Skip to main content
Log in

Structure and Physicomechanical Properties of Welded Joints of AISI 321 Steel

  • Published:
Materials Science Aims and scope

We present the results of experimental investigations of the structural-phase state and mechanical properties of welded joints of AISI 321 austenitic steel from thin-walled transformable-volume structures (TVS) of spacecraft application. We estimate the contributions of the phase composition, grain, subgrain, and dislocation structures to the changes in the strength characteristics and the level of local internal stresses in the metal of joints for different conditions of pulse microplasma welding. The optimal technological conditions providing the required mechanical properties of welded structures of the TVS are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B. E. Paton, L. M. Lobanov, and V. S. Volkov, “Metal transformable-volume structures for space engineering,” Acta Astronaut., 110, 50–57. (2015).

    Article  Google Scholar 

  2. L. M. Lobanov, V. S. Volkov, A. V. Yakimkin, V. V. Savitsky, “Functional characteristics improvement of metal transformablevolume structures for space applications,” J. Aerosp. Technol. Manag., 8, No. 1, 55–62 (2016).

    Article  Google Scholar 

  3. B. E. Paton, V. S. Gvozdetskii, D. A. Dudko, et al., Microplasma Welding [in Russian], Naukova Dumka, Kiev (1979).

    Google Scholar 

  4. K. S. Prasad, C. S. Rao, and D. N. Rao, “Study on weld quality characteristics of microplasma arc welded austenitic stainless steels,” Procedia. Eng., 97, 752–757 (2014).

    Article  Google Scholar 

  5. E. Zasimchuk, L. Markashova, O. Baskova, T. Turchak, N. Chausov, V. Hutsaylyuk, and V. Berezin, “Influence of combined loading on microstructure and properties of aluminum alloy 2024-T3,” J. Mater. Eng. Perform., 22, No. 11, 3421–3429 (2013).

    Article  Google Scholar 

  6. L. I. Markashova and O. S. Kushnareva, “Effect of structure on the mechanical properties of the metal of welded joints of aluminum alloys of the Al–Cu–Li system,” Mater. Sci., 49, No. 5, 681–687 (2014).

    Article  Google Scholar 

  7. M. I. Gol’dshtein, V. S. Litvinov, and B. M. Bronfin, Physical Metallurgy of High-Strength Alloys [in Russian], Metallurgiya, Moscow (1986).

    Google Scholar 

  8. H. Konrad, “Work-hardening model for the effect of grain size on the flow stress of metals,” in: Superfine Grain in Metals [Russian translation], Metallurgiya, Moscow (1973), pp. 206–219.

  9. N. J. Petch, “The cleavage strength of polycrystals,” J. Iron Steel Inst., 173, No. 1, 25–28 (1953).

    Google Scholar 

  10. E. Orowan, Dislocations in Metals, AIME, New York (1954).

    Google Scholar 

  11. L. I. Markashova, S. V. Akhonin, G. M. Grigorenko, et al., “Welded joints of refractory titanium alloys doped with silicon. Structure, strength, and crack resistance,” Avtomat. Svarka, No. 11, 7–17 (2012).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Markashova.

Additional information

Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 52, No. 2, pp. 48–53, March–April, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markashova, L.I., Volkov, V.S. & Kushnareva, O.S. Structure and Physicomechanical Properties of Welded Joints of AISI 321 Steel. Mater Sci 52, 194–199 (2016). https://doi.org/10.1007/s11003-016-9943-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-016-9943-z

Keywords

Navigation