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Abstract Let Ng denote a closed nonorientable surface of genus g. For g ≥ 2 the mapping
class groupM(Ng) is generated by Dehn twists and one crosscap slide (Y -homeomorphism)
or by Dehn twists and a crosscap transposition. Margalit and Schleimer observed that Dehn
twists on orientable surfaces have nontrivial roots.Wegive necessary and sufficient conditions
for the existence of roots of crosscap slides and crosscap transpositions.
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1 Introduction

Let Nn
g,s be a connected nonorientable surface of genus g with s boundary components and

n punctures, that is a surface obtained from a connected sum of g projective planes Ng by
removing s open disks and specifying the set � = {p1, . . . , pn} of n distinguished points
in the interior of Ng . If s or/and n equals zero, we omit it from notation. The mapping class
groupM(Nn

g,s) consists of isotopy classes of self-homeomorphisms h : Nn
g,s → Nn

g,s fixing
boundary components pointwise and such that h(�) = �. Themapping class groupM(Sng,s)
of an orientable surface is defined analogously, but we consider only orientation-preserving
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maps. If we allow orientation-reversing maps, we obtain the extended mapping class group
M±(Sng,s). By abuse of notation, we identify a homeomorphism with its isotopy class.

In the orientable case, the mapping class group M(Sg) is generated by Dehn twists
[3]. As for nonorientable surfaces, Lickorish proved that Dehn twists alone do not gen-
erate M(Ng), g ≥ 2. This group is generated by Dehn twists and one crosscap slide
(Y -homeomorphism) [4].

A presentation for M(Ng) using these generators was obtained by Stukow [14]. This
presentation was derived from the presentation given by Paris and Szepietowski [9], which
used as generators Dehn twists and yet another homeomorphisms of nonorientable surfaces,
so-called crosscap transpositions.

Margalit and Schleimer discovered a surprising property of Dehn twists: in the mapping
class group of a closed orientable surface Sg of genus g ≥ 2, everyDehn twist has a nontrivial
root [5]. It is natural to ask if crosscap slides and crosscap transpositions also have a similar
property. The main goal of this paper is to prove the following:

Main Theorem In M(Ng) a nontrivial root of a crosscap transposition (resp. crosscap
slide) exists if and only if g ≥ 5 or g = 4 and the complement of the support of this crosscap
transposition [or crosscap slide] is orientable.

2 Preliminaries

2.1 Crosscap transpositions and crosscap slides

Let N = Ng be a nonorientable surface of genus g ≥ 2. Let α and μ be two simple closed
curves on N intersecting in one point, such that α is two-sided and μ is one-sided. A regular
neighborhood of μ ∪ α is homeomorphic to the Klein bottle with a hole denoted by K . A
convenient model of K is a disk with 2 crosscaps, see Fig. 1. In this figure shaded disks
represent crosscaps, thus the boundary points of these disks are identified by the antipodal
map.

A crosscap transposition Uμ,α specified by μ and α is a homeomorphism of K which
interchanges two crosscaps keeping the boundary of K fixed [9]. It may be extended by the
identity to a homeomorphism of N . If tα is the Dehn twist about α (with the direction of the
twist indicated by small arrows in Fig. 1), then Yμ,α = tαUμ,α is a crosscap slide of μ along
α, that is the effect of pushing μ once along α keeping the boundary of K fixed. Note that
U 2

μ,α = Y 2
μ,α = t∂K .

Remark 2.1 If g is odd, then the complement of K in Ng is a nonorientable surface Ng−2,1,
thus in this case every two crosscap slides [or crosscap transpositions] are conjugate. If g is
even, then the complement of K in Ng can be either a nonorientable surface Ng−2,1 or an

Fig. 1 A crosscap transposition and a crosscap slide
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orientable surface S g−2
2 ,1, therefore in the mapping class group of a surface of even genus

two conjugacy classes of crosscap slides and crosscap transpositions exist.

2.2 Notation

Represent Ng as a connected sum of g projective planes and let μ1, . . . , μg be one-sided
circles that correspond to crosscaps as indicated in Fig. 2. By abuse of notation, we identify
μi with the corresponding crosscap.

If α1, . . . , αg−1 are two-sided circles indicated in the same figure, then for each i =
1, . . . , g − 1 by tαi , ui , yi we denote the Dehn twist about αi , the crosscap transposition
Uμi+1,αi , and the crosscap slide Yμi+1,αi , respectively.

2.3 Relations in the mapping class group of a nonorientable surface

A full presentation forM(Ng) is given in [9,14]. Among others, the following relations hold
in M(Ng):

(R1) uiu j = u jui for i, j = 1, . . . , g − 1, |i − j | > 1,
(R2) uiui+1ui = ui+1uiui+1 for i = 1, . . . , g − 2,
(R3)

(
u1u2 · · · ug−1

)g = 1,
(R4) tαi u j = u j tαi and hence yi u j = u j yi for i, j = 1, . . . , g − 1, |i − j | > 1.

It is straightforward to check that relations (R1)–(R3) imply

(R5)
(
u21u2 · · · ug−1

)g−1 = 1.

Geometrically u1u2 · · · ug−1 is a cyclic rotation of μ1, μ2, . . . , μg and u21u2 · · · ug−1 is a
cyclic rotation of μ2, μ3, . . . , μg around μ1. In particular,

(R6)
(
u1u2 · · · ug−1

)g = (
u21u2 · · · ug−1

)g−1 = t∂Ng,1 in M(Ng,1).

We also have the following chain relation between Dehn twists (Proposition 4.12 of [1]):
if k ≥ 2 is even and c1, . . . , ck is a chain of simple closed curves on a surface S, such that
the boundary of a closed regular neighborhood of their union is isotopic to d , then

(R7)
(
tc1 tc2 · · · tck

)2k+2 = td .

3 Proof of Main Theorem

Remark 3.1 Automorphisms of H1(Ng;R) induced by crosscap transpositions and crosscap
slides have determinant equal to−1, so if a root of a crosscap slide or a crosscap transposition
exists, it must be of odd degree.

Fig. 2 A nonorientable surface Ng
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Note that in order to prove Main Theorem, it is enough to prove it for some (arbitrary
chosen) representatives of conjugacy classes of crosscap slides and crosscap transpositions
(see Remark 2.1).

Let u and y be respectively a crosscap transposition and a crosscap slide supported in
the same Klein bottle K ⊂ Ng and let δ = ∂K . In particular, u2 = y2 = tδ . If N \ K is
nonorientable, then we assume that u = u1, y = y1 and K is a Klein bottle which contains
μ1 and μ2 (Fig. 2).

3.1 The case of g ≥ 5 odd

Let p, q ∈ Z be such that 2p + q(g − 2) = 1. By relations (R6) and (R1),

u21 = tδ = (
u3u4 · · · ug−1

)g−2

u2p1 = (
u3u4 · · · ug−1

)p(g−2)

u1 = ((
u3u4 · · · ug−1

)p
uq1

)g−2
.

Analogously, by relations (R6), (R1) and (R4), y1 = ((
u3u4 · · · ug−1

)p
yq1

)g−2
.

3.2 The case of g ≥ 6 even and Ng\K nonorientable

Let p, q ∈ Z be such that 2p + q(g − 3) = 1. By relations (R6) and (R1),

u21 = tδ = (
u23u4 · · · ug−1

)g−3

u2p1 = (
u23u4 · · · ug−1

)p(g−3)

u1 =
((
u23u4 · · · ug−1

)p
uq1

)g−3
.

Analogously, by relations (R6), (R1) and (R4), y1 =
((
u23u4 · · · ug−1

)p
yq1

)g−3
.

3.3 The case of g ≥ 4 even and Ng\K orientable

Suppose now that Ng \ K is orientable. If c1, . . . , cg−2 is a chain of two-sided circles in
Ng \ K , then by relation (R7),

u2 = t∂K = (
tc1 tc2 · · · tcg−2

)2g−2

(
u2

) g
2 =

((
tc1 tc2 · · · tcg−2

)2g−2
) g

2

u = ((
tc1 tc2 · · · tcg−2

)g
u−1)g−1

.

Analogously, y = ((
tc1 tc2 · · · tcg−2

)g
y−1

)g−1
.

3.4 The case of g = 2

Crosscap slides and crosscap transpositions are primitive in M(N2) because [4]

M(N2) ∼= 〈
tα1 , y1 | t2α1 = y21 = (tα1 y1)

2 = 1
〉

∼= 〈
tα1 , u1| t2α1 = u21 = (tα1u1)

2 = 1
〉 ∼= Z2 ⊕ Z2.
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3.5 The case of g = 3

Remark 3.2 It is known that the mapping class group M(N3) is hyperelliptic [15] and has
the central element � such that M(N3)/〈�〉 is the extended mapping class group M±(S3,10 )

of a sphere with 4 punctures. Two upper subscripts mean that we have four punctures on the
sphere, but one of them must be fixed. This implies [2] that the maximal finite order of an
element inM±(S3,10 ) is 3, and hence the maximal finite order of an element inM(N3) is 6.

Moreover, each of two rotations of order 3 inM±(S3,10 ) are conjugate, which easily implies
that each of two elements of order 6 inM(N3) are conjugate. The details of the proof of the
last statement are completely analogous to that used in [12], hence we skip them.

The same conclusion can also be obtained purely algebraically: it is known [11] that
M(N3) ∼= GL(2,Z) and the maximal finite order of an element in GL(2,Z) is 6. Moreover,
there is only one conjugacy class of such elements in GL(2,Z)—for details see for example
Theorem 2 of [7].

We will show that crosscap transpositions do not have nontrivial roots in M(N3). Suppose
that x ∈ M(N3) exists such that x2k+1 = u1, where k ≥ 1 (see Remark 3.1). Then

x2(2k+1) = x4k+2 = u21 = tδ = 1.

Note that the order of x can not be odd (because otherwise u1 = x2k+1 = 1), it can not equal
2 (because otherwise x = u1), and it is not divisible by 4. Hence, by Remark 3.2, x has order
6. Moreover, by relation (R7),

(
tα1 tα2

)6 = td = 1,

where d is a boundary of a closed regular neighborhood of α1 ∪ α2. Hence x is conjugate
to tα1 tα2 and this contradicts Remark 3.1, because Dehn twists induce automorphisms of
H1(N3;R) with determinant equal to 1 and x2k+1 = u1.

In the case of a crosscap slide the argument is completely analogous, hence we skip the
details.

3.6 The case of g = 4 and N4\K nonorientable.

If N4\K is nonorientable, then δ cuts N4 into twoKlein bottleswith one boundary component:
K and K1. Moreover, as was shown in Appendix A of [13],

M(K ) = 〈
tα1 , u1 | u1tα1 = t−1

α1
u1

〉

M(K1) = 〈
tα3 , u3 | u3tα3 = t−1

α3
u3

〉
.

By abuse of language, we say that tkα1u
m
1 ∈ M(K ) interchanges μ1 and μ2 if and only if m

is odd. Equivalently, elements ofM(K ) which does not interchange μ1 and μ2 are precisely
elements of the twist subgroup ofM(K ) (that is the subgroup of index 2 generated by Dehn
twists). In the same way we define the notion of interchanging μ3 and μ4 for elements of
M(K1).

If x ∈ M(N4) exists such that x2k+1 = u1 and k ≥ 1 (see Remark 3.1), then

x4k+2 = u21 = tδ.

In particular, x commutes with tδ and

tδ = xtδx
−1 = t±x(δ).
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By Proposition 4.6 of [13], up to isotopy of N4, x(δ) = δ. Because u1 does not interchange
two sides of δ and does not reverse the orientation of δ, x has exactly the same properties.
Therefore, we can assume that x is composed of maps of K and K1. Moreover u1 = x2k+1

interchanges μ1 and μ2 and does not interchange μ3 and μ4, hence

x = tk1α1
u2m1+1
1 tk2α3

u2m2
3 = tk1α1

u1t
k2
α3
tm1+m2
δ

x2 = t2k2α3
t2m1+2m2+1
δ .

But then

tδ = (x2)2k+1 = t2k2(2k+1)
α3

t (2m1+2m2+1)(2k+1)
δ

and Proposition 4.4 of [13] implies that k2 = 0 and (2m1 + 2m2 + 1)(2k + 1) = 1 which is
a contradiction.

In the case of a crosscap slide the argument is completely analogous, hence we skip the
details.

Remark 3.3 As was shown by McCullough, Rajeevsarathy [6] and independently by Mon-
den [8], roots of Dehn twists constructed by Margalit and Schleimer [5] are of maximal
possible degree. Since the geometric nature of our constructions of roots of crosscap slides
and crosscap transpositions is quite similar to that of Margalit and Schleimer, it is natural to
ask if the roots constructed in the proof of Main Theorem are also of maximal degree. We
plan to answer this question in subsequent work, but it turns out that even in the case of Dehn
twists on nonorientable surfaces, the study of possible degrees of their roots is significantly
more complicated than in the orientable case—see for example Sect. 4 [10].

4 Roots of elementary braids in the mapping class group of n-punctured
sphere

Margalit and Schleimer observed in [5] that if g ≥ 5, then roots of elementary braids in
M(Sg0 ) exist. Main Theorem implies slightly stronger version of that result.

Corollary 4.1 An elementary braid in the mapping class group M(Sn0 ) or in the extended
mapping class group M±(Sn0 ) of n-punctured sphere has a nontrivial root if and only if
n ≥ 5.

Proof By Proposition 2.4 of [9], there is a monomorphism

ϕ : M±(Sg0 ) → M(Ng)

which is induced by blowing up each puncture to a crosscap. In particular, this monomor-
phism sends elementary braids to crosscap transpositions. Moreover, all roots of crosscap
transpositions constructed in the proof of Main Theorem are elements of ϕ(M(Sg0 )). ��
Acknowledgements The authors would like to thank Błażej Szepietowski for valuable comments on an
earlier version of the manuscript.
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