of these prediction points will
be associated with real catastrophes and these are marked by + in the figure.

In this way the alarm system acts as a classifier, demarcating an alarm region in the
(̂xL(t), x̂D(t))-plane. All the prediction points in the alarm region will give rise to an
alarm and those outside the alarm region will not. Table 1 highlights some important
aspects of the situation as it appears for the process in Figs. 1 and 2. Unless otherwise
noted, we will henceforth assume that the process is stationary and thus we can write
At,k = Ak for simplicity. The operating characteristics, OC, are estimated by

̂P(Ak | C) = #(alarm and catastrophe)
#(catastrophe)

,

̂P(C | Ak) = #(alarm and catastrophe)
#(alarm)

. (7)

3 The Neural Network as Catastrophe Predictor

3.1 The Neural Network Model

This is a summary of the type of network used (cf. Bishop 1995). In the first couple of
studies a two layer feed forward network will be used. In such a network (see Figs. 3
and 4 for graphical illustrations of the network structures and the corresponding
functional relations) with activation function g, the output at node i is computed
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Fig. 3 Neural network with
three input nodes, four hidden
nodes and two output nodes

output oi

w2ij

hidden h j

w1 jk

input xk

as

oi(y) = g

⎛

⎝

∑

j

w2ij g

(

∑

k

w1 jk yk

)

⎞

⎠ ,

where y = (y1, . . . , yn) is an input pattern presented to the network, w1 jk denotes the
weight from input node k to hidden node j and w2ij denotes the weight from hidden
node j to output node i. A bias term b · has been included in the sum as a weight w·0
connected to an input constantly clamped to +1. For a “k-step-ahead” predictor of
a time series based on n consecutive values of the same series, the input variable at
time t − k for prediction of x(t) is

y(t) = (x(t − k − n + 1), . . . , x(t − k))T .

When the network is used as a classifier, as in our case, we want to classify y(t)
as belonging to the alarm region or not, and then we need only one output node
that assigns the data y(t) to one of the two classes C = Ct or C∗ = C∗

t (under the
stationarity assumption). The network output is then

o(y) = g

⎛

⎝

∑

j

w2 j g

(

∑

k

w1 jk yk

)

⎞

⎠ . (8)

Let τ = τ(t) be the target, i.e. τ = 1 or τ = 0, depending on whether a catastrophe
occurs at time t or not. Further, let the output be o = o(y) when the information

Fig. 4 Graphical
representation of network
matrices. Each matrix element
is represented by a small
rectangle. The size of each
rectangle is proportional to the
numerical value of the
corresponding matrix element
(a + in the rectangle means
positive value, empty rectangle
means negative value). y =
input vector, o = output vector
(cf. (8))
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is y = y(t), and let T be the random variable corresponding to τ , i.e. the indicator
function defined as

Tt =
{

1 if X(t) ∈ C ,

0 if X(t) ∈ C∗ .

To measure the distance between target and output we use the Kullback-Leibler
distance, also called the cross entropy function, (for a general reference for the
following facts, see e.g. Bishop 1995, Sect. 6.7):

F = −[T log o(Y) + (1 − T) log (1 − o(Y))] ,

with expectation

E[F ] = −E[T log o(Y) + (1 − T) log (1 − o(Y))] ,

where the expectation is taken over all possible T and all possible Y. This distance is
minimized when the output o(Y) is equal to the conditional expectation

E[T | Y] = P(C | Y) .

A neural network to compute this conditional probability can be estimated from
a long time series. The error function to be minimized is

Q0 = −
∑

p

(

τ (p) log o(p) + (1 − τ (p)) log (1 − o(p))
)

,

where τ (p) is the target under input number p, and correspondingly for the network
output o(p). This error function diverges if the output is at the wrong extreme.
The importance of this property becomes clear in a situation like ours, where the
catastrophes only make up a small part of the data.

3.2 Network Considerations

To complete the model we take the function g(x) = 1/(1 + e−x) as activation function
and use the back propagation algorithm to update the weights of the network from a
series of data. If we, in analogy with Eq. 8, write h j(y) = g(

∑

k w1 jk yk) for short, the
formulas for the weight changes are given by

�w2 j = −η
∑

p

(o(p) − τ (p))h(p)

j ,

�w1 jk = −η
∑

p

(o(p) − τ (p))w2 jh
(p)

j (1 − h(p)

j )y(p)

k ,

where η is a step length parameter, which has to be adjusted with respect to the
direction with the fastest convergence.

Back propagation is well suited for parallel computation, but may not be very
efficient on serial computers. It is, however, the algorithm implemented in the Matlab
toolbox (Demuth and Beale 1992), which has been used in this work. Unfortunately,
there is no guarantee that this method will find the global minimum. The problem of
local minima is discussed in Bishop (1995), Demuth and Beale (1992), Ripley (1993,
1994).
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Now the question arises: how many parameters shall one choose? As for other
methods of function estimation, too many free parameters in the model may result
in overfitting of the model to the data presented, leading to poor generalization or
prediction ability. When it comes to neural networks it is not only a question of
how many weights to use but also to find a suitable architecture—i.e. the number
of weights in the input and hidden layers respectively and the degree of connectivity.

One strategy is to begin with a network that is too large for the problem and
then successively remove superfluous weights using the method of weight decay, as
described in Bishop (1995), and Weigend et al. (1990). If we in each updating step let
the weights decay according to

wnew
ijk = (1 − εijk)w

old
ijk ,

weights with little influence on the output will eventually decrease to zero. The decay
terms εijk are chosen as

εijk = ηγ

(1 + (wold
ijk )2)2

, (9)

where η is the step length in the gradient descent procedure and γ is the decay rate.
The application of weight decay corresponds to adding an extra complexity term to
the error function, which in our case will take the form

Q = Q0 + 1
2
γ

∑

ijk

w2
ijk

1 + w2
ijk

,

where Q0 is the original error function. For large |wijk| the cost is 1
2γ , whereas for

small weights it is almost zero. The price to pay for the structure simplification for
this modification of the error function, is that one looses the nice interpretation of
the optimum as an estimate of the conditional expectation.

4 Special Methodological Considerations

4.1 The Example Processes

The specific cases to be studied here are an ARMA(6,4)-process, an ARMA(2,1)-
process, both Gaussian, and a Duffing process, which is a highly non-Gaussian
process. For the ARMA processes we can compare with the correct optimal alarm
region, but for the non-Gaussian process no such comparison is possible. For the
ARMA(2,1)-process we shall use two different approaches, one where we use the
predicted value and the predicted rate of increase as input to the network, and one
where we let the network find the proper input combination.

The ARMA(p, q)-processes in the first three cases are given by

X(t) + a1 X(t − 1) + . . . + ap X(t − p)

= e(t) + c1e(t − 1) + . . . + cqe(t − q) ,
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Fig. 5 Illustration of pruning
and training for the
ARMA(6,4)-process in
Section 5.1. Solid line =
optimal alarm system
according to Eq. 5. Broken line
= neural network solution.
Top left: Network after 2000
epochs of training with
γ = 0.1. Bottom left: Network
after pruning and 3000 epochs
of further training with
γ = 0.1. Top right: Network
(with the same starting values
as the one to the left) after
2000 epochs of training with
γ = 0.25. Bottom right:
Network after pruning and
3500 epochs of further training
with γ = 0.25

where {e(t)} are independent standard normal variables uncorrelated with X(t −
1), X(t − 2), . . . . Writing z−1 for the shift operator, we define the A− and
C−polynomials in z−1 as

A(z−1) = 1 + a1z−1 + . . . + apz−p ,

C(z−1) = 1 + c1z−1 + . . . + cqz−q .

4.2 Choice of Input Variables

Our knowledge of the optimal alarm, given by Eq. 5 for Gaussian processes, suggests
a hybrid network predictor with the k-step predictions (̂xL,k(t), x̂D,k(t)), defined by
Eq. 6, as input instead of the original data y. Then the network should classify these
prediction points as belonging to the optimal region or not, as shown in the example
in Fig. 2. In neural network language we should use the predicted value and the
(conditionally) expected rate of increase as pre-processed variables.

When the process is Gaussian the k-step predictions x̂L,k(t) and x̂D,k(t) are linear
functions of available past observations:

x̂L,k(t) =
∑n

j=1
aL

j x(t − k − n + j) ,

x̂D,k(t) =
∑n

j=1
aD

j x(t − k − n + j) . (10)

The coefficients {aL
j } and {aD

j } are calculated by using the orthogonality principle.
In the first two examples we used the Gaussian assumption and the prior knowl-

edge that the optimal level crossing predictor is based in the predicted value and
predicted rate of increase. In the third example we shall compare this with a crude
approach where the network is fed with the raw sequence of observed values, letting
the estimation algorithm find the best alarm predictor.

In connection with tuning of the learning algorithm we would like to stress the
importance of scaling all inputs to the same order of magnitude as that of the output
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of the nodes in the network. In our case this is necessary for two reasons: Firstly,
we have only one step length parameter η, which has to be adjusted with respect
to the direction with the fastest convergence. Secondly, weight decay requires that
the inputs to all nodes—input nodes as well as hidden and output nodes—are on the
same scale.

4.3 Choice of Model Structure—Weight Decay

Before we set out to find the parameters of the network model, there are some
parameters pertaining to the optimization method which must be given appropriate
values. The choice of these values may be critical to the performance of the method,
so they have to be chosen with some care. There are a number of more elaborate
methods to find “good” values of these parameters, but we will approach this matter
rather pragmatically.

The weight decay term which has been discussed in Section 3.2 has two effects,
smoothing (i.e. avoiding over-fitting) and pruning. To set the decay parameter γ in
Eq. 9, a series of experiments was made and a weight decay with γ = 0.25 was found
to work well in the given problems. The effect of the value of γ is illustrated in Fig. 5
(where its smoothing influence can be seen—a higher weight decay straightens out
the flanks).

To get a first hint of a suitable architecture—i.e. the number of weights in the
input and hidden layers respectively and the degree of connectivity—a set of starting
matrices was tried, with matrices so large that they could be pruned after a few
hundred epochs of training. The pruning was done by hand after inspection of
the matrices. This is not such an ambiguous procedure as it may seem, since the
performance in each of the cases was quite conclusive. A typical example is shown in
Fig. 13, where the matrices are represented graphically.

4.4 Choice of Starting Values

The result of the back propagation algorithm is quite dependent on the starting
values of the weights wijk, so before we venture on a more extensive simulation we
will try to find a set of good starting matrices. To get a view of how the training of the
network proceeds, a plot of the training error as a function of the number of training
epochs is quite useful. To assess the generalization ability of the network, a quite
common procedure is to plot the prediction error of the network on some test set. In
our case one can get a more direct evaluation by considering the two OC-variables
P(A | C) and P(C | A), estimated by Eq. 7, which are basic to the alarm problem.

However, the OC-plots estimated from small data sets can be a bit tricky to
interpret, as the graphs can be rather jagged. Since we are interested in the general
performance of the networks and work with simulated data, we will estimate the OC-
plots with the help of large datasets. We estimate the OC-variables for 200 test sets,
each of size 10000 points, and then compute our final estimates as the mean of the
200 estimates thus obtained. All OC-plots in our examples are computed in this way.

We can now generate random starting matrices for those weights that remain after
the preliminary pruning, and train these networks on the same training set. After they
have been trained the same number of epochs, we compare the OC-plots. If we can
find a network which is uniformly best, the choice is clear, otherwise we will choose
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the network that is best on the interval of primary interest. The network chosen in
this way will serve as a starting value for further simulations.

To conclude this section, our procedure in the different examples can be summa-
rized like this:

Step 1. Find an appropriate architecture.
Step 2. Train networks with different starting values and pick the best.
Step 3. Do the final training.

5 Four Examples

The results for the following four examples are illustrated by similar figures: one
figure illustrates how the OC-function depend on the boundary probability and on
the size of the training set (only for the ARMA-examples), two figures show the
alarm regions in the (̂xL, x̂D)-plane, and its dependence on the boundary probability
c, and the final figure gives an overall picture of the performance.

5.1 An ARMA(6,4)-Process

In the ARMA(6,4)-process used in the following, the A− and C−polynomials in the
defining relation A(z−1)xt = C(z−1)et, with z−1xt = xt−1, are:

A(z−1) = 1 − 3.5244z−1 + 5.1926z−2 − 4.0972z−3

+ 1.8281z−4 − 0.4380z−5 + 0.0441z−6 ,

C(z−1) = 1 − 0.7831z−1 + 0.2333z−2 − 0.0313z−3

+ 0.0016z−4 .

The catastrophe level is 30 and 10 consecutive old values are used in the predictions
x̂L,k and x̂D,k, i.e. n = 10 in Eq. 10. The prediction horizon is k = 2 and the
coefficients of the mean-square optimal predictors are,

{aL
j } = (−0.0001, 0.0004, 0.0011, 0.0030,−0.0034,

−0.0735,−0.2553, 2.2263,−4.6495, 3.7217)T ,

Table 2 Detection and reliability parameters for the ARMA(6,4)-process with alarm regions in
Fig. 8

c Alarms c Catastrophes

Correct False Total Detected Undetected Total

0.2 16 (0.43) 21 (0.57) 37 0.2 16 (0.76) 5 (0.24) 21
0.4 10 (0.50) 10 (0.50) 20 0.4 10 (0.48) 11 (0.52) 21
0.6 8 (0.57) 6 (0.43) 14 0.6 8 (0.38) 13 (0.62) 21

Numbers in parentheses give relative frequencies within each class, c=boundary probability. The
data set consists of 2000 points
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Fig. 6 Left: plot of
OC-functions vs. boundary
probability for ARMA(6,4).
Right: plot of probability of
correct alarm vs. probability of
detected catastrophe. Solid
lines optimal alarm system,
dotted lines network trained on
5000 data points, broken lines
network trained on 200000
data points

{aD
j } = (−0.0001, 0.0004, 0.0011, 0.0031,−0.0024,

−0.0696,−0.2584, 2.0049,−3.6737, 1.9608)T ,

with index j = 1 corresponding to the oldest datapoint that is used.
For the training set, containing a total of N patterns, i.e. data points y(t1), . . . , y(tN)

at discrete times t1,. . . ,tN , it is known when catastrophes occur. Then a binary target
vector τ = (τ (1), . . . , τ (N)), with τ (p) equal to one if there is a catastrophe at time
p and zero otherwise, can be associated with the 2 × N input matrix with columns
containing the corresponding pairs of x̂L,2 and x̂D,2.

We follow the procedure described in Section 4, and the first step is to find an
appropriate network architecture. To this end we begin with three different random
starting matrices and train them for 1000 epochs on a training set with 2000 data
points. All three networks tend to a 2-3-1-architecture (but with different structures).

The next step in the procedure is to train several networks with different starting
values and pick the best. Thus, 15 random matrices with 2-3-1-architecture are

Fig. 7 Alarm regions of the
networks in Fig. 6; plus signs =
catastrophe points, dots =
non-catastrophe points
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Fig. 8 The influence of the
boundary probability c on the
alarm region for the
ARMA(6,4)-process,
summarized in Table 2; solid
line c = 0.2, broken line
c = 0.4, dotted line c = 0.6;
plus signs = catastrophe
points, dots = non-catastrophe
points

trained for 1800 epochs on a training set with 1000 data points. Of the resulting
networks, six can be classified as almost equally good, while the rest are not as good.

The third and last step in the procedure is the final training. As starting value of
the longer simulations we take the best of the fifteen networks above. This network
is now trained for 2100 epochs on training sets of size 5000, 20000, and 200000
respectively.

The results for this example are summarized in Table 2 and illustrated in Figs. 6,
7, 8, and 9. Both plots in Fig. 6 show the OC-variables, but the plot to the right is
much easier to read: a higher curve means a better model. As we can see, the optimal
alarm system, derived theoretically, has the highest curve of all, and it represents the
theoretical limit.

Fig. 9 Simulated predictions
from an ARMA(6,4)-process
with prediction horizon k = 2;
broken line = boundary of
network alarm region (the
same network as in Fig. 8 and
Table 2 but with boundary
probability c = 0.5); plus signs
= catastrophe points, dots =
non-catastrophe points
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Table 3 Detection and reliability parameters for the ARMA(2,1)-process with alarm regions
depending on boundary probability c

c Alarms c Catastrophes

Correct False Total Detected Undetected Total

0.20 29 (0.50) 29 (0.50) 58 0.20 29 (0.88) 4 (0.12) 33
0.32 22 (0.56) 17 (0.44) 39 0.32 22 (0.67) 11 (0.33) 33
0.60 8 (0.89) 1 (0.11) 9 0.60 8 (0.24) 25 (0.76) 33

Numbers in parentheses give relative frequencies within each class. The data set consists of 2000
points

5.2 An ARMA(2,1)-Process

This process is defined by the A- and C-polynomials

A(z−1) = 1 − 1.8z−1 + 0.9z−2 ,

C(z−1) = 1 + 0.5z−1 .

The catastrophe level is 16 and 3 old values are used in the predictions x̂L and x̂D.
The prediction horizon is k = 2 and the coefficients of the mean-square optimal
predictors are:

{aL
j } = (0.5377,−2.3123, 2.6403)T ,

{aD
j } = (0.3073,−1.3213, 0.8659)T.

We begin with three different random starting matrices and train them for 1000
epochs on a training set with 2000 data points. All three networks tend to a 2-3-1-
architecture. Next, 15 random starting matrices with 2-3-1-architecture are trained
for 1000 epochs on a training set with 1000 data points. Of the resulting networks,
nine can be classified as almost equally good, while the rest are not as good. As
starting value of the longer simulations we take the best of the 15 networks and train
it on training sets of size 5000, 20000, and 200000 respectively. It is trained for 3000
epochs in each case. Table 3 and Figs. 10, 11, 12 summarize the performance.

5.3 A Direct Approach for the ARMA(2,1)-Process

The process generating the data is the same ARMA(2,1)-process as in the previous
example, but we train the network on the “raw” data instead of on the predicted
value and slope. If we use n old values of the process, the input vector has the
form y(t) = (xt−k−n+1, . . . , xt−k)

T, with prediction horizon k = 2 as before. The target
vector is constructed as in the previous cases and the input matrix data is scaled by
division by a = maxi |xi|.

Three sets of starting matrices are trained for 500 epochs on a set of 1000 data
points. All three networks tend to a 5-4-1-architecture (but with different structure).
One of these networks can be seen in Fig. 13.

Next, five random sets of starting matrices with 5-4-1-architecture are trained for
1000 epochs on a training set with 1000 data points. The best network is picked out for
further study, which implies further 1000 epochs of training on a data set of 200000
points.
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Fig. 10 Left: Plot of
OC-variables vs. boundary
probability for the
ARMA(2,1)-process. Right:
plot of probability of correct
alarm vs. probability of
detected catastrophe. Solid
lines optimal alarm system,
dotted lines network trained on
5000 data points, broken lines
network trained on 200000
data points

Figure 14 indicates that the data reduction to the (x̂L, x̂D)-plane is quite powerful,
and this is as it should be according to the theory in Lindgren (1985). It also seems to
confirm that neural networks are sensitive to transformations of the input. It ought to
be mentioned, though, that the comparison is a bit unfair, since the network trained
on transformed data is picked as the best out of 15 candidates, while the network
trained on “raw” data is the best out of 5. Anyway, it is clear that the direct neural
network without too much effort performs much better than the naive catastrophe
predictor of Eq. 1.

Fig. 11 Alarm regions of the
networks in Fig. 10; plus signs
= catastrophe points, dots =
non-catastrophe points. In
regions where the distribution
of points is sparse the alarm
regions differ more than one
would expect from the
OC-plots
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Fig. 12 Simulated predictions
from an ARMA(2,1)-process
with prediction horizon k = 2;
broken line = boundary of
network alarm region with
boundary probability c = 0.5;
plus signs = catastrophe
points, dots = non-catastrophe
points

Fig. 13 Top: random starting
matrices of network for the
ARMA(2,1)-process (direct
approach). Bottom: matrices of
network after 1000 epochs of
training with weight decay



640 Methodol Comput Appl Probab (2010) 12:623–645

Fig. 14 Left: plot of OC-variables vs. boundary probability for the ARMA(2,1)-process. Right: plot
of probability of correct alarm vs. probability of detected catastrophe, solid line (bottom) = naive
alarm system (according to Eq. 1); solid line = optimal alarm system, broken lines = network trained
on 200000 data points (with x̂L and x̂D as input), dotted lines = network trained on 200000 data
points (direct approach)

5.4 A Duffing Process

In this case the process generating the data is given by a Duffing-type equation,

xm+1 = xm + hẋm

ẋm+1 = ẋm + h(xm − ax3
m − b ẋm) + εm

√
2bh ,

m = 0, 1, 2, . . ., where {εm} are independent standard normal variables and the initial
values are

x0 = ε0/
√

a, ẋ0 = ε0 .

In a typical realization of this process, see Fig. 15, the process is sampled with a period
of Tm = 50. With this new time scale we get

x(t) = x50t, ẋ(t) = ẋ50t, t = 0, 1, 2, . . .

To predict the process we use the following equations:

x̂m+1 = x̂m + h ˆ̇xm,

ˆ̇xm+1 = ˆ̇xm + h(x̂m − ax̂3
m − b ˆ̇xm) .

Fig. 15 A sample of the
Duffing process; catastrophe
levels: broken line u = 4.0,
dotted line u = 1.5
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Table 4 Detection and reliability parameters for the Duffing process (lover level) with alarm regions
depending on boundary probability c

c Alarms c Catastrophes

Correct False Total Detected Undetected Total

0.20 48 (0.53) 43 (0.47) 91 0.20 48 (0.92) 4 (0.08) 52
0.44 36 (0.69) 16 (0.31) 52 0.44 36 (0.69) 16 (0.31) 52
0.60 28 (0.70) 12 (0.30) 40 0.60 28 (0.54) 24 (0.46) 52

Numbers in parentheses give relative frequencies within each class. The data set consists of 2000
points

To calculate x̂(t + i) and ˆ̇x(t + i) we have to iterate these 50i times with starting values

x̂0 = x(t), ˆ̇x0 = ẋ(t) ,

assuming that we know x(t) and ẋ(t). The process may be considered as stationary if
we discard the initial transient phase.

In our simulation of the process we have set the parameters to h = 0.01, a = 0.1
and b = 0.2. The prediction horizon in t-scale is kt = 2 and the catastrophe levels are
u = 1.5 and u = 4.0 respectively (before rescaling).

5.4.1 Catastrophe Level Below the Upper Equilibrium

The catastrophe level is set at 1.5, and we begin with three different random starting
matrices and train them for 1000 epochs on a training set with 2000 data points. All
three networks tend to a 2-3-1-architecture (but with different structure).

Next, 15 random matrices with 2-3-1-architecture are trained for 1000 epochs on
a training set with 2000 data points. Of the resulting networks, 13 are almost equally
good. As starting value of the longer simulations we take the best of the 15 networks
and train it for 1500 epochs in each case on training sets of size 5000, 20000, and
200000, respectively.

In this case we have no theoretical results for an optimal alarm system to compare
with. What we have are the operating characteristics (as in Table 4) and the plots in
Figs. 16, 17, and 18. The behaviour of the network is the same as we have witnessed
in the previous cases with the Gaussian processes.

Fig. 16 Left: plot of
OC-variables vs. boundary
probability for the Duffing
process (lower level). Right:
plot of probability of correct
alarm vs. probability of
detected catastrophe. Dotted
line = network trained on 5000
data points, broken line =
network trained on 200000
data points
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Fig. 17 Alarm regions of the
networks in Fig. 16; plus signs
= catastrophe points, dots =
non-catastrophe points

5.4.2 Catastrophe Level Above the Upper Equilibrium

The catastrophe level is now set to 4.0, which is above the upper equilibrium of the
process (see Fig. 15). The architecture and starting values were chosen in the same
way as in the previous example. After steps one and two the network is trained for
1500 epochs on training sets of size 5000, 20000, and 200000 data points, respectively.

In Figs. 19, 20, and 21 the picture is not quite as clear as in the earlier cases. The
crossing of the P(A | C)- and P(C | A)-curves for the network trained on the larger
data set is at a lower boundary probability than the crossing of the curves for the
network trained on the smaller set. From the previous examples one would expect
the opposite. Possible explanations for this could be that the large dataset demands
more training or perhaps has got stuck in a local minimum.

Fig. 18 Simulated predictions
for a Duffing-type process with
low catastrophe level and
prediction horizon k = 2;
broken line = boundary of
network alarm region with
boundary probability c = 0.3,
plus signs = catastrophe
points, dots = non-catastrophe
points
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Fig. 19 Left: plot
of OC-variables
vs. boundary probability.
Right: plot of probability of
correct alarm vs. probability of
detected catastrophe. Dotted
lines = network trained on
5000 data points, broken lines
= network trained on 200000
data points

Fig. 20 Alarm regions for the
networks in Fig. 19

Fig. 21 Simulated predictions
from a Duffing-type process
with high catastrophe level and
prediction horizon k = 2;
broken lines = boundary of
network alarm region with
boundary probability c = 0.3,
plus signs = catastrophe points,
dots = non-catastrophe points
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Table 5 Detection and reliability parameters for the Duffing process (upper level) with alarm
regions depending on boundary probability c

c Alarms c Catastrophes

Correct False Total Detected Undetected Total

0.20 55 (0.46) 65 (0.54) 120 0.20 55 (0.67) 27 (0.33) 82
0.35 43 (0.63) 25 (0.37) 68 0.35 43 (0.53) 39 (0.47) 82
0.60 24 (0.83) 5 (0.17) 29 0.60 24 (0.29) 58 (0.71) 82

Numbers in parentheses give relative frequencies within each class, The data set consists of 2000
points

The network solutions to the two examples from the non-Gaussian Duffing-type
process show that the data reduction to the (x̂L, x̂D)-plane still is quite powerful. We
do not know what the optimal alarm system looks like in this case, but the data in
Tables 4 and 5 are comparable to those for the ARMA-processes.

6 Conclusion

In this article we have shown that a feed-forward neural network can approximate
an optimal alarm system. We have applied the network to Gaussian as well as
non-Gaussian stochastic processes. In the Gaussian case we could compare the
network model with the theoretically derived optimal alarm system. To get a picture
of the dependence of the network approximation on the size of the training set,
the networks were trained on training sets with increasing size. All simulation
experiments on neural networks were performed in three steps:

1. choice of architecture,
2. choice of starting values,
3. final simulations.

The technique of weight elimination was used to prune the networks in step number
one.

The back-propagation algorithm, although it may not be the most effective algo-
rithm, was chosen mainly because it was already implemented in Matlab. Because the
back-propagation algorithm is quite dependent on the starting values of the weights,
we have to treat the choice of starting values very carefully. Here consideration of
OC-functions was more helpful than measurements in terms of training or validation
error.

Step number three delivered some information on generalization and consistency
of the approximated optimal alarm system. We did, however, not succeed in finding
a satisfactory stopping criterion for the training algorithm.

Two network models with different input representation were compared with the
naive as well as with the optimal catastrophe predictor. In all cases the network
models were much better than the naive predictor, even if they were not quite as
good as the optimal predictor.

Central to the simulation studies is the interpretation of the network output as an
estimate of the conditional probability of a catastrophe given the information. This
interpretation, which is given in the theoretical part of the article, holds under the
assumption of stationarity of the process.
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