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Abstract
Recently, it has been proved that a set of spherically symmetric densities uniquely
determines the Coulomb external potential. Utilizing this theorem, a previous method
is extended to construct an orbital-free density functional theory. Auxilary spheri-
cal non-interacting systems and Kohn–Sham-like equations are constructed. A set of
spherical generating functions are defined. These functions have two extra variables
and are reduced to the set of spherically symmetric densities if the extra variables
are equal to zero. Euler equations are rewritten as Schrödinger-like equations for
the square root of the spherically symmetric generating functions. Generalized Pauli
potentials are defined, and it is shown that these potentials can be calculated in the
knowledge of the generating functions. The Euler equations can be solved with these
Pauli potentials.

Keywords Orbital-free · Spherical density functional theory · Euler equations · Pauli
potential

Mathematics Subject Classification 81Q05

1 Introduction

In density functional theory (DFT), the key variable is the density [1, 2]. The ground-
state density alone in principle determines all properties of the system. There are
cases when even a part of the density has this remarkable property [3–7]. Recently,
Theophilou [8] proved an even more fascinating statement: the spherical averages
of the ground-state density around the nuclei determine uniquely the external poten-

This article belongs to the themed collection: Mathematical Physics and Numerical Simulation of
Many-Particle Systems; V. Bach and L. Delle Site (eds.).

B Ágnes Nagy
anagy@phys.unideb.hu

1 Department of Theoretical Physics, University of Debrecen, Debrecen 4002, Hungary

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11005-022-01600-8&domain=pdf
http://orcid.org/0000-0003-2605-9644


107 Page 2 of 16 Á. Nagy

tial of molecules and solids. Later, the present author provided an alternative proof
to Theophilou’s theorem, extended the theory [9, 10] and formalized the spherical
potential functional theory [11]. Spherically symmetric Euler equations have been
derived [9, 10]. It has been shown that each spherically averaged density satisfies a
Schrödinger-like differential equation [12].

In this paper, an orbital-free scheme is derived taking advantage of the spherical
symmetry. In standard DFT, the Euler equation is often written as

δTs
δ�

+ vKS = μ, (1)

where Ts, vKS and μ are the non-interacting kinetic energy, the Kohn–Sham (KS)
potential and the chemical potential, respectively. The Kohn–Sham (KS) potential
is generally written as a sum of the external v, the classical Coulomb vJ and the
exchange-correlation vxc potentials:

vKS = v + vJ + vxc (2)

Partitioning Ts as

Ts = Tw + Tp (3)

Equation (1) takes the form

δTw
δ�

+ vp + vKS = μ. (4)

Tw is the full Weizsäcker kinetic energy [13]

Tw = 1

8

∫ |∇�|2
�

dr (5)

and Tp is the Pauli energy [14–16] resulting from the Pauli principle. Using the func-
tional derivatives

δTw
δ�

= 1

8

∣∣∣∣∇�

�

∣∣∣∣
2

− 1

4

∇2�

�
= �−1/2

(
−1

2
∇2

)
�1/2 (6)

and

vp = δTp
δ�

, (7)

where vp is the Pauli potential and Eq. (1) can be rewritten as a Schrödinger-like
equation for the square root of the density

[
−1

2
∇2 + vp + vKS

]
�1/2 = μ�1/2. (8)
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The density can be determined solving the Euler equation (1) [or Eq. (8)]. As this
equation does not contain the KS orbitals, this way of obtaining the solution is referred
to as the orbital-free scheme. This approach has a considerable advantage as only the
single Euler equation has to be solved contrary to the KS method. The orbital-free
approach implies enormous simplification in the calculations, because there might be
many KS equations if a large system with a lot of electrons is considered.

However, the orbital-free procedure is hindered by the fact that the kinetic energy
functional is unknown. Therefore, the Pauli energy and potential are also unknown.
But, as the knowledge of the kinetic energy functional would lead to an important
progress in DFT calculations, great efforts have been taken in this direction (see e. g.
[17–21]).

Not all orbital-free methods utilize the non-interacting KS system. In the true inter-
acting system the kinetic energy is different from the non-interacting one. In studying
the kinetic energy, information-theoretical concepts have turned to be extremely use-
ful. There is a relationship between the quantummechanical kinetic energy and Fisher
information [22]:

Ekin = 1

8

∫ |∇�(r)|2
�(r)

dr + 1

8

∫
�(r)I f

F (r)dr. (9)

The first term—theWeizsäcker kinetic energy Tw—is proportional to the Fisher infor-
mation I

Tw = 1

8
I . (10)

I f
F (r) =

∫ [∇r f (r2, . . . , rN )|r)]2
f (r2, . . . , rN )|r) dr2...drN (11)

is a Fisher information density associated with the conditional density

f (r2, . . . , rN )|r) = |�|2
�(r)

. (12)

� is the wave function.
An efficient method is formalized in the true interacting system connecting the

Levy–Lieb constrained search and the Quantum Monte Carlo method [23–28]. The
ground-state energy is given by

E0 = min
�

(
min
f

(�[�, f ]) + TW +
∫

v(r)�(r)dr
)

, (13)

where

�[�, f ] = 1

8

∫
�(r)I f

F (r)dr

+N − 1

2

∫
�(r)

[∫
f (r2, . . . , rN )|r)]

|r − r2| dr2...drN

]
dr (14)
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The central question of the method is how to determine f in an efficient way. In a
physically motivated explicit guess form were adapted to f with one free parameter,
while in a further step Quantum Monte Carlo method were applied to determine f
numerically. These versions have the advantage that a single functional � has to be
approximated, while in the orbital-free methods formalized within the non-interacting
KS systemboth the non-interacting kinetic energy and the exchange-correlation energy
functionals.

In this paper, the problem is treated in a different way. For spherically symmetric
systems, the present author has already presented amethod [29–33] inwhich there is no
need for the kinetic energy functional. Now, this approach is extended to any Coulomb
system utilizing the fact that in the recent version of DFT spherically symmetric
densities are the key quantities. A set of spherically symmetric generating functions
{ξ} is defined. These functions have two extra variables and {ξ} reduces to the set
of spherically symmetric densities if these variables are equal to zero. Schrödinger-
like equations are derived for the square root of the spherically symmetric generating
functions. Generalized Pauli potentials are defined and is shown that these potentials
can be calculated in the knowledge of the generating functions. The Euler equations
can be solved with these Pauli potentials.

The paper is organized as follows: In Sects. 2 and 3, the theory with a set of
spherically averaged densities and the corresponding non-interacting scheme are sum-
marized. In Sect. 4, differential equations for the spherically symmetric densities are
derived. The generating functions and the generalized Pauli potentials are introduced,
and differential equations are derived in Sect. 5. The last section is devoted to discus-
sion.

2 Theory with a set of spherically averaged densities

Let the external potential be

v(r) =
M∑

α=1

vα(rα) (15)

in the Hamiltonian

Ĥ = T̂ + V̂ee + V̂ . (16)

T̂ and V̂ee are the kinetic energy and the electron–electron energy operators and

V̂ =
N∑
i=1

v(ri ). (17)

A term in Eq. (15) depends only on the distance from a center α: rα = |r − Rα|. A
well-known example is the Coulomb potential:
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v(r) = −
M∑

α=1

Zα

rα
. (18)

N , M , Zα and Rα stand for the number of electrons, the number of nuclei, the atomic
number and the position vector of the nuclei, respectively.

To define spherically symmetric averages �̄α(rα), we shift the origin of the coor-
dinate system to the center α, use spherical coordinates and average � for the angles
�α

�̄α(rα) = 1

4π

∫
�α

�(rα)d�α. (19)

Now, let {�̄} denote the set of spherically symmetric densities �̄α(rα) (α = 1, . . . , M).
According to Theophilou’s theorem [8] the set {�̄} determines uniquely the external
potential. Originally, the theorem was formalized for v(r) with the form of Eq. (18).
Later it was extended to the general case of Eq. (15) [9]. It was also shown that if v(r)
has the form of Eq. (18) the theorem follows from Kato’s theorem [9]. If v(r) is given
by Eq. (15) the theorem can be proved [9] using constrained search [34].

A universal functional Q was defined as [9]

Q[{�̄}] = min
�→{�̄}〈�|T̂ + V̂ee|�〉. (20)

The search is over all antisymmetric wave functions � that yield the given set {�̄}.
Then the energy minimum

E = min
�

〈�|Ĥ |�〉 (21)

can be rewritten as

E = min{�̄}

{
Q[{�̄}] + 4π

M∑
α=1

∫
�̄α(rα)vα(rα)r2αdrα

}
, (22)

where Eq. (15) was utilized.
It was proved that the external potential is uniquely determined by the set {�̄}, and

consequently, there exists a one-to-one map between � and the set {�̄} if v has the form
of Eq. (15). Furthermore, the energy of a trial set of spherically symmetric densities
is always greater than or equal to the true ground-state energy of the system.

The functional derivative of the energy functional E[{�̄}] leads to the Euler equa-
tions

vα(rα) = − δQ

δ�̄α

; α = 1, . . . , M (23)
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up to a constant, provided that Q [Eq. (20)] is functionally differentiable. It is worth
mentioning that generally there are several Euler equations, as many as the number of
centers in Eq. (15). (In standard DFT, there is only one Euler equation.)

3 The non-interacting scheme

DFTcalculations generally utilize theKohn–Sham (KS) scheme, inwhich the particles
move independently in a local (Kohn–Sham) potential.

The non-interacting kinetic energy functional for a set {�̄} is defined as

K [{�̄}] = min

→{�̄}〈
|T̂ |
〉, (24)

that is, the search is over all non-interacting wave functions 
 yielding the set {�̄}. In
standard KS theory, the KS density is the same as the true density. Correspondingly,
here the KS set {�̄} should also be equal to the true set. This constraint can be assured
by a set of Lagrange multipliers wα(rα):

min

→{�̄}〈
|T̂ |
〉 + 4π

M∑
α=1

∫
�̄α(rα)wα(rα)r2αdrα. (25)

The minimization leads to the non-interacting Euler equations

wα(rα) = − δK

δ�̄α

; α = 1, . . . , M (26)

up to a constant.
Observe that Eq. (25) provides the total energy Es[{�̄}] of a non-interacting system

in a local KS potential

w(r) =
M∑

α=1

wα(rα). (27)

The non-interacting wave function 
 and kinetic energy K can be expressed with
one-particle functions. Then the variation with respect to the orbitals leads to the
Kohn–Sham equations

[
−1

2
∇2 + w(r)

]
φi = εiφi , (28)

with

� =
N∑
i=1

|φi |2. (29)
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In order to derive a relationship between wα(rα) and vα(rα), the Hartree and
exchange-correlation functional EHxc[{�̄}] was defined as [9]

EHxc[{�̄}] = Q[{�̄}] − K [{�̄}]. (30)

Then the Euler equation (23) and (26) lead to

wα(rα) = vα(rα) + vHxc,α(rα); α = 1, . . . , M, (31)

with

vHxc,α(rα) = δEHxc

δ�̄α

; α = 1, . . . , M . (32)

Substituting wα(rα) in (31) into Eq. (27), we arrive at the Kohn–Sham potential w.

4 Differential equations for the spherically symmetric densities

It is worth utilizing the fact that the members of the set {�̄} are spherically symmetric.
First a set of radial densities {σ } are defined as σα(rα) (α = 1, . . . , M), where

σα(rα) = 4πr2α�̄α(rα). (33)

It has recently been shown [12] that σα(rα) satisfies the radial equation

ĥα
eff(rα)σ 1/2

α (rα) = μσ 1/2
α (rα); α = 1, . . . , M, (34)

where

ĥα

eff(rα) = −1

2

d2

dr2α
+ vα(rα) + vα

eff(rα). (35)

μ is the chemical potential, the negative of the ionization energy I :

μ = E − E0
N−1. (36)

The ground-state energies of the N and the N − 1 electron systems with the same v

are denoted by E and E0
N−1, respectively. The derivation and the form of the effective

potential vα
eff(rα) can be found in [12].

Observe that vα(rα) can be expressed from Eqs. (34) and (35)

vα(rα) = μ + 1

2σ 1/2
α

d2σ 1/2
α

dr2α
+ vα

eff(rα). (37)

A comparison of Eqs. (23) and (37) reveals that Eq. (34) are equivalent to the Euler
equation (23).

123



107 Page 8 of 16 Á. Nagy

Consider now Coulomb systems with external potential (18). To solve the Euler
equation (23), first radial wave functions Pα

i yielding the given spherical set {σ } are
introduced.

First, another non-interacting kinetic energy is defined:

K̃ =
M∑

α=1

Zα

Z
Kα, (38)

where

Kα = −1

2

∑
i

λα
i

∫
Pα
i (rα)

(
d2Pα

i (rα)

dr2α
− li (li + 1)

r2α
Pα
i (rα)

)
drα. (39)

Observe that K̃ is different from K . The sum of Zα is denoted by

Z =
M∑

α=1

Zα. (40)

For a neutral system Z = N . σα(rα) can be expressed with Pα
i as

σα(rα) =
∑
i

λα
i [Pα

i (rα)]2. (41)

λα
i are the occupation numbers and the sum goes for the occupied orbitals.
The “spherical” classical Coulomb energy J̃ was defined in Ref. [8] as

J̃ = 1

2

∑
α

Zα

Z

∫ ∞

0
σα(rα)ũα

J (rα)drα, (42)

where

ũα
J (r1) =

(
1

r1

∫ r1

0
σα(r2)dr2 +

∫ ∞

r1

σα(r2)

r2
dr2

)
. (43)

We emphasize that J̃ differs from the usual classical Coulomb energy.
Now, the true total energy is rewritten as

E = K̃ + J̃ + Ẽxc −
M∑

α=1

∫
σα(rα)

Zα

rα
drα. (44)

Observe that the last term in Eq. (44) follows from the Coulomb external potential.
The exchange-correlation term Ẽxc is defined by Eq. (44). Because of Eq. (40) Eq.
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Ẽxc can be recast as

Ẽxc =
∑
α

Zα

Z
Ẽxc. (45)

The radial equations can be derived by the variation of E with respect to the Pα
i :

Zα

Z

[
−1

2

d2Pα
i (rα)

dr2α
+ li (li + 1)

2r2α
Pα
i (rα) + (

ũα
J (rα) + ũα

xc(rα)
)
Pα
i (rα)

]

− Zα

rα
Pα
i (rα) = ε̃α

i P
α
i (rα), (46)

where

ũα
xc = δ Ẽxc

δ�̄α

. (47)

Equation (46) can be rewritten as

−1

2

d2Pα
i (rα)

dr2α
+ li (li + 1)

2r2α
Pα
i (rα) + (

ũα
J (rα) + ũα

xc(rα)
)
Pα
i (rα)

− Z

rα
Pα
i (rα) = εα

i P
α
i (rα), (48)

where

εα
i = Z

Zα

ε̃α
i . (49)

Introducing the notation

uα(rα) = ũα
J (rα) + ũα

xc(rα) − Z

rα
. (50)

Equation (48) takes the form

− 1

2

d2Pα
i (rα)

dr2α
+ li (li + 1)

2r2α
Pα
i (rα) + uα(rα)Pα

i (rα) = εα
i P

α
i (rα). (51)

Equation (51) can be solved if appropriate approximation for the potential ũα
xc is

available. Then σα can be calculated using Eq. (41). In this paper, however, an orbital-
free approach is proposed and Eq. (51) is applied only in the derivation.
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5 Generating functions

Define now generating functions

ξα(rα) =
∑
i

f α
i λα

i σα
i (rα), (52)

where

σα
i (rα) = [Pα

i (rα)]2. (53)

The factors f α
i are selected as

f α
i = e−βεα

i −γ li (li+1) (54)

with any real β and γ . Observe that the generating function ξα gives σα if β = γ = 0.
ξα can be considered as an extension of the radial densities σα . Note that ξα depends
not only on rα but also on the parameters β and γ . This broadening makes it possible
to derive an orbital-free scheme.

First of all a differential equation is derived for ξα .
Dividing Eq. (51) by Pα

i (rα), differentiating with respect to rα (denoted by ′), then
multiplying by σα

i (rα) we are led to

−1

2
Pα
i (rα)(Pα

i (rα))′′′ + 1

2
(Pα

i (rα))′(Pα
i (rα))′′ − li (li + 1)

r3α
σα
i (rα)

+(uα(rα))′σα
i (rα) = 0. (55)

Multiplying Eq. (51) by (Pα
i (rα))′ and combining it with Eq. (55) we obtain

Pα
i (rα)(Pα

i (rα))′′′ + 3(Pα
i (rα))′(Pα

i (rα))′′ = 2
li (li + 1)

r2α
(σα

i (rα))′

+4uα(rα)(σα
i (rα))′−4εα

i (σα
i (rα))′−2

li (li + 1)

r3α
σα
i (rα)+2(uα(rα))′σα

i (rα).

(56)

We can notice that

∂ξα(rα)

∂β
= −

∑
i

f α
i λα

i εα
i σα

i (rα) (57)

and

∂ξα(rα)

∂γ
= −

∑
i

f α
i λα

i li (li + 1)σα
i (rα). (58)
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Combining Eqs. (55)–(58), we arrive at the following differential equation for ξα

(ξα(rα))′′′ = 8uα(rα)(ξα(rα))′ + 4(uα(rα))′ξα(rα)

+8
∂(ξα(rα))′

∂β
− 4

r2α

∂(ξα(rα))′

∂γ
+ 4

r3α

∂ξα(rα)

∂γ
. (59)

Equation (59) can be rewritten as

1

2
ξα(rα)(uα(rα))′ + uα(rα)(ξα(rα))′ = −F̃α(rα), (60)

where

F̃α(rα) = −1

8
(ξα(rα))′′′ − ∂(ξα(rα))′

∂β
+ 1

2r2α

∂(ξα(rα))′

∂γ
− 1

2r3α

∂ξα(rα)

∂γ
. (61)

It is enlightening to express Eq. (60) in the form

− 1

2
[(ξα(rα))1/2]′′ + [uα(rα) + vP

α (rα)](ξα(rα))1/2 = μ(ξα(rα))1/2. (62)

Equation (62) is a generalizedEuler equation for ξα with the generalized Pauli potential
vP
α satisfying the equation

1

2
ξα(rα)(vP

α (rα))′ + vP
α (rα)(ξα(rα))′ = Fα(rα), (63)

where

Fα(rα) = μ(ξα(rα))′ − ∂(ξα(rα))′

∂β
+ 1

2r2α

∂(ξα(rα))′

∂γ
− 1

2r3α

∂ξα(rα)

∂γ
. (64)

If β = γ = 0 Eq. (62) reduces to the Euler equation for σα

− 1

2
[(σα(rα))1/2]′′ + [uα(rα) + vP

α (rα)](σα(rα))1/2 = μ(σα(rα))1/2, (65)

that is, to Eq. (34) with

uα(rα) + vP
α (rα) = vα(rα) + vα

eff(rα). (66)

Equation (63) can be solved for the generalized Pauli potential

vP
α (rα) = 2

(ξα(rα))2

∫ rα

0
ξα(r1)Fα(r1)dr1. (67)
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vP
α is an extension of the Pauli potential in Eq. (8). Its presence is due to the Pauli
principle. This potential insures the appearance of the shell structure. ξα has also shell
structure.

From ξα , one can immediately recover σα and can calculate the total energy from
Eq. (44). K̃ can also be obtained from ξα . We define the quantity

κα = −1

2

∑
i

f α
i λα

i

∫
Pα
i (rα)

(
d2Pα

i (rα)

dr2α
− li (li + 1)

r2α
Pα
i (rα)

)
drα. (68)

If β = γ = 0, κα is equal to Kα . Using Eqs. (51) and (68) takes the form

κα =
∑
i

f α
i λα

i εα
i

∫ ∞

0
(Pα

i (rα))2drα −
∫ ∞

0
uα(rα)ξα(rα)drα. (69)

Taking into account Eq. (57), we are led to

Kα =
[
−

∫ ∞

0

∂ξα(rα)

∂β
drα −

∫ ∞

0
ξα(rα)uα(rα)drα

]∣∣∣∣
β=γ=0

. (70)

Then K̃ can be gained from Eqs. (38) and (44) provides the total energy.

6 Discussion

In Sect. 4, auxiliary spherical non-interacting systems and Kohn–Sham-like equations
are constructed. These equations do not have to be solved, and they are only used in
the derivation of the equations for the generating functions.

We can look upon the generating function as a generalization of the density. ξα

depends not only on the variable rα but it has twoextra parameters:β andγ . Introducing
the generating function makes it possible to derive a single differential equation for
ξα . Therefore, instead of solving the Kohn–Sham equations, it is enough to solve the
generalized Euler equation (62). It gives an advantage over Kohn–Sham procedure.
On the other hand, it is unfavorable that we have two extra variables. But, as our final
goal is to determine the density σα , we only need ξα and its derivatives at β = γ = 0.
Therefore, it is enough to calculate ξα in the neigborhood of β = γ = 0.

Observe that not only the generating function has a physical meaning at β = γ = 0,
but its derivatives, too.

∂ξα(rα)

∂β
|β=γ=0 = −

∑
i

λα
i εα

i σα
i (rα) (71)

is the negative of the non-interacting kinetic energy density of the center α and

∂ξα(rα)

∂γ
|β=γ=0 = −

∑
i

λα
i li (li + 1)σα

i (rα) (72)
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is the negative of the angular momentum density with respect to the center α. The
importance of the kinetic energy in orbital-free approach is well known. The signif-
icance of taking into account the angular momentum has already been emphasized
[19, 20]. It is an appealing feature of the present approach that the generating function
contains this information in a simple way.

The Euler (34) contain the same chemical potential μ, because each member of the
set has the same asymptotic behavior, and each of them decays as the density of the
molecule [15, 35–37]:

lim
rα→∞

∂�̄α(rα)

∂rα
= − √−8μ . (73)

As it can be seen from the definition (52), the asymptotic behavior of ξα is also governed
by μ.

Equations (62)–(67) provide an orbital-free solution for ξα . One can follow the
steps:

(i) An initial guess for ξα is needed, then Fα is calculated from Eq. (64).
(ii) vP

α can be computed from Eq. (67).
(iii) The solution of Eq. (62) provides ξα . Observe that an approximation for the

potential ũα
xc is needed. Obviously, the accuracy of the results will depend on the

approximation of ũα
xc.

(iv) Steps (i)–(iii) should be repeated until convergence.

Spherical functions have been applied in band structure calculations for a long
time. In the vicinity of a nucleus, the density is almost spherically symmetric. There-
fore, in the so-called muffin-tin approximation proposed by Slater [38], the nuclei are
surrounded by spheres in which spherical potentials are applied, while in the region
between the atomic spheres the potential is taken constant. Nowadays exact muffin-tin
orbitals [39] are extensively used in materials science and engineering. Though the
approach presented in this paper is different, there is some resemblance to the muffin-
tin approximation. Therefore expertise in the latter method might be invaluable and
productive in constructing adequate approximations for the potential ũα

xc. It is expected
that the present approach will be especially suitable for materials science.

In summary, our orbital-free approach is extended to Coulomb systems taking
advantage of the recent version of DFT based on spherically symmetric densities.
A set of spherically symmetric generating functions {ξ} is defined. These functions
having two extra variables are extensions of the spherically symmetric densities. {ξ}
reduces to the set of spherically symmetric densities if the extra variables are equal to
zero. Euler equations are rewritten as Schrödinger-like equations for the square root
of the spherically symmetric generating functions. Generalized Pauli potentials are
defined and are shown that these potentials can be calculated in the knowledge of the
generating functions. The Euler equations can be solved with these Pauli potentials.
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