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Abstract
Machine learning (ML) applications have automated numerous real-life tasks, improving 
both private and public life. However, the black-box nature of many state-of-the-art models 
poses the challenge of model verification; how can one be sure that the algorithm bases its 
decisions on the proper criteria, or that it does not discriminate against certain minority 
groups? In this paper we propose a way to generate diverse counterfactual explanations 
from multilinear models, a broad class which includes Random Forests, as well as Bayes-
ian Networks.
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1 Introduction

The wide adoption of machine learning models in critical applications (Lv et  al., 2021; 
Weissler et  al., 2021; Díaz et  al., 2019; Vaishya et  al., 2020) has sparked a great inter-
est into developing approaches that allow for gaining insights about a model’s decision-
making process. This is motivated by the fact that many state-of-the-art models function as 
black-boxes, i.e. their internal reasoning is elusive, which leads to a great challenge; how 
can one be sure that a model bases its decisions on the proper criteria, or that it does not 
discriminate against certain groups?

Bayesian networks (BNs) have been traditionally deployed in applications where such 
considerations are crucial, due to their ability to clearly represent relationships between 
variables, and incorporate causal information. One of the most celebrated properties of 
BNs is their ability to compute counterfactual quantities of the from “what would have 
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been the value of Y, had X been equal to x?”, which has been extensively utilized in high-
stakes applications, such as in finance (Dhar, 1998; Fatum & Hutchison, 2010), health-
care (Prosperi et al., 2020; VanderWeele, 2020), and criminal justice (Mishler et al., 2021; 
Sampson et al., 2006).

Having said that, one of the challenges of computing counterfactual quantities is that 
they require a very careful specification of the mechanisms that underlie the interactions of 
all the variables included in the model. This is a highly non-trivial task, usually involving 
domain-expert knowledge as well as hand-crafting the final models. However, ML models 
often involve a prohibitively high number of variables to allow for accurately specifying 
every interaction. Complications like this, have led to the emergence of a related line of 
research within the field of explainability in AI (XAI), where the objective is to identify 
simplified “computational” counterfactuals. The term computational reflects the underly-
ing idea of this approach, where a classification model is treated as a function, and, given 
an instance, X, the objective is to find a counterfactual instance, Y, such that X and Y are as 
close as possible, but the model predicts a different class for each of them.

This line of research has led to the development of a general framework for producing 
counterfactual instances for any differentiable classification model, as described in Wachter 
et  al. (2017). Building on top of that, the authors in Mothilal et  al. (2020) proposed a 
method for generating diverse counterfactuals for differentiable models, while the work in 
Russell (2019) addressed some technical challenges, proposing a new framework that is 
based on mixed integer programming (MIP).

In this work, we extend the framework in Russell (2019) to the non-linear case, so it 
allows for generating computational counterfactuals for multilinear models. This model 
class includes Bayesian network classifiers (BNCs) (Friedman et al., 1997), as well as deci-
sion trees, and random forests. In order to address the BNC case we utilize discriminative 
SPNs (Gens & Domingos, 2012), since they subsume all BNCs, allowing for studying the 
latter under a unified framework. More specifically, we present the following contributions:

• We show that by taking advantage of a model’s multilinear structure, it is possible to 
formulate an integer linear program (ILP) that is guaranteed to generate valid counter-
factuals.

• We demonstrate how one can seamlessly generate multiple diverse counterfactuals 
using the presented framework.

• We demonstrate how to apply it to decision trees (DTs), random forests (RFs), as well 
as discriminative SPNs, possibly resulting into an infinite set of counterfactuals.

• We show that the presented framework generalizes other existing frameworks, while we 
also discuss how it can be easily adjusted to generate alternative forms of explanations.

2  Related work

Counterfactuals have a long standing history within philosophy (Lewis, 1974; Ruben, 
1990), as well as within the causal modelling community (Pearl, 2009). Furthermore, 
they have found many applications into XAI, where they have gained significant traction 
in recent years, partly because there is evidence suggesting that non-technical audience 
feels more comfortable interpreting such explanations over alternatives, such as proposi-
tional rules (Binns et al., 2018). Moreover, counterfactuals inherently convey a notion of 
“closeness” to the actual world, in the sense that they allow for detecting a set of minimal 
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changes that can alter a model’s decision. In the context of XAI, computing a counterfac-
tual instance corresponds to finding a solution to the following problem:

where f (⋅) is a classifier, d(⋅, ⋅) is a distance function, x is the factual instance, and k is the 
category we would like the counterfactual instance, x′ , to be classified into.

One of the most influential approaches to solving this problem, was presented in the 
seminal work of Wachter et al. (2017), which is based on Lagrange multipliers, assuming 
the classifier is differentiable. Building on top of the results in Wachter et al. (2017), Rus-
sell (2019) proposed a modified framework, based on mixed integer programming (MIP), 
to generate counterfactuals for linear models. As the author notes, this approach resolves 
some technical issues of Wachter et al. (2017), while it also provides a principled way for 
generating diverse counterfactuals, since utilizing only a single counterfactual can be overly 
restrictive, impeding a better model understanding. In this context, diversity refers to gen-
erating multiple different counterfactual instances for the same factual instance, by forcing 
the resulting counterfactual to respect various constraints. This is equivalent to incorporat-
ing additional constraints in (1), on top of f (x�) = k . For example, a feature, xi , could be 
forced to lie within a certain range, which corresponds to adding the constraint � ≤ xi ≤ � . 
This is important for many applications, since it allows for inspecting a model from multi-
ple angles, which can facilitate uncovering biased or otherwise undesired behaviour.

In addition to the above, the MIP approach to generating counterfactuals has been 
explored in a series of additional works as well. In Cui et al. (2015); Tolomei et al. (2017) 
the authors propose such a method, especially designed for tree ensemble models. The 
resulting optimization problems are guaranteed to output a counterfactual instance (or pos-
sibly an infinite set of counterfactuals), however they are only applicable to tree models, 
and they do not support incorporating diversity constraints. Alternative MIP formulations 
can be found in Kanamori et al. (2020, 2021), which are applicable to linear models, how-
ever it is again unclear how to incorporate diversity constraints, as well as whether it is 
possible to apply these methods to BNCs. Other approaches, such as Karimi et al. (2020); 
Mohammadi et  al. (2021), utilize satisfiability modulo theory (SMT) solvers in order to 
generate counterfactuals, by first encoding a model, such as a neural network, as a SMT 
formula, and then using a SMT solver to find satisfying assignments. Such approaches 
readily allow for generating diverse counterfactuals, however, they require normalized dis-
tance functions, so it is unclear whether it is possible to encode the relative importance/
cost of modifying a feature. For example, it may be that a categorical feature is much more 
probable to be in state k, compared to the remaining states, however, the proposed distance 
functions treat all states as equally probable, leading to counterfactuals that may be far 
from the data manifold. It is also worth noting that SMT solvers result in explicit variable 
assignments, so they do not support infinite counterfactual sets, rather only a single coun-
terfactual is computed each time the solver in invoked.

Apart from the aforementioned approaches, the problem of generating counterfactual 
instances has been considered from alternative angles as well. For example, the method in 
Verma et al. (2022) formulates this problem as a Markov decision process and then utilizes 
reinforcement learning techniques to compute counterfactuals. This approach is applicable 
to any model, while it also allows for employing complex distance functions, however it is 
unclear whether diversity constraints or infinite counterfactual sets are supported by this 
framework. In a different line of work (Shih et al., 2018; Shi et al., 2020; Choi et al., 2020), 

(1)
argmin

x�
d(x, x�)

s.t. f (x�) = k
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counterfactual generation is based on utilizing intermediate architectures, such as OBDDs 
(Bryant, 1992). At the core of these works lies the idea of compiling a classifier into a 
structure that supports counterfactual generation in polynomial time. An advantage of this 
approach is that such models usually support answering a number of different queries in 
polynomial time, not only counterfactuals. That being said, the compiled model can be 
exponentially larger than the original one, while at the same time this approach supports 
only a single distance function, thus posing limitations on the expressiveness and flexibility 
of the resulting counterfactuals. The interested readers are referred to Verma et al. (2020) 
for an in-depth review of the literature related to counterfactual explanations.

3  Background

In this section we are going to briefly introduce the models we are going to utilize in the 
following.

3.1  Decision trees

Decision trees (DTs) are tree-like structures that contain a set of conditional control state-
ments, such as X ≤ a . Each assignment is consistent with exactly one root-to-leaf path, 
corresponding to the model’s outcome. The control statements are arranged in a hierar-
chical manner, where intermediate nodes represent decisions and leaf nodes can be either 
class labels (for classification problems) or continuous quantities (for regression problems).

The majority of decision tree learning algorithms operate in a top-down manner, itera-
tively partitioning the whole dataset into smaller ones, conditioning on the values of the 
feature that contains the most information, in each iteration. This has led to the develop-
ment of a number of metrics that quantify the amount of information that is gained, when 
splitting the dataset according to a specific feature, such as Gini impurity (Bishop, 2006). 
In turn, these metrics can be used in order to design algorithms that learn DTs from data, 
such as CART (Moore II, 1987).

An advantage of employing DTs is that their internal rule-based architecture is rela-
tively easy to inspect, allowing for assessing the quality of the model. This is one of the 
major reasons why DTs are usually utilized in cases where the model’s understandability 
is essential, or in fields like medicine. However, large DTs containing a lot of rules are not 
easy to interpret anymore, requiring additional explainability tools in order to reason about 
their internal behaviour (Belle & Papantonis, 2020).

3.2  Random forests

As we discussed in the previous section, DTs have been employed in various applications 
due to the transparency they exhibit, at least as long as they are kept at a reasonable size. 
However, one of their major limitations is their tendency to overfit the given dataset, lead-
ing to high variance models that fail to maintain good performance when dealing with new 
data.

Random forests (RFs) aim at overcoming this challenge by combining multiple 
trees, resulting in more stable models with lower variance. The main insight underlying 
this approach is to sample with replacement from the whole dataset in order to con-
struct multiple new datasets, thus implementing the idea of bagging (Breiman, 1996). 
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Following that, a decision tree is trained over each of these newly acquired datasets, 
leading to an ensemble of independent trees. Then, in prediction time, an aggregation 
measure, such as majority voting (for classification) or averaging (for regression), com-
bines the predictions of each tree in order to generate the prediction of the whole forest.

The procedure described above results in very expressive and accurate models, how-
ever this comes at the expense of interpretability, since the whole forest is far more 
challenging to explain, compared to single decision trees. This has led to the develop-
ment of various techniques that attempt to explain the inner reasoning of a RF (Belle & 
Papantonis, 2020).

3.3  Sum‑product networks

Sum-product networks (SPNs) are rooted directed graphical models that provide for an 
efficient way of expressing a joint distribution that is defined over a Bayesian network 
(BN). Assuming all variables are binary (or categorical, in general) SPNs encode this 
distribution as a multilinear function, 

∑
x
f (x)

∏N

n=1
1xn

 . Here f (⋅) is the (possibly unor-
malized) probability distribution of the BN, x is a vector containing all the variables of 
the model, i.e., x1,… , xN , the summation is over all possible states, and 1xn

 is the indi-
cator function (Darwiche, 2003). In its simplest form, this function contains 2N terms, 
however, when context-specific independence among the variables is present, it is pos-
sible to obtain a compact factorized representation, that is not exponential in the number 
of the model’s variables.

SPNs are strictly more efficient than distributions that are defined over BNs using 
CPDs, since any such distribution can be transformed to a SPN in polynomial time and 
space, while the converse is not true (Zhao et al., 2015). Furthermore, SPNs generalize a 
number of well known models (Rooshenas & Lowd, 2014), such as latent tree (Choi et al., 
2011). On top of that, computing marginal or conditional probabilities in SPNs is linear in 
its size, making them an appealing candidate for practical applications. Since we are con-
sidering classification problems, we are interested in discriminative SPNs (Gens & Domin-
gos, 2012), that encode the conditional distribution of a target variable given some predic-
tors, while they also subsume Bayesian network classifiers (BNCs) (Darwiche, 2003). For 
example, Fig. 1a,b show the two different representations of a naive Bayes classifier.

Fig. 1  BN and SPN representations of the same Naive Bayes model
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4  Problem derivation

In this section we introduce our approach for generating counterfactuals, inspired by Rus-
sell (2019), but addressing one of its key limitations; the range of models it applies to. Spe-
cifically, we extend the existing framework to multilinear models, such as DTs and BNCs, 
as well as ensembles thereof that utilize majority voting, such as RFs. In what follows we 
assume that all variables are binary, to allow for an easier presentation. However, we pro-
vide an extension to the non-binary case, in Sect. 8.

Before going any further, we begin with defining a quantity similar to the decision func-
tion, developed in Shih et al. (2018), as follows:

Definition 1 Let G ∶ X → {0, 1} be a binary classification function, and PG
0
(X),PG

1
(X) 

be multilinear polynomials of indicator variables, where all coefficient are equal to 1 and 
there is no constant term. Then PG

0
(X) (respectively, PG

1
(X) ) is called the 0-decision (resp. 

1-decision) polynomial of G, iff G(X) = 0 ⇔ PG
0
(X) = 1 (resp. G(X) = 1 ⇔ PG

1
(X) = 1)

Decision polynomials provide for a multilinear representation of arbitrary binary clas-
sifiers. In Shih et  al. (2018), decision functions play a similar role, however there is no 
requirement for them to be multilinear. In our work, we have this additional condition in 
order to be able to derive an optimization problem in ILP format.

In the remaining of this section, we derive some results that hold for decision polynomi-
als, in general. In the following subsections we make the necessary adjustments to apply 
the developed framework to DTs, RTs and BNCs. The next proposition follows immedi-
ately from the definition, and will be used extensively throughout the rest:

Proposition 2 Let G ∶ X → {0, 1} , and PG
0
(X),PG

1
(X) be the decision polynomials. Then 

∀x ∈ X PG
0
(x) + PG

1
(x) = 1

The following statement is a simple observation that since each term of a decision poly-
nomial is equal to either 0 or 1, in order for the polynomial to output 0, each term has to be 
equal to 0.

Proposition 3 Let G ∶ X → {0, 1} , and PG
0
(X),PG

1
(X) be the decision polynomi-

als. Assuming PG
0
(X) = T1(X) + T2(X) +⋯ + Tk(X) , where each Ti ∈ {0, 1} , then 

PG
0
(X) = 0 ⇒ T1(X) = T2(X) = ⋯ = Tk(X) = 0 . The same holds for PG

1
(X).

Proposition 3 implies that in order to make sure that a decision polynomial outputs 0, it 
is enough to make sure that each monomial equals 0. The next challenge is due to the fact 
that these monomials are products of indicator functions, not linear combinations of them. 
This situation impedes the formulation of generating counterfactuals as a linear optimiza-
tion problem. A key insight for overcoming this difficulty is that since indicator functions 
can be equal to either 0 or 1, making sure that not all of them are equal to 1 is sufficient to 
guarantee that their product is equal to 0. The following proposition states a simple condi-
tion that leads to this outcome.

Proposition 4 Let X1,X2,… ⋅ Xk ∈ {0, 1} , then X1 ⋅ X2 ⋯Xk−1 ⋅ Xk = 1 ⇒ X1 + X2
+⋯ + Xk = k and X1 ⋅ X2 ⋯Xk−1 ⋅ Xk = 0 ⇒ X1 + X2 +⋯ + Xk ≤ k − 1.
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At this point, Propositions 3 and 4 already provide for a set of constraints that are 
sufficient to ensure that a datapoint is classified as either 0 or 1. For example, if the 
goal is to generate an instance that belongs in the 1-class, then it is enough to consider 
the 0-decision polynomial and for each term, say X1 ⋅ X2 ⋯Xk−1 ⋅ Xk , add the constraint 
X1 + X2 +⋯ + Xk ≤ k − 1 . This procedure guarantees that the solution to the problem, 
X , satisfies PG

0
(X) = 0 ⇒ PG

1
(X) = 1 , so it is classified as 1.

However, having said that, storing both polynomials requires additional resources, 
while it could also be the case that one of them is significantly smaller than the other 
one, so it would be preferable to express the problem in terms of this polynomial to end 
up with a more compact optimization problem. A natural way to address this situation 
would be to define a set of constraints that when satisfied force a term in the decision 
polynomial to be equal to 1, and the rest equal to 0. The following proposition provides 
such a set of constraints:

Proposition 5 Let P0(X) = X11 ⋅ X12 ⋯X1k + X21 ⋅ X22 ⋯X2m +⋯ + Xn1 ⋅ Xn2 ⋯Xnl , where 
each Xi ∈ {0, 1} , be the 0-decision polynomial of a model. Furthermore, let the constraints 
X11 + X12 ⋯ + X1k ≥ k ⋅ �1,X21 + X22 ⋯ + X2m ≥ m ⋅ �2,… ,Xn1 + Xn2 ⋯ + Xnl ≥ l ⋅ �n,

∑n

i=1
�i = 1, 

where �i ∈ {0, 1} . If an assignment, X’ , satisfies these constraints, then P0(X’) = 1 . An 
analogous statement holds for P1(X).

Proof Let X be an assignment that satisfies all the constraints. From the constraint ∑n

i=1
�i = 1 we have that there is a j, such that �j = 1 . This �j appears in an additional 

constraint of the form Xj1 + Xj2 ⋯ + Xjp ≥ p ⋅ �j ⇒ Xj1 + Xj2 ⋯ + Xjp ≥ p . However, it 
also holds that Xj1 + Xj2 ⋯ + Xjp ≤ p , so putting these two expressions together we have 
that Xj1 + Xj2 ⋯ + Xjp = p ⇒ Xj1 ⋅ Xj2 ⋯Xjp = 1 , by proposition 4, which means that 
P0(X) = 1 .   ◻

We have now developed most of the the necessary machinery to formulate a coun-
terfactual generating optimization problem, shown in Algorithm  1. In the following 
subsections we address the first two points in Algorithm 1, providing ways to recover 
the DPs of DTs, RFs and BNCs, as well as discussing how to set the weights of the 
weighted l1 norm, which is going to serve as our objective function. Furthermore we 
provide some adjustments that need to be made in order to take into account the charac-
teristics of the aforementioned models.
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5  Counterfactuals for DTs

Decision trees can be naturally seen as a collection of rules, so in this section we will examine 
how this set of rules can be used in order to construct a tree’s decision polynomial. Transform-
ing DTs to equivalent rule-based classifiers is a well studied problem (Quinlan, 1987). They 
key observation however, is that it is possible to derive a multilinear representation of a DT 
over the set of rules it naturally induces.

An example of the general process can be seen in Fig. 2a, which contains a very simple 
decision tree. It is defined over two continuous variables, X1,X2 , but it can also be seen as a 
function over its internal rules, X1 ≤ 10,X2 ≤ 50,X2 ≤ 20 . Utilizing the latter, and traversing 
the DT bottom-up, it is not difficult to see that the decision polynomials are:

where 1 is the indicator function.
The 1-DT contains all the rules that the DT utilizes to classify an instance in the 1-cate-

gory, while the 0-DT follows an analogous reasoning. In both polynomials, all monomials are 
monic, as well as there is no constant term. Furthermore, since for each possible assignment 
only one root-to-leaf path will be satisfied, each polynomial outputs either 0 or 1, so they are 
indeed valid DPs. This process exemplifies the general reasoning, which remains unaltered, no 
matter how large a DT is.

Having the decision polynomials, we are now ready to put all the pieces together. To this 
end, let d = (X1,X2) be a factual datapoint of interest. We utilize the weighted l1 norm, ‖ ⋅ ‖1,w , 
and the rule representation of the DT to define the distance between two points as follows:

where w1,w2,w3 are constants. This is the objective function of the final optimization prob-
lem. The last step is to remove the absolute values from the objective function. This is sim-
ple to do, since the values of the indicators 1[X1 ≤ 10],1[X2 ≤ 20],1[X2 ≤ 50] are known 
quantities, and 0 ≤ 1[⋅] ≤ 1.

To go on with our example let us also assume that d(X1,X2) satisfies 
X1 ≤ 10, 20 < X2 ≤ 50 , so it is classified into the 1 class, and that we want to utilize the 
0-DP. Applying Proposition 5, the final optimization problem is:

PG
1
(X1,X2) = 1[X1 ≤ 10] ⋅ 1[X2 ≤ 50] + (1 − 1[X1 ≤ 10]) ⋅ 1[X2 ≤ 20],

PG
0
(X1,X2) = 1[X1 ≤ 10] ⋅ (1 − 1[X2 ≤ 50]) + (1 − 1[X1 ≤ 10]) ⋅ (1 − 1[X2 ≤ 20]),

‖d − d�‖1,w = w1�1[X1 ≤ 10] − 1[X�
1
≤ 10]� + w2�1[X2 ≤ 20] − 1[X�

2
≤ 20]�

+ w3�1[X2 ≤ 50] − 1[X�
2
≤ 50]�,

Fig. 2  Examples of decision trees and random forests
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The solution of this problem is guaranteed to be classified as 0. Of course it depends on the 
values of w1,w2,w3 , but it is going to be an infinite set of solutions, regardless. For exam-
ple, if the resulting solution turns out to be 1[X�

1
≤ 10] = 1,1[X�

2
≤ 20] = 1[X�

2
≤ 50] = 0 , 

then every element of the set {(X1,X
�
2
) ∶ X�

2
> 50} is a valid counterfactual to d, with 

respect to the decision tree. This is an extension of the framework in Russell (2019), where 
the outcome was a single point.

Finally, we discuss the amount of constraints that has to be added within the model. 
As the DPs encode the root-to-leaf paths of the decision tree, the amount of constraints 
depends on the number of distinct root-to-leaf paths, m. The added flexibility of expressing 
our framework using either of the two DPs, allows for efficiently handling situations that 
would be otherwise problematic. For example, if there is a DT having only one path that 
leads to a 0-leaf, and all the remaining ones lead to a 1-leaf, then we can encode everything 
using the 0-DP in a highly efficient manner, using a single constraint, instead of m − 1 
ones. This demonstrates that the worst-case scenario is when there is an equal number of 
0-leaf and 1-leaf paths, in which case the cost of encoding the constraints is the same, no 
matter which DP is utilized. This means that in the worst case O(m

2
) constraints would be 

necessary, each one involving O(p) variables, where p is the length of the longest path in 
the tree.

6  Counterfactuals for RFs

In this section, we examine how to handle ensembles of multilinear models, using RFs as 
an example. Although the process is similar in spirit, incorporating information from mul-
tiple models poses an additional challenge. For example, looking at Fig. 2b we can verify 
that the 1-DP of each tree is:

As usual, each individual polynomial encodes all the 0 or 1 assignments of each individual 
tree, but how can we combine them all together so they encode the behaviour of the for-
est? A first remark is that in order to make sure that the model outputs, for example, 1, it 
is enough to enforce a constraint that at most one 0-decision polynomial outputs 1. This 
would mean that the outcome of at least 2 out of the 3 decision trees is equal to 1, so the 
whole forest has an output of 1, assuming majority voting.

This kind of reasoning can be applied to ensembles will an arbitrary number of trees, 
and will be the base of extending the current framework. In fact, it turns out that this 

min w1(1 − 1[X�
1
≤ 10]) + w21[X

�
2
≤ 20] + w3(1 − 1[X�

3
≤ 50])

s.t. 1[X�
1
≤ 10] + (1 − 1[X�

2
≤ 50]) ≥ 2 ⋅ �1,

(1 − 1[X�
1
≤ 10)] + (1 − 1[X�

2
≤ 20]) ≥ 2 ⋅ �2,

�1 + �2 = 1

T1 ∶ P
T1
1
(X1,X2,X3) = 1[X2 ≤ 1] ⋅ 1[X3 ≤ 2] + (1 − 1[X2 ≤ 1]) ⋅ 1[X3 ≤ 10],

T2 ∶ P
T2
1
(X1,X2,X3) = 1[X1 ≤ 5] ⋅ 1[X2 ≤ 2],

T3 ∶ P
T3
1
(X1,X2,X3) = 1[X1 ≤ 3] ⋅ 1[X3 ≤ 5] + (1 − 1[X1 ≤ 3]) ⋅ (1 − 1[X2 ≤ 6])
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approach corresponds to a generalization of the one we presented for DTs, as we show 
at the end of this section. The following proposition provides for a way to encode the 
fact that a decision polynomial is equal to 1.

Proposition 6 Let PG
0
(X) = X11 ⋅ X12 ⋯X1k + X21 ⋅ X22 ⋯X2m +⋯ + Xn1 ⋅ Xn2 ⋯Xnl , where 

each Xi ∈ {0, 1} , be the 0-decision polynomial of a model. Furthermore, let the constraints 
X11 + X12 ⋯ + X1k − k ≤ � − 1,X21 + X22 ⋯ + X2m − m ≤ � − 1,… ,Xn1 + Xn2 ⋯ + Xnl − l ≤ � − 1  , 
where � ∈ {0, 1} . Then, � = 0 ⇒ PG

0
(X) = 0 . An analogous statement holds for PG

1
(X).

Proof If � = 0 , the constraints can be rewritten as:

By Proposition 4, this means that all terms in the 0-DP are zero, so P0(X) = 0 .   ◻

Proposition 6 can be used as an indicator of whether a DT outputs 0 or 1, but it can 
be easily extended so it applies to a RF. For example, assuming we utilize the 0-DPs to 
generate an instance that is classified as 1, adding this set of constraints for every DT in 
the RF and demanding that at least half of the corresponding indicators are equal to 0, 
we enforce that the majority of the DTs have an outcome equal to 1, so the whole forest 
outputs 1.

Furthermore, as it was the case with DTs, utilizing Proposition 6 and both DPs it is now 
possible to state all the necessary constraints to ensure the desired outcome. However, the 
same considerations as before apply to the RF case, so it would be desirable to be able to 
express the optimization problem in terms of a single DP. As it turns out, it is possible to 
extend Proposition 5 so it can handle the RF case as well:

Proposition 7 Let T1, T2,… , Tm be the DTs of a RF F. For each Tj , consider PTj

0
(X) and add 

all the constraints appearing in Proposition 5, except for the last one, which is replaced by ∑n

i=1
�ji = �j , where �ji appears in the i-th constraint of the j-th tree and �j ∈ {0, 1} is a 

newly introduced variable. Finally, add the constraint 
∑m

i=1
𝛿i >

�
m−1

2

�
 . If an assignment, 

X′ , satisfies these constraints, then PF
0
(X�) = 1.

Proof The last constraint enforces that more that half of the �i ’s are equal to 1. The result 
follows, since each �i is an indicator a DT’s outcome. This means that the majority of the 
DTs classify the resulting instance in the desired category.   ◻

These results connect the behaviour of a single model to the behaviour of the ensemble, 
allowing to control the number of models that output a certain outcome. However, tree 
ensembles present an additional challenge that needs to be addressed; that is, we need to 
make sure that the solution of the optimization problem is consistent. In this setting, we use 
the term consistency in the sense that if the solution dictates that a condition of the form 

X11 + X12 ⋯ + X1k ≤ k − 1

X21 + X22 ⋯ + X2m ≤ m − 1

⋯

Xn1 + Xn2 ⋯ + Xnl ≤ l − 1
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X ≤ � holds, then all the conditions of the form X ≤ � , where � ≤ � hold as well. Further-
more, by the same reasoning, if a condition X ≤ � does not hold, then no condition X ≤ � , 
where � ≥ � should hold. To this end, we have the following definition:

Definition 8 Let T1, T2,… , Tn be DTs and X one of the variables in their scope. We define:

• Fx = {X ≤ a ∶ X ≤ a ∈ F(Ti), i ∈ {1, 2,… , n}} , where F(Ti) is the set of all the internal 
rules in Ti . In turn, Fx is the set of all the rules among all the trees that involve variable X.

• Furthermore, let X ≤ a be an element of Fx , and define F+
x (X ≤ a) = {X ≤ b:

X ≤ b ∈ Fx, b ≥ a} , the set of rules involving X where the threshold is larger than a, and 
F−
x
(X ≤ a) = {X ≤ b ∶ X ≤ b ∈ Fx, b ≤ a} , the rules where the threshold is smaller than 

a.

The following proposition provides a way to achieve consistency by enforcing a set of 
constraints:

Proposition 9 Let T1, T2,… , Tn be DTs that form a RF. Then, the constraints ∑
fi∈F

+
x
(X≤a) 1[fi] ≥ �F+

x
(X ≤ a)� ⋅ 1[X ≤ a] and 

∑
fi∈F

−
x
(X≤a) 1[fi] ≤ �F−

x
(X ≤ a)� ⋅ 1[X ≤ a] , 

guarantee that the final solution is consistent wrt the feature X ≤ a.

Proof Let X ≤ a be a feature in a RF. The first case we are going to examine is when this 
rule is not satisfied, meaning that 1[X1 ≤ a] = 0 . Then, the first constraint reduces to ∑

fi∈F
+
x
(X≤a) 1[fi] ≥ 0 , which always holds. The second constraint however becomes ∑

fi∈F
−
x
(X≤a) 1[fi] ≤ 0 , which means that 

∑
fi∈F

−
x
(X≤a) 1[fi] = 0 , forcing all rules within 

F−
x
(X ≤ a) to be false as well, thus guaranteeing consistency wrt to the feature X ≤ a.
The other case we need to examine is when 1[X1 ≤ a] = 1 . Then, the first constraint 

becomes 
∑

fi∈F
+
x
(X≤a) 1[fi] ≥ �F+

x
(X ≤ a)� , which implies that all rules within F+

x
(X ≤ a) are 

also satisfied. The second constraint becomes 
∑

fi∈F
−
x
(X≤a) 1[fi] ≤ �F−

x
(X ≤ a)� , which 

always holds.   ◻

Looking at Proposition 9 we see that two constraints per feature are enough to guarantee 
consistency. We can now examine the number of constraints that are required in order to gen-
erate a counterfactual set from a RF. Clearly, we have to include the counterfactual generat-
ing constraints as well as the consistency ones. The former, amounts to incorporating the DP 
of each tree in the forest. As discussed in the previous section, assuming there are N trees, 
O(

Nm

2
) constraints are required in the worst case, where m is the maximum number of distinct 

paths among all N trees. For the latter, we have to add two constraints per feature,meaning 
that O(NF∗) , where F∗ = maxT1,…,TN

(FTi
) , constraints are required. Combining these together, 

in the worst case O(N(m
2
+ F∗)) constraints are needed to define a counterfactual generating 

problem.
We are now ready to demonstrate how to generate counterfactuals for RFs, by combining 

Propositions 6, 5 and 9. Returning to our running example, let d = (X1,X2,X3) be a datapoint 
that satisfies the conditions X1 ≤ 3, X2 ≤ 1, X3 ≤ 2 , meaning that all 3 DTs classify d as 1. 
Assuming we utilize the 1-DPs, the following generates a set of counterfactuals that are clas-
sified as 0:
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Finally, we show that the optimization schema for RTs is indeed a generalization of the DT 
one. Without loss of generality, we can assume that we are using the 0-DP to formulate the 
optimization problem, since the same argument applies to the other case as well. Let T be a 
DT, and let us first consider the case of generating an instance that is classified as 1. To this 
end, we will utilize the constraints in Proposition 6, treating T as a trivial RF, F, comprised 
of just a single tree.

The 0-DP of F is identical to the 0-DP of T, so PF
0 (X) = PT

0 (X) = X11 ⋅ X12 ⋯
X1k + X21 ⋅ X22 ⋯X2m +⋯ + Xn1 ⋅ Xn2 ⋯Xnl . Following the procedure in proposition 6, we 
have to add the constraints:

where the implication follows from the fact that since �1 ≥ 0 , the constraint �1 ≤ 0 leads 
to �1 = 0 . Looking at the right-hand side, we see that these are exactly the constraints that 
result from Proposition 4, thus establishing the desired equivalence for this case.

Furthermore, we have to examine the case of generating an instance that is classified as 0, 
using the 0-DT. Again, treating T as a trivial RF, Proposition 7 can be used to obtain the fol-
lowing set of sufficient constraints:

minw1(1 − 1[X1 ≤ 5]) + w2(1 − 1[X1 ≤ 3]) + w3(1 − 1[X2 ≤ 1])

+ w4(1 − 1[X2 ≤ 2]) + w5(1 − 1[X2 ≤ 6]) + w6(1 − 1[X3 ≤ 2])

+ w7(1 − 1[X3 ≤ 10]) + w8(1 − 1[X3 ≤ 5]) s.t.

1[X2 ≤ 1] + 1[X3 ≤ 2] − 2 ≤ �1 − 1,

1 − 1[X2 ≤ 1] + 1[X3 ≤ 10] − 2 ≤ �1 − 1

1[X1 ≤ 5] + 1[X2 ≤ 2] − 2 ≤ �2 − 1,

1[X1 ≤ 3] + 1[X3 ≤ 5] − 2 ≤ �3 − 1

1 − 1[X1 ≤ 3] + 1 − 1[X2 ≤ 6] − 2 ≤ �3 − 1,

�1 + �2 + �3 ≤ 1

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

0 generating constraints

1[X1 ≤ 5] ≥ 1[X1 ≤ 3]
�
X1 consistency constraints

1[X2 ≤ 2] + 1[X2 ≤ 6] ≥ 21[X2 ≤ 1],

1[X2 ≤ 6] ≥ 1[X2 ≤ 2]

1[X2 ≤ 1] ≤ 1[X2 ≤ 2],

1[X2 ≤ 1] + 1[X2 ≤ 2] ≤ 21[X2 ≤ 6]

⎫⎪⎬⎪⎭
X2consistency constraints

1[X3 ≤ 5] + 1[X3 ≤ 10] ≥ 21[X3 ≤ 2],

1[X3 ≤ 10] ≥ 1[X3 ≤ 5]

1[X3 ≤ 2] ≤ 1[X3 ≤ 5],

1[X3 ≤ 2] + 1[X3 ≤ 5] ≤ 21[X3 ≤ 10]

⎫⎪⎬⎪⎭
X3 consistency constraints

⎧⎪⎪⎨⎪⎪⎩

X11 + X12 ⋯ + X1k − k ≤ �1 − 1

X21 + X22 ⋯ + X2m − m ≤ �1 − 1

⋯

Xn1 + Xn2 ⋯ + Xnl − l ≤ �1 − 1

�1 ≤ 0

�1=0

⟹

⎧
⎪⎨⎪⎩

X11 + X12 ⋯ + X1k ≤ k − 1

X21 + X22 ⋯ + X2m ≤ m − 1

⋯

Xn1 + Xn2 ⋯ + Xnl ≤ l − 1
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where this time the implication follows from the fact that � ∈ {0, 1} , so the constraint 𝛿 > 0 
leads to � = 1 . Again, these are exactly the constraints in Proposition 5. Additionally, since 
there is only a single tree in forest, it is not necessary to include the consistency constraints, 
because inconsistencies only arise when combining multiple trees. This concludes the 
proof of the claim that the RF constraints generalize the DT ones.

7  Counterfactuals for BNCs

The last class of models we are going to incorporate within our framework are BNCs over 
binary variables, representing them as SPNs. Retrieving the DPs of an SPN is relatively 
straightforward, utilizing their interpretation as a collection of tree models (Zhao et al., 2016). 
Of course, this means that in the worst case an SPN is a collection of an exponential amount 
of trees, one for each joint variable assignment. In turn, this means that in this scenario an 
exponential amount of constraints is needed in order to encode a decision polynomial. This is 
in tune with known complexity results that utilize tractable structures to compute counterfac-
tuals (Shih et al., 2018).

Despite that, SPNs have been particularly powerful in applications where there is con-
text-specific independence (Boutilier et al., 1996) among the variables, providing very com-
pact representations. This means that although the worst case scenario is exponential, there 
are situations where it is possible to define the optimization problem using significantly 
fewer constraints. For example, let us assume that the 0-DP of the SPN in Fig. 1b is equal 
to P0(X1,X2,X3) = X1X2X3 + X1X2(1 − X3) . The terms in the polynomial imply that when 
X1 = X2 = 1 , a datapoint is classified in the 0 class, regardless of what value X3 has. In turn, 
we end up with the reduced 0-DP P0(X1,X2,X3) = X1X2.

The above process can be repeated iteratively, eliminating variables that are not rel-
evant, given some context, just like X3 was irrelevant, given the context X1 = X2 = 1 . 
A simple way to achieve this elimination is whenever encountering two terms dif-
fering in only one factor, to substitute both of them with a new term that is equal to 
their common factors. For example, let us assume that this time the 0-DP is equal to 
P0(X1,X2,X3) = X1X2X3 + X1X2(1 − X3) + X1(1 − X2)X3 + X1(1 − X2)(1 − X3) . It is not 
difficult to observe that this polynomial is equal to 1, only when X1 = 1 , meaning it can be 
reduced to a simpler form. Applying our strategy leads to:

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

X11 + X12 ⋯ + X1k ≥ k ⋅ 𝛿1
X21 + X22 ⋯ + X2m ≥ m ⋅ 𝛿2
⋯

Xn1 + Xn2 ⋯ + Xnl ≥ l ⋅ 𝛿n∑n

i=1
𝛿i = 𝛿

𝛿 > 0

𝛿=1

⟹

⎧
⎪⎪⎨⎪⎪⎩

X11 + X12 ⋯ + X1k ≥ k ⋅ 𝛿1
X21 + X22 ⋯ + X2m ≥ m ⋅ 𝛿2
⋯

Xn1 + Xn2 ⋯ + Xnl ≥ l ⋅ 𝛿n∑n

i=1
𝛿i = 1

P0(X1,X2,X3) = X1X2X3 + X1X2(1 − X3)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
X3is irrelevant, givenX1=X2=1

+X1(1 − X2)X3 + X1(1 − X2)(1 − X3)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

X3is irrelevant, givenX1=1,X2=0

= X1X2 + X1(1 − X2)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
X2is irrelevant, givenX1=1

= X1,
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which exactly matches our observation. In the same way, we can handle decision polyno-
mials, in general, possibly leading to a significant reduction in size, whenever sufficient 
context-specific information is available.

8  Parameters, prime implicants, the non‑binary case and diversity

8.1  Parameters

In this section we will discuss some approaches to set the weights, w , in the �1 norm as 
well as some possible extensions. In the original work of Wachter et al. (2017), the inverse 
of the median absolute deviation (MAD) of a feature is utilized:

where D is the dataset, and Xi,k denotes the value of feature k, in data point i.
As the authors argue, some advantages of this particular choice is that it captures the 

intrinsic volatility of a feature, as well as it is more robust to outliers, compared to using 
the standard deviation. However, MAD is inappropriate when using binary features, since 
in this case it is always equal to zero (Russell, 2019). However, for the DT and RF cases, 
although the optimization problem is expressed in terms of binary variables, reflecting the 
nature of their intrinsic splitting rules, the variables themselves can be continuous. This 
results in an interesting situation, where both the MAD and the inverse standard deviation 
are valid weighting options. For example, consider a feature k and branching rule of the 
form r = (Xk ≤ �) , where X ∈ ℝ is a feature and � ∈ ℝ is a constant. We can now define 
the set of all instances in the dataset that satisfy r:

Now it is possible to calculate MAD with respect to rule r, by simply replacing all appear-
ances of D with Sr , in (2). This methodology provides a way to utilize MAD to generate 
the weights for DTs and RFs, however, this is not applicable to BNCs, where the inverse 
standard deviation should be used.

A special case worth mentioning arises when all weights are equal to 1. Then, the 
resulting distance, ‖ ⋅ ‖1,1 , reduces to the Hamming distance (Shi et  al., 2020), and the 
solution of the minimization problem reflects the smallest number of changes that are nec-
essary for the model to change its output. As a matter of fact, this number has already 
gained significant attention within an emergent line of research regarding explainability 
approaches in Bayesian classifiers, where it is known as the robustness of a classifier (Shi 
et al., 2020). However, existing methods are applicable only when utilizing the Hamming 
distance, which does not allow for assigning different weights to features. In this sense, our 
framework extends current approaches, since it allows for computing the robustness of a 
classifier under alternative metrics, that admit non-uniform feature weights, reflecting the 
relative importance of each term.

8.2  Prime implicants

Although the focus of this work has been on generating counterfactuals, it is possible 
to generate prime implicant (PI) explanations (Shih et al., 2018) as well, by making 

(2)MADk = medianj∈D(∣ Xj,k −medianl∈D(Xl,k) ∣)

Sr = {d ∈ D ∶ Xd,k ≤ �}
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a few minor adjustments. Unlike counterfactual explanations that compute a minimal 
set of changes enough to alter the model’s decision, PI-explanations compute a mini-
mal set of feature values that is enough to maintain the model’s decision, no matter 
the values of the remaining features. Moreover, as it was the case with the counterfac-
tual explanations, the proposed framework allows for assigning non-uniform weights 
to each feature, something that is not possible using symbolic approaches, such as Shi 
et al. (2020).

The procedure of computing the prime implicants of an instance is a simple modifica-
tion of the one developed for computing counterfactuals. Let us assume the instance of 
interest is X = (X1,X2,… ,Xn) . Furthermore, without loss of generality, we can assume 
that it is classified as 1, by the model. To compute the prime implicants of X, we have to 
form the objective function (with all coefficients equal to 1) and all the constraints that 
are necessary so the solution to the optimization problem is classified as 1, both of which 
should be performed in the same way as discussed in the main text. Finally, instead of 
minimizing this function, we have to maximize it. Intuitively, by doing so, we ask what is 
the largest set of features that can change values, without altering the model’s decision.

Let us assume that the solution to this problem dictates that variables Xi1
,Xi2

,… ,Xik
 , 

should change values. while the variables in Z = {X1,X2,… ,Xn}⧵{Xi1
,Xi2

,… ,Xik
} 

should not. Then Z is equal to the prime implicants. To see this, let us assume that Z 
contains m elements, and that the number of prime implicants of X are l < m . Then, 
this means that as long as these l variables maintain their values, the model will clas-
sify the datapoint as 1. In turn, this means that all the remaining n − l variables can 
switch values, and that this would be a feasible solution to the optimization prob-
lem of the previous paragraph. Now this leads to a contradiction, since by assump-
tion the solution alters the values of n − m variables, meaning that the inequality 
n − m ≥ n − l ⇒ l ≥ m should hold, which is not possible. A similar argument makes 
sure that conditional prime implicants can be generated by just incorporating the con-
straint that the conditioning variable maintains its value. This can be readily done, 
since it exactly corresponds to adding a diversity constraint.

8.3  The non‑binary case

So far we have assumed that all variables (or rules) are binary, but it is possible to extend 
our framework to the non-binary case, by utilizing a simple transformation. In general, 
let X be a variable taking values in {0, 1,… , k} . We can now introduce k new binary vari-
ables, X0,X1,… ,Xk , such that Xi = 1 ⇔ X = i . Furthermore, we need to add the constraint ∑k

i=0
Xi = 1 to enforce that X takes exactly one value. Employing this trick it is immediate 

to handle the non-binary case.

8.4  Diversity

One of the benefits of our proposal is that it is seamless to generate diverse counterfactuals. 
This is not true for many of the existing techniques, but it is a benefit of employing ILP, as 
recognized by Russell (2019). In the BNC case it is as simple as just setting the variables to 
their desired values, leaving everything else intact. In the DT and RF cases, since variables 
variables may be continuous, a user could ask for counterfactuals that satisfy conditions 
such as a ≤ X ≤ b , for a variable X (or a set of variables). This is again easy to handle, 
since the condition a ≤ X ≤ b , is enough to decide the values of some of the constraints 
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in Fx . Then, it is just a matter of plugging these values into the optimization problem and 
proceeding as normal, leaving the rest unchanged.

9  Experiments

In this section we will demonstrate some of the advantages of utilizing the proposed frame-
work. To this end, we will examine three different case studies, based on the COMPAS, 
LSAT, and Congressional Voting Records datasets. For the first two, we are going to 
employ a DT and a RF, respectively, while for the last one we use a Naive Bayes Classifier, 
although any BNC can be used. In Tables 1, 2, counterfactual conditions are in bold, while 
diversity conditions are underlined, inside a parenthesis.

COMPAS  is a popular algorithm for assessing the likelihood that a person will reof-
fend (recidivate) within two years from being released from prison. It has drawn significant 
attention within the fairness in AI community, due to the number of biases it exhibits, such 
as favoring white inmates against black ones (Dressel & Farid, 2018). The dataset con-
tains the COMPAS training variables (age, race, sex, number of prior crimes, number of 
juvenile felonies), whether the inmate actually reoffended within a 2-year period (2 year 
residivism), as well as the final score generated by the algorithm. A DT was trained on this 
dataset, predicting the risk of reoffending.

Table 1 shows the records of 5 inmates, where the first row represents the factual data-
point, the second an unconstrained counterfactual, and the third one is making use of the 

Table 1  COMPAS dataset instances

Sex Age Race Juvenile 
felonies

Prior crimes 2 year 
residi-
vism

Outcome

Factual Male 33 Caucasian 0 2 Yes Low score
Counterfactual Male 33 Caucasian >0 2 Yes High score
Diverse coun-

terfactual
Female 33 Caucasian (=0) 0 2 Yes High score

Factual Male 21 Black 0 0 Yes High score
Counterfactual Male ≤ 19.5 Black 0 0 Yes Low score
Diverse coun-

terfactual
Male (>20) > 21.5 Black 0 0 Yes Low score

Factual Male 27 Black 0 0 No Low score
Counterfactual Male 27 Black 0 >4.5 No High score
Diverse coun-

terfactual
Male <21.5 Black 0 (=0) 0 No High score

Factual Male 32 Black 0 0 No Low score
Counterfactual Male 27 Black 0 >1.5 No High score
Diverse coun-

terfactual
Male 32 Caucasian ≥ 1 (≤ 1) 0 No High score

Factual Male 43 Caucasian 0 2 No Low score
Counterfactual Female 43 Caucasian 0 2 No High score
Diverse coun-

terfactual
(Male) 43 Caucasian 0 >4 No High score
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diversity constraints. Looking at the first instance, we see that the unconstrained counter-
factual is in fact an infinite counterfactual set, since any instance satisfying “juvenile felo-
nies > 0” is a valid counterfactual. In contrast, all of the methods in Kanamori et al. (2020, 
2021); Karimi et al. (2020); Mohammadi et al. (2021); Verma et al. (2022) generate single 
instances, so it would be impossible to attain an infinite set, while methods that may yield 
infinite counterfactual sets, such as Cui et  al. (2015); Tolomei et  al. (2017), do not sup-
port diverse counterfactuals. Our approach supports both of these features which enables 
acquiring more in-depth model insights, since although having just a single counterfactual 
would still be useful, uncovering the underlying condition that needs to change (“juvenile 
felonies > 0”) is more informative than providing specific realizations of this change (e.g. 
“juvenile felonies = 1”). The same observation holds for all of the instances in Table 1, 
since each one is associated with an infinite counterfactual set. This feature of our approach 
was enabled by representing the underlying DT as a collection of propositional rules, and 
formulating the ILP problem in terms of the obtained rules, instead of the plain input vari-
ables (in this case, age, race, sex, number of prior crimes, number of juvenile felonies).

At this point, focusing on the first instance, the unconstrained counterfactual alone does 
not provide any indications that the underlying model exhibits biased behaviour. This pre-
sents a great opportunity to demonstrate the advantage of generating diverse counterfactu-
als, since by enforcing the constraint “juvenile felonies = 0”, the resulting counterfactual 
suggests that had the inmate been female, the model would have predicted a high score of 
reoffending, thus uncovering the hidden bias exhibited by the model. The same holds for 
the fourth instance in Table 1, which highlights how diversity constraints can be used to 
guide an analysis that aims at exposing biased models (more details in the following exper-
iment). Compared to other approaches that support generating diverse counterfactual, such 
as the ones in Shih et al. (2018); Shi et al. (2020); Choi et al. (2020); Karimi et al. (2020); 
Mohammadi et  al. (2021), our framework is the only one that allows for infinite sets of 
diverse counterfactuals (as shown for example in the second instance in Table 1). Finally, 
in contrast to the aforementioned approaches, our method is not based on the Hamming 

Table 2  LSAT dataset instances

Sex LSAT Race UGPA Outcome

Factual Male 34 White 3 Pass
Counterfactual Male ≤ 19.25 White 3 Fail
Diverse counterfactual Male (>25) 34 Black < 1.95 Fail
Factual Male 36.5 White 3.2 Pass
Counterfactual Male ≤ 20.75 Black ≤1.95 Fail
Diverse counterfactual Male ≤ 19.25 (White) White ≤ 2.15 Fail
Factual Female 43 White 2.8 Pass
Counterfactual Female ≤  26.75 White 2.8 Fail
Diverse counterfactual Female (<20)≤ 19.25 White ≤ 2.15 Fail
Factual Male 35 White 2.7 Pass
Counterfactual Male 35 Black ≤ 1.95 Fail
Diverse counterfactual Male ≤ 19.25 (White) White 2.7 Fail
Factual Male 33 White 3 Pass
Counterfactual Male 33 Black ≤ 1.85 Fail
Diverse counterfactual Male ≤19.25 (White) White 3 Fail
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distance, so it is possible to incorporate the relative importance of each variable in the 
objective function, resulting in counterfactuals that are closer to the data manifold.

LSAT  LSAT is another popular dataset in the fairness literature, since it exhibits a 
strong bias against black people, too. In this setting, the model has to predict whether stu-
dents will pass the bar, based on their sex, age, law school admission test (lsat), and under-
graduate gpa (ugpa). Table 2 shows 5 student records, along with the model’s prediction. 
All of the instances are associated with infinite counterfactual sets, which, as discussed in 
the previous experiment, facilitates gaining a more thorough understanding of the underly-
ing model.

For example, focusing on the first instance, making sure that lsat is less than 19.25 is 
enough to alter the model’s prediction. While looking at this counterfactual does not reveal 
any biases, the relative discrepancy between the factual value of lsat and the counterfactual 
condition (about 15 points), should be an indicator that constraining the lsat value closer to 
its factual value, could expose biased behavior. While incorporating inequality constraints 
is in general very challenging, our framework can handle them seamlessly, since it reduces 
to assigning specific values to some of the indicator variables. In contrast, although the 
approaches in Shih et al. (2018); Shi et al. (2020); Choi et al. (2020); Karimi et al. (2020); 
Mohammadi et al. (2021) accommodate for generating diverse counterfactuals, they only 
allow for constraints of the form xi = � , so it would not be possible to constrain the range 
of a variable and conduct the same kind of analysis. Going back to the instance under con-
sideration, enforcing that lsat is greater than 25 leads to a counterfactual that clearly show-
cases the bias in the model, since the student’s race is a factor that can alter the model’s 
prediction. This case captures the advantages that come with diversity and inequality con-
straints, when interrogating a model for biased behaviour.

Moreover, the obtained insights can help guide a more targeted analysis and inspect the 
dataset for the reasons behind the observed bias. In our case, looking at the dataset we see 
that 96.7% of male, white students passed the bar, while the same percentage for male, 
black students was 77.8% . Furthermore, the number of white students in the dataset was 
about 21 times that of black ones. This shows that black, male students are severely under-
represented, while the imbalance between successful/unsuccessful students in the two 
groups may lead the model to assign significant predictive power to a student’s race.

Next, taking into account the generated counterfactuals it is possible to look for imbal-
ances that are not as apparent. To this end, we inspected the dataset for black, male students 
with lsat < 19.5 (based on the counterfactual condition) and gpa = 3 , only to find out that 
all such students failed to pass the bar. However, for white, male students, with the same 
characteristics, half of them passed the bar. On top of this discrepancy, even the specific 
instances prompted biased behavior, since, for example, a black student with lsat = 19 , 
gpa = 3 , failed, while a white one with lsat = 17.5 , gpa = 3 , succeeded, encouraging the 
model to take racial information into account.

Following this analysis, it should come as no surprise that the RF picked up a corre-
sponding bias, since by looking at the individual DTs we found out that there are 6 differ-
ent paths that lead to a positive outcome for white, male students with gpa < 3 , as opposed 
to only 1 for black students. This means that the RF is more “forgiving” towards white stu-
dents with low gpa, in contrast to black ones. Targeting these two specific subgroups was 
guided by the insights obtained by combining infinite counterfactual sets with diversity and 
inequality constraints, which allowed for generating multiple counterfactuals that led to the 
discovery of significant information regarding both the dataset and the model.

 Congressional Voting Records  This dataset contains the votes of the U.S. House of 
Representatives Congressmen on 16 key votes. This time, the problem is to predict whether 
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a person is a Democrat or a Republican, based on these 16 votes. To this end, we trained a 
Naive Bayes classifier, however the same analysis can be performed for any BNC. Table 3 
shows how 5 particular congressman voted (where + represents voting for, and − voting 
against). This time, instead of computing counterfactuals, we will present prime implicant 
explanations to demonstrate the flexibility of the proposed framework. In addition, we 
should note that of all the works discussed in Sect. 2, only those that are based on tractable 
architectures (Shih et  al., 2018; Shi et  al., 2020; Choi et  al., 2020) allow for generating 
both counterfactual and prime implicant explanations, however, they do not support infinite 
counterfactual sets or any other distance function apart from the Hamming distance. More-
over, as shown in Sect. 8.1, counterfactuals generated by the aforementioned approaches 
can be retrieved by our framework by adjusting the parameters of the distance function.

Focusing on the first instance, the unconditional prime implicants (shown with ✓ ) form 
a set of 4 elements, meaning that as long as the votes regarding topics 3, 4, 5, 14 remain 
the same, the model will always classify that person as a Democrat. Moreover, to further 
inspect the model, it is possible to compute conditional prime implicants. For example, 
requiring that the first vote remains the same, we see that the resulting explanation now has 
5 elements, some of them not present in the unconditional explanation. This result indi-
cates there is some relationship among these variables, which could in turn motivate addi-
tional analysis. This example shows how prime implicants and counterfactuals can be used 
to gain complementary insights, identifying conditions that can alter or maintain a mod-
el’s predictions. This observation highlights the overall strengths of our approach, since 
it accommodates for generating multiple explanation types, while also combining various 
useful properties (infinite counterfactuals, diversity, flexible distance functions) to enable 
an in-depth model inspection. In contrast, most approaches are either tailored to counter-
factuals (Verma et al., 2020), support a subset of the aforementioned properties, or are lim-
ited by the expressiveness of the distance function.

10  Future work and conclusions

In this work we present a framework for generating counterfactual explanations for (ensem-
bles of) multilinear models. This way we extend the methodology in Russell (2019), as 
well as generalize some of the results in Shih et  al. (2018). We show how to apply our 
results to DTs, RFs, and BNCs, but any multilinear model can be utilized, instead. This is 
in contrast to methods like, Fernández et al. (2020), since this is based on a modification of 
the CART algorithm, so it is only applicable to DTs and RFs. Analogously, for BNCs, we 
show how our framework permits more expressive distance functions, that incorporate the 
relative importance of each term, instead of treating all feature changes as equally impor-
tant or feasible. Moreover, we demonstrate how diversity constraints can facilitate inspect-
ing a model for biased behaviour, in cases where unconstrained counterfactuals do not ini-
tially reveal such information, guiding the discovery of certain underrepresented groups of 
the population in the dataset.

In our opinion there are a lot of interesting research directions to go from here. A 
first remark is that as can be seen from the complexity results, the worst case scenario 
is exponential, so there are cases where encoding a DP can be impractical. These situ-
ations highlight the importance of developing approximate representations of DPs, 
that correctly classify instances with high probability. This seems like a natural next 
step, especially considering the long-standing research line of approximate reasoning 
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in BNs, as well as some recent attempts at approximate reasoning with DTs and RFs 
(Deng, 2014). An alternative way to address this issue, without resorting to approxima-
tions, could be to embed it into optimization frameworks, such as column generation 
(Michele Conforti, 2014), that can effectively handle large problems. Other interesting 
directions include defining probabilistic versions of DPs, reflecting how probable an 
assignment is, since currently all assignments are treated as equally probable. Advances 
in these areas could facilitate generating out-of-the-box counterfactuals, leading to their 
wider adaptation in practical applications.
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