
Vol.:(0123456789)

Machine Learning (2024) 113:1421–1443
https://doi.org/10.1007/s10994-023-06411-z

1 3

Principled diverse counterfactuals in multilinear models

Ioannis Papantonis1 · Vaishak Belle1,2

Received: 2 June 2022 / Revised: 3 April 2023 / Accepted: 3 October 2023 /
Published online: 10 January 2024
© The Author(s) 2024

Abstract
Machine learning (ML) applications have automated numerous real-life tasks, improving
both private and public life. However, the black-box nature of many state-of-the-art models
poses the challenge of model verification; how can one be sure that the algorithm bases its
decisions on the proper criteria, or that it does not discriminate against certain minority
groups? In this paper we propose a way to generate diverse counterfactual explanations
from multilinear models, a broad class which includes Random Forests, as well as Bayes-
ian Networks.

Keywords XAI · Counterfactuals · Multilinear models

1 Introduction

The wide adoption of machine learning models in critical applications (Lv et al., 2021;
Weissler et al., 2021; Díaz et al., 2019; Vaishya et al., 2020) has sparked a great inter-
est into developing approaches that allow for gaining insights about a model’s decision-
making process. This is motivated by the fact that many state-of-the-art models function as
black-boxes, i.e. their internal reasoning is elusive, which leads to a great challenge; how
can one be sure that a model bases its decisions on the proper criteria, or that it does not
discriminate against certain groups?

Bayesian networks (BNs) have been traditionally deployed in applications where such
considerations are crucial, due to their ability to clearly represent relationships between
variables, and incorporate causal information. One of the most celebrated properties of
BNs is their ability to compute counterfactual quantities of the from “what would have

Editors: Alireza Tamaddoni-Nezhad, Alan Bundy, Luc De Raedt, Artur d’Avila Garcez, Sebastijan
Dumančić, Cèsar Ferri, Pascal Hitzler, Nikos Katzouris, Denis Mareschal, Stephen Muggleton, Ute
Schmid

 * Ioannis Papantonis
 i.papantonis@sms.ed.ac.uk

 Vaishak Belle
 vaishak@ed.ac.uk

1 The University of Edinburgh, Edinburgh, UK
2 Alan Turing Institute, London, UK

http://orcid.org/0000-0003-4282-5820
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-023-06411-z&domain=pdf

1422 Machine Learning (2024) 113:1421–1443

1 3

been the value of Y, had X been equal to x?”, which has been extensively utilized in high-
stakes applications, such as in finance (Dhar, 1998; Fatum & Hutchison, 2010), health-
care (Prosperi et al., 2020; VanderWeele, 2020), and criminal justice (Mishler et al., 2021;
Sampson et al., 2006).

Having said that, one of the challenges of computing counterfactual quantities is that
they require a very careful specification of the mechanisms that underlie the interactions of
all the variables included in the model. This is a highly non-trivial task, usually involving
domain-expert knowledge as well as hand-crafting the final models. However, ML models
often involve a prohibitively high number of variables to allow for accurately specifying
every interaction. Complications like this, have led to the emergence of a related line of
research within the field of explainability in AI (XAI), where the objective is to identify
simplified “computational” counterfactuals. The term computational reflects the underly-
ing idea of this approach, where a classification model is treated as a function, and, given
an instance, X, the objective is to find a counterfactual instance, Y, such that X and Y are as
close as possible, but the model predicts a different class for each of them.

This line of research has led to the development of a general framework for producing
counterfactual instances for any differentiable classification model, as described in Wachter
et al. (2017). Building on top of that, the authors in Mothilal et al. (2020) proposed a
method for generating diverse counterfactuals for differentiable models, while the work in
Russell (2019) addressed some technical challenges, proposing a new framework that is
based on mixed integer programming (MIP).

In this work, we extend the framework in Russell (2019) to the non-linear case, so it
allows for generating computational counterfactuals for multilinear models. This model
class includes Bayesian network classifiers (BNCs) (Friedman et al., 1997), as well as deci-
sion trees, and random forests. In order to address the BNC case we utilize discriminative
SPNs (Gens & Domingos, 2012), since they subsume all BNCs, allowing for studying the
latter under a unified framework. More specifically, we present the following contributions:

• We show that by taking advantage of a model’s multilinear structure, it is possible to
formulate an integer linear program (ILP) that is guaranteed to generate valid counter-
factuals.

• We demonstrate how one can seamlessly generate multiple diverse counterfactuals
using the presented framework.

• We demonstrate how to apply it to decision trees (DTs), random forests (RFs), as well
as discriminative SPNs, possibly resulting into an infinite set of counterfactuals.

• We show that the presented framework generalizes other existing frameworks, while we
also discuss how it can be easily adjusted to generate alternative forms of explanations.

2 Related work

Counterfactuals have a long standing history within philosophy (Lewis, 1974; Ruben,
1990), as well as within the causal modelling community (Pearl, 2009). Furthermore,
they have found many applications into XAI, where they have gained significant traction
in recent years, partly because there is evidence suggesting that non-technical audience
feels more comfortable interpreting such explanations over alternatives, such as proposi-
tional rules (Binns et al., 2018). Moreover, counterfactuals inherently convey a notion of
“closeness” to the actual world, in the sense that they allow for detecting a set of minimal

1423Machine Learning (2024) 113:1421–1443

1 3

changes that can alter a model’s decision. In the context of XAI, computing a counterfac-
tual instance corresponds to finding a solution to the following problem:

where f (⋅) is a classifier, d(⋅, ⋅) is a distance function, x is the factual instance, and k is the
category we would like the counterfactual instance, x′ , to be classified into.

One of the most influential approaches to solving this problem, was presented in the
seminal work of Wachter et al. (2017), which is based on Lagrange multipliers, assuming
the classifier is differentiable. Building on top of the results in Wachter et al. (2017), Rus-
sell (2019) proposed a modified framework, based on mixed integer programming (MIP),
to generate counterfactuals for linear models. As the author notes, this approach resolves
some technical issues of Wachter et al. (2017), while it also provides a principled way for
generating diverse counterfactuals, since utilizing only a single counterfactual can be overly
restrictive, impeding a better model understanding. In this context, diversity refers to gen-
erating multiple different counterfactual instances for the same factual instance, by forcing
the resulting counterfactual to respect various constraints. This is equivalent to incorporat-
ing additional constraints in (1), on top of f (x�) = k . For example, a feature, xi , could be
forced to lie within a certain range, which corresponds to adding the constraint � ≤ xi ≤ � .
This is important for many applications, since it allows for inspecting a model from multi-
ple angles, which can facilitate uncovering biased or otherwise undesired behaviour.

In addition to the above, the MIP approach to generating counterfactuals has been
explored in a series of additional works as well. In Cui et al. (2015); Tolomei et al. (2017)
the authors propose such a method, especially designed for tree ensemble models. The
resulting optimization problems are guaranteed to output a counterfactual instance (or pos-
sibly an infinite set of counterfactuals), however they are only applicable to tree models,
and they do not support incorporating diversity constraints. Alternative MIP formulations
can be found in Kanamori et al. (2020, 2021), which are applicable to linear models, how-
ever it is again unclear how to incorporate diversity constraints, as well as whether it is
possible to apply these methods to BNCs. Other approaches, such as Karimi et al. (2020);
Mohammadi et al. (2021), utilize satisfiability modulo theory (SMT) solvers in order to
generate counterfactuals, by first encoding a model, such as a neural network, as a SMT
formula, and then using a SMT solver to find satisfying assignments. Such approaches
readily allow for generating diverse counterfactuals, however, they require normalized dis-
tance functions, so it is unclear whether it is possible to encode the relative importance/
cost of modifying a feature. For example, it may be that a categorical feature is much more
probable to be in state k, compared to the remaining states, however, the proposed distance
functions treat all states as equally probable, leading to counterfactuals that may be far
from the data manifold. It is also worth noting that SMT solvers result in explicit variable
assignments, so they do not support infinite counterfactual sets, rather only a single coun-
terfactual is computed each time the solver in invoked.

Apart from the aforementioned approaches, the problem of generating counterfactual
instances has been considered from alternative angles as well. For example, the method in
Verma et al. (2022) formulates this problem as a Markov decision process and then utilizes
reinforcement learning techniques to compute counterfactuals. This approach is applicable
to any model, while it also allows for employing complex distance functions, however it is
unclear whether diversity constraints or infinite counterfactual sets are supported by this
framework. In a different line of work (Shih et al., 2018; Shi et al., 2020; Choi et al., 2020),

(1)
argmin

x�
d(x, x�)

s.t. f (x�) = k

1424 Machine Learning (2024) 113:1421–1443

1 3

counterfactual generation is based on utilizing intermediate architectures, such as OBDDs
(Bryant, 1992). At the core of these works lies the idea of compiling a classifier into a
structure that supports counterfactual generation in polynomial time. An advantage of this
approach is that such models usually support answering a number of different queries in
polynomial time, not only counterfactuals. That being said, the compiled model can be
exponentially larger than the original one, while at the same time this approach supports
only a single distance function, thus posing limitations on the expressiveness and flexibility
of the resulting counterfactuals. The interested readers are referred to Verma et al. (2020)
for an in-depth review of the literature related to counterfactual explanations.

3 Background

In this section we are going to briefly introduce the models we are going to utilize in the
following.

3.1 Decision trees

Decision trees (DTs) are tree-like structures that contain a set of conditional control state-
ments, such as X ≤ a . Each assignment is consistent with exactly one root-to-leaf path,
corresponding to the model’s outcome. The control statements are arranged in a hierar-
chical manner, where intermediate nodes represent decisions and leaf nodes can be either
class labels (for classification problems) or continuous quantities (for regression problems).

The majority of decision tree learning algorithms operate in a top-down manner, itera-
tively partitioning the whole dataset into smaller ones, conditioning on the values of the
feature that contains the most information, in each iteration. This has led to the develop-
ment of a number of metrics that quantify the amount of information that is gained, when
splitting the dataset according to a specific feature, such as Gini impurity (Bishop, 2006).
In turn, these metrics can be used in order to design algorithms that learn DTs from data,
such as CART (Moore II, 1987).

An advantage of employing DTs is that their internal rule-based architecture is rela-
tively easy to inspect, allowing for assessing the quality of the model. This is one of the
major reasons why DTs are usually utilized in cases where the model’s understandability
is essential, or in fields like medicine. However, large DTs containing a lot of rules are not
easy to interpret anymore, requiring additional explainability tools in order to reason about
their internal behaviour (Belle & Papantonis, 2020).

3.2 Random forests

As we discussed in the previous section, DTs have been employed in various applications
due to the transparency they exhibit, at least as long as they are kept at a reasonable size.
However, one of their major limitations is their tendency to overfit the given dataset, lead-
ing to high variance models that fail to maintain good performance when dealing with new
data.

Random forests (RFs) aim at overcoming this challenge by combining multiple
trees, resulting in more stable models with lower variance. The main insight underlying
this approach is to sample with replacement from the whole dataset in order to con-
struct multiple new datasets, thus implementing the idea of bagging (Breiman, 1996).

1425Machine Learning (2024) 113:1421–1443

1 3

Following that, a decision tree is trained over each of these newly acquired datasets,
leading to an ensemble of independent trees. Then, in prediction time, an aggregation
measure, such as majority voting (for classification) or averaging (for regression), com-
bines the predictions of each tree in order to generate the prediction of the whole forest.

The procedure described above results in very expressive and accurate models, how-
ever this comes at the expense of interpretability, since the whole forest is far more
challenging to explain, compared to single decision trees. This has led to the develop-
ment of various techniques that attempt to explain the inner reasoning of a RF (Belle &
Papantonis, 2020).

3.3 Sum‑product networks

Sum-product networks (SPNs) are rooted directed graphical models that provide for an
efficient way of expressing a joint distribution that is defined over a Bayesian network
(BN). Assuming all variables are binary (or categorical, in general) SPNs encode this
distribution as a multilinear function,

∑
x
f (x)

∏N

n=1
1xn

 . Here f (⋅) is the (possibly unor-
malized) probability distribution of the BN, x is a vector containing all the variables of
the model, i.e., x1,… , xN , the summation is over all possible states, and 1xn

 is the indi-
cator function (Darwiche, 2003). In its simplest form, this function contains 2N terms,
however, when context-specific independence among the variables is present, it is pos-
sible to obtain a compact factorized representation, that is not exponential in the number
of the model’s variables.

SPNs are strictly more efficient than distributions that are defined over BNs using
CPDs, since any such distribution can be transformed to a SPN in polynomial time and
space, while the converse is not true (Zhao et al., 2015). Furthermore, SPNs generalize a
number of well known models (Rooshenas & Lowd, 2014), such as latent tree (Choi et al.,
2011). On top of that, computing marginal or conditional probabilities in SPNs is linear in
its size, making them an appealing candidate for practical applications. Since we are con-
sidering classification problems, we are interested in discriminative SPNs (Gens & Domin-
gos, 2012), that encode the conditional distribution of a target variable given some predic-
tors, while they also subsume Bayesian network classifiers (BNCs) (Darwiche, 2003). For
example, Fig. 1a,b show the two different representations of a naive Bayes classifier.

Fig. 1 BN and SPN representations of the same Naive Bayes model

1426 Machine Learning (2024) 113:1421–1443

1 3

4 Problem derivation

In this section we introduce our approach for generating counterfactuals, inspired by Rus-
sell (2019), but addressing one of its key limitations; the range of models it applies to. Spe-
cifically, we extend the existing framework to multilinear models, such as DTs and BNCs,
as well as ensembles thereof that utilize majority voting, such as RFs. In what follows we
assume that all variables are binary, to allow for an easier presentation. However, we pro-
vide an extension to the non-binary case, in Sect. 8.

Before going any further, we begin with defining a quantity similar to the decision func-
tion, developed in Shih et al. (2018), as follows:

Definition 1 Let G ∶ X → {0, 1} be a binary classification function, and PG
0
(X),PG

1
(X)

be multilinear polynomials of indicator variables, where all coefficient are equal to 1 and
there is no constant term. Then PG

0
(X) (respectively, PG

1
(X)) is called the 0-decision (resp.

1-decision) polynomial of G, iff G(X) = 0 ⇔ PG
0
(X) = 1 (resp. G(X) = 1 ⇔ PG

1
(X) = 1)

Decision polynomials provide for a multilinear representation of arbitrary binary clas-
sifiers. In Shih et al. (2018), decision functions play a similar role, however there is no
requirement for them to be multilinear. In our work, we have this additional condition in
order to be able to derive an optimization problem in ILP format.

In the remaining of this section, we derive some results that hold for decision polynomi-
als, in general. In the following subsections we make the necessary adjustments to apply
the developed framework to DTs, RTs and BNCs. The next proposition follows immedi-
ately from the definition, and will be used extensively throughout the rest:

Proposition 2 Let G ∶ X → {0, 1} , and PG
0
(X),PG

1
(X) be the decision polynomials. Then

∀x ∈ X PG
0
(x) + PG

1
(x) = 1

The following statement is a simple observation that since each term of a decision poly-
nomial is equal to either 0 or 1, in order for the polynomial to output 0, each term has to be
equal to 0.

Proposition 3 Let G ∶ X → {0, 1} , and PG
0
(X),PG

1
(X) be the decision polynomi-

als. Assuming PG
0
(X) = T1(X) + T2(X) +⋯ + Tk(X) , where each Ti ∈ {0, 1} , then

PG
0
(X) = 0 ⇒ T1(X) = T2(X) = ⋯ = Tk(X) = 0 . The same holds for PG

1
(X).

Proposition 3 implies that in order to make sure that a decision polynomial outputs 0, it
is enough to make sure that each monomial equals 0. The next challenge is due to the fact
that these monomials are products of indicator functions, not linear combinations of them.
This situation impedes the formulation of generating counterfactuals as a linear optimiza-
tion problem. A key insight for overcoming this difficulty is that since indicator functions
can be equal to either 0 or 1, making sure that not all of them are equal to 1 is sufficient to
guarantee that their product is equal to 0. The following proposition states a simple condi-
tion that leads to this outcome.

Proposition 4 Let X1,X2,… ⋅ Xk ∈ {0, 1} , then X1 ⋅ X2 ⋯Xk−1 ⋅ Xk = 1 ⇒ X1 + X2
+⋯ + Xk = k and X1 ⋅ X2 ⋯Xk−1 ⋅ Xk = 0 ⇒ X1 + X2 +⋯ + Xk ≤ k − 1.

1427Machine Learning (2024) 113:1421–1443

1 3

At this point, Propositions 3 and 4 already provide for a set of constraints that are
sufficient to ensure that a datapoint is classified as either 0 or 1. For example, if the
goal is to generate an instance that belongs in the 1-class, then it is enough to consider
the 0-decision polynomial and for each term, say X1 ⋅ X2 ⋯Xk−1 ⋅ Xk , add the constraint
X1 + X2 +⋯ + Xk ≤ k − 1 . This procedure guarantees that the solution to the problem,
X , satisfies PG

0
(X) = 0 ⇒ PG

1
(X) = 1 , so it is classified as 1.

However, having said that, storing both polynomials requires additional resources,
while it could also be the case that one of them is significantly smaller than the other
one, so it would be preferable to express the problem in terms of this polynomial to end
up with a more compact optimization problem. A natural way to address this situation
would be to define a set of constraints that when satisfied force a term in the decision
polynomial to be equal to 1, and the rest equal to 0. The following proposition provides
such a set of constraints:

Proposition 5 Let P0(X) = X11 ⋅ X12 ⋯X1k + X21 ⋅ X22 ⋯X2m +⋯ + Xn1 ⋅ Xn2 ⋯Xnl , where
each Xi ∈ {0, 1} , be the 0-decision polynomial of a model. Furthermore, let the constraints
X11 + X12 ⋯ + X1k ≥ k ⋅ �1,X21 + X22 ⋯ + X2m ≥ m ⋅ �2,… ,Xn1 + Xn2 ⋯ + Xnl ≥ l ⋅ �n,

∑n

i=1
�i = 1,

where �i ∈ {0, 1} . If an assignment, X’ , satisfies these constraints, then P0(X’) = 1 . An
analogous statement holds for P1(X).

Proof Let X be an assignment that satisfies all the constraints. From the constraint ∑n

i=1
�i = 1 we have that there is a j, such that �j = 1 . This �j appears in an additional

constraint of the form Xj1 + Xj2 ⋯ + Xjp ≥ p ⋅ �j ⇒ Xj1 + Xj2 ⋯ + Xjp ≥ p . However, it
also holds that Xj1 + Xj2 ⋯ + Xjp ≤ p , so putting these two expressions together we have
that Xj1 + Xj2 ⋯ + Xjp = p ⇒ Xj1 ⋅ Xj2 ⋯Xjp = 1 , by proposition 4, which means that
P0(X) = 1 . ◻

We have now developed most of the the necessary machinery to formulate a coun-
terfactual generating optimization problem, shown in Algorithm 1. In the following
subsections we address the first two points in Algorithm 1, providing ways to recover
the DPs of DTs, RFs and BNCs, as well as discussing how to set the weights of the
weighted l1 norm, which is going to serve as our objective function. Furthermore we
provide some adjustments that need to be made in order to take into account the charac-
teristics of the aforementioned models.

1428 Machine Learning (2024) 113:1421–1443

1 3

5 Counterfactuals for DTs

Decision trees can be naturally seen as a collection of rules, so in this section we will examine
how this set of rules can be used in order to construct a tree’s decision polynomial. Transform-
ing DTs to equivalent rule-based classifiers is a well studied problem (Quinlan, 1987). They
key observation however, is that it is possible to derive a multilinear representation of a DT
over the set of rules it naturally induces.

An example of the general process can be seen in Fig. 2a, which contains a very simple
decision tree. It is defined over two continuous variables, X1,X2 , but it can also be seen as a
function over its internal rules, X1 ≤ 10,X2 ≤ 50,X2 ≤ 20 . Utilizing the latter, and traversing
the DT bottom-up, it is not difficult to see that the decision polynomials are:

where 1 is the indicator function.
The 1-DT contains all the rules that the DT utilizes to classify an instance in the 1-cate-

gory, while the 0-DT follows an analogous reasoning. In both polynomials, all monomials are
monic, as well as there is no constant term. Furthermore, since for each possible assignment
only one root-to-leaf path will be satisfied, each polynomial outputs either 0 or 1, so they are
indeed valid DPs. This process exemplifies the general reasoning, which remains unaltered, no
matter how large a DT is.

Having the decision polynomials, we are now ready to put all the pieces together. To this
end, let d = (X1,X2) be a factual datapoint of interest. We utilize the weighted l1 norm, ‖ ⋅ ‖1,w ,
and the rule representation of the DT to define the distance between two points as follows:

where w1,w2,w3 are constants. This is the objective function of the final optimization prob-
lem. The last step is to remove the absolute values from the objective function. This is sim-
ple to do, since the values of the indicators 1[X1 ≤ 10],1[X2 ≤ 20],1[X2 ≤ 50] are known
quantities, and 0 ≤ 1[⋅] ≤ 1.

To go on with our example let us also assume that d(X1,X2) satisfies
X1 ≤ 10, 20 < X2 ≤ 50 , so it is classified into the 1 class, and that we want to utilize the
0-DP. Applying Proposition 5, the final optimization problem is:

PG
1
(X1,X2) = 1[X1 ≤ 10] ⋅ 1[X2 ≤ 50] + (1 − 1[X1 ≤ 10]) ⋅ 1[X2 ≤ 20],

PG
0
(X1,X2) = 1[X1 ≤ 10] ⋅ (1 − 1[X2 ≤ 50]) + (1 − 1[X1 ≤ 10]) ⋅ (1 − 1[X2 ≤ 20]),

‖d − d�‖1,w = w1�1[X1 ≤ 10] − 1[X�
1
≤ 10]� + w2�1[X2 ≤ 20] − 1[X�

2
≤ 20]�

+ w3�1[X2 ≤ 50] − 1[X�
2
≤ 50]�,

Fig. 2 Examples of decision trees and random forests

1429Machine Learning (2024) 113:1421–1443

1 3

The solution of this problem is guaranteed to be classified as 0. Of course it depends on the
values of w1,w2,w3 , but it is going to be an infinite set of solutions, regardless. For exam-
ple, if the resulting solution turns out to be 1[X�

1
≤ 10] = 1,1[X�

2
≤ 20] = 1[X�

2
≤ 50] = 0 ,

then every element of the set {(X1,X
�
2
) ∶ X�

2
> 50} is a valid counterfactual to d, with

respect to the decision tree. This is an extension of the framework in Russell (2019), where
the outcome was a single point.

Finally, we discuss the amount of constraints that has to be added within the model.
As the DPs encode the root-to-leaf paths of the decision tree, the amount of constraints
depends on the number of distinct root-to-leaf paths, m. The added flexibility of expressing
our framework using either of the two DPs, allows for efficiently handling situations that
would be otherwise problematic. For example, if there is a DT having only one path that
leads to a 0-leaf, and all the remaining ones lead to a 1-leaf, then we can encode everything
using the 0-DP in a highly efficient manner, using a single constraint, instead of m − 1
ones. This demonstrates that the worst-case scenario is when there is an equal number of
0-leaf and 1-leaf paths, in which case the cost of encoding the constraints is the same, no
matter which DP is utilized. This means that in the worst case O(m

2
) constraints would be

necessary, each one involving O(p) variables, where p is the length of the longest path in
the tree.

6 Counterfactuals for RFs

In this section, we examine how to handle ensembles of multilinear models, using RFs as
an example. Although the process is similar in spirit, incorporating information from mul-
tiple models poses an additional challenge. For example, looking at Fig. 2b we can verify
that the 1-DP of each tree is:

As usual, each individual polynomial encodes all the 0 or 1 assignments of each individual
tree, but how can we combine them all together so they encode the behaviour of the for-
est? A first remark is that in order to make sure that the model outputs, for example, 1, it
is enough to enforce a constraint that at most one 0-decision polynomial outputs 1. This
would mean that the outcome of at least 2 out of the 3 decision trees is equal to 1, so the
whole forest has an output of 1, assuming majority voting.

This kind of reasoning can be applied to ensembles will an arbitrary number of trees,
and will be the base of extending the current framework. In fact, it turns out that this

min w1(1 − 1[X�
1
≤ 10]) + w21[X

�
2
≤ 20] + w3(1 − 1[X�

3
≤ 50])

s.t. 1[X�
1
≤ 10] + (1 − 1[X�

2
≤ 50]) ≥ 2 ⋅ �1,

(1 − 1[X�
1
≤ 10)] + (1 − 1[X�

2
≤ 20]) ≥ 2 ⋅ �2,

�1 + �2 = 1

T1 ∶ P
T1
1
(X1,X2,X3) = 1[X2 ≤ 1] ⋅ 1[X3 ≤ 2] + (1 − 1[X2 ≤ 1]) ⋅ 1[X3 ≤ 10],

T2 ∶ P
T2
1
(X1,X2,X3) = 1[X1 ≤ 5] ⋅ 1[X2 ≤ 2],

T3 ∶ P
T3
1
(X1,X2,X3) = 1[X1 ≤ 3] ⋅ 1[X3 ≤ 5] + (1 − 1[X1 ≤ 3]) ⋅ (1 − 1[X2 ≤ 6])

1430 Machine Learning (2024) 113:1421–1443

1 3

approach corresponds to a generalization of the one we presented for DTs, as we show
at the end of this section. The following proposition provides for a way to encode the
fact that a decision polynomial is equal to 1.

Proposition 6 Let PG
0
(X) = X11 ⋅ X12 ⋯X1k + X21 ⋅ X22 ⋯X2m +⋯ + Xn1 ⋅ Xn2 ⋯Xnl , where

each Xi ∈ {0, 1} , be the 0-decision polynomial of a model. Furthermore, let the constraints
X11 + X12 ⋯ + X1k − k ≤ � − 1,X21 + X22 ⋯ + X2m − m ≤ � − 1,… ,Xn1 + Xn2 ⋯ + Xnl − l ≤ � − 1 ,
where � ∈ {0, 1} . Then, � = 0 ⇒ PG

0
(X) = 0 . An analogous statement holds for PG

1
(X).

Proof If � = 0 , the constraints can be rewritten as:

By Proposition 4, this means that all terms in the 0-DP are zero, so P0(X) = 0 . ◻

Proposition 6 can be used as an indicator of whether a DT outputs 0 or 1, but it can
be easily extended so it applies to a RF. For example, assuming we utilize the 0-DPs to
generate an instance that is classified as 1, adding this set of constraints for every DT in
the RF and demanding that at least half of the corresponding indicators are equal to 0,
we enforce that the majority of the DTs have an outcome equal to 1, so the whole forest
outputs 1.

Furthermore, as it was the case with DTs, utilizing Proposition 6 and both DPs it is now
possible to state all the necessary constraints to ensure the desired outcome. However, the
same considerations as before apply to the RF case, so it would be desirable to be able to
express the optimization problem in terms of a single DP. As it turns out, it is possible to
extend Proposition 5 so it can handle the RF case as well:

Proposition 7 Let T1, T2,… , Tm be the DTs of a RF F. For each Tj , consider PTj

0
(X) and add

all the constraints appearing in Proposition 5, except for the last one, which is replaced by ∑n

i=1
�ji = �j , where �ji appears in the i-th constraint of the j-th tree and �j ∈ {0, 1} is a

newly introduced variable. Finally, add the constraint
∑m

i=1
𝛿i >

�
m−1

2

�
 . If an assignment,

X′ , satisfies these constraints, then PF
0
(X�) = 1.

Proof The last constraint enforces that more that half of the �i ’s are equal to 1. The result
follows, since each �i is an indicator a DT’s outcome. This means that the majority of the
DTs classify the resulting instance in the desired category. ◻

These results connect the behaviour of a single model to the behaviour of the ensemble,
allowing to control the number of models that output a certain outcome. However, tree
ensembles present an additional challenge that needs to be addressed; that is, we need to
make sure that the solution of the optimization problem is consistent. In this setting, we use
the term consistency in the sense that if the solution dictates that a condition of the form

X11 + X12 ⋯ + X1k ≤ k − 1

X21 + X22 ⋯ + X2m ≤ m − 1

⋯

Xn1 + Xn2 ⋯ + Xnl ≤ l − 1

1431Machine Learning (2024) 113:1421–1443

1 3

X ≤ � holds, then all the conditions of the form X ≤ � , where � ≤ � hold as well. Further-
more, by the same reasoning, if a condition X ≤ � does not hold, then no condition X ≤ � ,
where � ≥ � should hold. To this end, we have the following definition:

Definition 8 Let T1, T2,… , Tn be DTs and X one of the variables in their scope. We define:

• Fx = {X ≤ a ∶ X ≤ a ∈ F(Ti), i ∈ {1, 2,… , n}} , where F(Ti) is the set of all the internal
rules in Ti . In turn, Fx is the set of all the rules among all the trees that involve variable X.

• Furthermore, let X ≤ a be an element of Fx , and define F+
x (X ≤ a) = {X ≤ b:

X ≤ b ∈ Fx, b ≥ a} , the set of rules involving X where the threshold is larger than a, and
F−
x
(X ≤ a) = {X ≤ b ∶ X ≤ b ∈ Fx, b ≤ a} , the rules where the threshold is smaller than

a.

The following proposition provides a way to achieve consistency by enforcing a set of
constraints:

Proposition 9 Let T1, T2,… , Tn be DTs that form a RF. Then, the constraints ∑
fi∈F

+
x
(X≤a) 1[fi] ≥ �F+

x
(X ≤ a)� ⋅ 1[X ≤ a] and

∑
fi∈F

−
x
(X≤a) 1[fi] ≤ �F−

x
(X ≤ a)� ⋅ 1[X ≤ a] ,

guarantee that the final solution is consistent wrt the feature X ≤ a.

Proof Let X ≤ a be a feature in a RF. The first case we are going to examine is when this
rule is not satisfied, meaning that 1[X1 ≤ a] = 0 . Then, the first constraint reduces to ∑

fi∈F
+
x
(X≤a) 1[fi] ≥ 0 , which always holds. The second constraint however becomes ∑

fi∈F
−
x
(X≤a) 1[fi] ≤ 0 , which means that

∑
fi∈F

−
x
(X≤a) 1[fi] = 0 , forcing all rules within

F−
x
(X ≤ a) to be false as well, thus guaranteeing consistency wrt to the feature X ≤ a.
The other case we need to examine is when 1[X1 ≤ a] = 1 . Then, the first constraint

becomes
∑

fi∈F
+
x
(X≤a) 1[fi] ≥ �F+

x
(X ≤ a)� , which implies that all rules within F+

x
(X ≤ a) are

also satisfied. The second constraint becomes
∑

fi∈F
−
x
(X≤a) 1[fi] ≤ �F−

x
(X ≤ a)� , which

always holds. ◻

Looking at Proposition 9 we see that two constraints per feature are enough to guarantee
consistency. We can now examine the number of constraints that are required in order to gen-
erate a counterfactual set from a RF. Clearly, we have to include the counterfactual generat-
ing constraints as well as the consistency ones. The former, amounts to incorporating the DP
of each tree in the forest. As discussed in the previous section, assuming there are N trees,
O(

Nm

2
) constraints are required in the worst case, where m is the maximum number of distinct

paths among all N trees. For the latter, we have to add two constraints per feature,meaning
that O(NF∗) , where F∗ = maxT1,…,TN

(FTi
) , constraints are required. Combining these together,

in the worst case O(N(m
2
+ F∗)) constraints are needed to define a counterfactual generating

problem.
We are now ready to demonstrate how to generate counterfactuals for RFs, by combining

Propositions 6, 5 and 9. Returning to our running example, let d = (X1,X2,X3) be a datapoint
that satisfies the conditions X1 ≤ 3, X2 ≤ 1, X3 ≤ 2 , meaning that all 3 DTs classify d as 1.
Assuming we utilize the 1-DPs, the following generates a set of counterfactuals that are clas-
sified as 0:

1432 Machine Learning (2024) 113:1421–1443

1 3

Finally, we show that the optimization schema for RTs is indeed a generalization of the DT
one. Without loss of generality, we can assume that we are using the 0-DP to formulate the
optimization problem, since the same argument applies to the other case as well. Let T be a
DT, and let us first consider the case of generating an instance that is classified as 1. To this
end, we will utilize the constraints in Proposition 6, treating T as a trivial RF, F, comprised
of just a single tree.

The 0-DP of F is identical to the 0-DP of T, so PF
0 (X) = PT

0 (X) = X11 ⋅ X12 ⋯
X1k + X21 ⋅ X22 ⋯X2m +⋯ + Xn1 ⋅ Xn2 ⋯Xnl . Following the procedure in proposition 6, we
have to add the constraints:

where the implication follows from the fact that since �1 ≥ 0 , the constraint �1 ≤ 0 leads
to �1 = 0 . Looking at the right-hand side, we see that these are exactly the constraints that
result from Proposition 4, thus establishing the desired equivalence for this case.

Furthermore, we have to examine the case of generating an instance that is classified as 0,
using the 0-DT. Again, treating T as a trivial RF, Proposition 7 can be used to obtain the fol-
lowing set of sufficient constraints:

minw1(1 − 1[X1 ≤ 5]) + w2(1 − 1[X1 ≤ 3]) + w3(1 − 1[X2 ≤ 1])

+ w4(1 − 1[X2 ≤ 2]) + w5(1 − 1[X2 ≤ 6]) + w6(1 − 1[X3 ≤ 2])

+ w7(1 − 1[X3 ≤ 10]) + w8(1 − 1[X3 ≤ 5]) s.t.

1[X2 ≤ 1] + 1[X3 ≤ 2] − 2 ≤ �1 − 1,

1 − 1[X2 ≤ 1] + 1[X3 ≤ 10] − 2 ≤ �1 − 1

1[X1 ≤ 5] + 1[X2 ≤ 2] − 2 ≤ �2 − 1,

1[X1 ≤ 3] + 1[X3 ≤ 5] − 2 ≤ �3 − 1

1 − 1[X1 ≤ 3] + 1 − 1[X2 ≤ 6] − 2 ≤ �3 − 1,

�1 + �2 + �3 ≤ 1

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

0 generating constraints

1[X1 ≤ 5] ≥ 1[X1 ≤ 3]
�
X1 consistency constraints

1[X2 ≤ 2] + 1[X2 ≤ 6] ≥ 21[X2 ≤ 1],

1[X2 ≤ 6] ≥ 1[X2 ≤ 2]

1[X2 ≤ 1] ≤ 1[X2 ≤ 2],

1[X2 ≤ 1] + 1[X2 ≤ 2] ≤ 21[X2 ≤ 6]

⎫⎪⎬⎪⎭
X2consistency constraints

1[X3 ≤ 5] + 1[X3 ≤ 10] ≥ 21[X3 ≤ 2],

1[X3 ≤ 10] ≥ 1[X3 ≤ 5]

1[X3 ≤ 2] ≤ 1[X3 ≤ 5],

1[X3 ≤ 2] + 1[X3 ≤ 5] ≤ 21[X3 ≤ 10]

⎫⎪⎬⎪⎭
X3 consistency constraints

⎧⎪⎪⎨⎪⎪⎩

X11 + X12 ⋯ + X1k − k ≤ �1 − 1

X21 + X22 ⋯ + X2m − m ≤ �1 − 1

⋯

Xn1 + Xn2 ⋯ + Xnl − l ≤ �1 − 1

�1 ≤ 0

�1=0

⟹

⎧
⎪⎨⎪⎩

X11 + X12 ⋯ + X1k ≤ k − 1

X21 + X22 ⋯ + X2m ≤ m − 1

⋯

Xn1 + Xn2 ⋯ + Xnl ≤ l − 1

1433Machine Learning (2024) 113:1421–1443

1 3

where this time the implication follows from the fact that � ∈ {0, 1} , so the constraint 𝛿 > 0
leads to � = 1 . Again, these are exactly the constraints in Proposition 5. Additionally, since
there is only a single tree in forest, it is not necessary to include the consistency constraints,
because inconsistencies only arise when combining multiple trees. This concludes the
proof of the claim that the RF constraints generalize the DT ones.

7 Counterfactuals for BNCs

The last class of models we are going to incorporate within our framework are BNCs over
binary variables, representing them as SPNs. Retrieving the DPs of an SPN is relatively
straightforward, utilizing their interpretation as a collection of tree models (Zhao et al., 2016).
Of course, this means that in the worst case an SPN is a collection of an exponential amount
of trees, one for each joint variable assignment. In turn, this means that in this scenario an
exponential amount of constraints is needed in order to encode a decision polynomial. This is
in tune with known complexity results that utilize tractable structures to compute counterfac-
tuals (Shih et al., 2018).

Despite that, SPNs have been particularly powerful in applications where there is con-
text-specific independence (Boutilier et al., 1996) among the variables, providing very com-
pact representations. This means that although the worst case scenario is exponential, there
are situations where it is possible to define the optimization problem using significantly
fewer constraints. For example, let us assume that the 0-DP of the SPN in Fig. 1b is equal
to P0(X1,X2,X3) = X1X2X3 + X1X2(1 − X3) . The terms in the polynomial imply that when
X1 = X2 = 1 , a datapoint is classified in the 0 class, regardless of what value X3 has. In turn,
we end up with the reduced 0-DP P0(X1,X2,X3) = X1X2.

The above process can be repeated iteratively, eliminating variables that are not rel-
evant, given some context, just like X3 was irrelevant, given the context X1 = X2 = 1 .
A simple way to achieve this elimination is whenever encountering two terms dif-
fering in only one factor, to substitute both of them with a new term that is equal to
their common factors. For example, let us assume that this time the 0-DP is equal to
P0(X1,X2,X3) = X1X2X3 + X1X2(1 − X3) + X1(1 − X2)X3 + X1(1 − X2)(1 − X3) . It is not
difficult to observe that this polynomial is equal to 1, only when X1 = 1 , meaning it can be
reduced to a simpler form. Applying our strategy leads to:

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

X11 + X12 ⋯ + X1k ≥ k ⋅ 𝛿1
X21 + X22 ⋯ + X2m ≥ m ⋅ 𝛿2
⋯

Xn1 + Xn2 ⋯ + Xnl ≥ l ⋅ 𝛿n∑n

i=1
𝛿i = 𝛿

𝛿 > 0

𝛿=1

⟹

⎧
⎪⎪⎨⎪⎪⎩

X11 + X12 ⋯ + X1k ≥ k ⋅ 𝛿1
X21 + X22 ⋯ + X2m ≥ m ⋅ 𝛿2
⋯

Xn1 + Xn2 ⋯ + Xnl ≥ l ⋅ 𝛿n∑n

i=1
𝛿i = 1

P0(X1,X2,X3) = X1X2X3 + X1X2(1 − X3)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
X3is irrelevant, givenX1=X2=1

+X1(1 − X2)X3 + X1(1 − X2)(1 − X3)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

X3is irrelevant, givenX1=1,X2=0

= X1X2 + X1(1 − X2)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
X2is irrelevant, givenX1=1

= X1,

1434 Machine Learning (2024) 113:1421–1443

1 3

which exactly matches our observation. In the same way, we can handle decision polyno-
mials, in general, possibly leading to a significant reduction in size, whenever sufficient
context-specific information is available.

8 Parameters, prime implicants, the non‑binary case and diversity

8.1 Parameters

In this section we will discuss some approaches to set the weights, w , in the �1 norm as
well as some possible extensions. In the original work of Wachter et al. (2017), the inverse
of the median absolute deviation (MAD) of a feature is utilized:

where D is the dataset, and Xi,k denotes the value of feature k, in data point i.
As the authors argue, some advantages of this particular choice is that it captures the

intrinsic volatility of a feature, as well as it is more robust to outliers, compared to using
the standard deviation. However, MAD is inappropriate when using binary features, since
in this case it is always equal to zero (Russell, 2019). However, for the DT and RF cases,
although the optimization problem is expressed in terms of binary variables, reflecting the
nature of their intrinsic splitting rules, the variables themselves can be continuous. This
results in an interesting situation, where both the MAD and the inverse standard deviation
are valid weighting options. For example, consider a feature k and branching rule of the
form r = (Xk ≤ �) , where X ∈ ℝ is a feature and � ∈ ℝ is a constant. We can now define
the set of all instances in the dataset that satisfy r:

Now it is possible to calculate MAD with respect to rule r, by simply replacing all appear-
ances of D with Sr , in (2). This methodology provides a way to utilize MAD to generate
the weights for DTs and RFs, however, this is not applicable to BNCs, where the inverse
standard deviation should be used.

A special case worth mentioning arises when all weights are equal to 1. Then, the
resulting distance, ‖ ⋅ ‖1,1 , reduces to the Hamming distance (Shi et al., 2020), and the
solution of the minimization problem reflects the smallest number of changes that are nec-
essary for the model to change its output. As a matter of fact, this number has already
gained significant attention within an emergent line of research regarding explainability
approaches in Bayesian classifiers, where it is known as the robustness of a classifier (Shi
et al., 2020). However, existing methods are applicable only when utilizing the Hamming
distance, which does not allow for assigning different weights to features. In this sense, our
framework extends current approaches, since it allows for computing the robustness of a
classifier under alternative metrics, that admit non-uniform feature weights, reflecting the
relative importance of each term.

8.2 Prime implicants

Although the focus of this work has been on generating counterfactuals, it is possible
to generate prime implicant (PI) explanations (Shih et al., 2018) as well, by making

(2)MADk = medianj∈D(∣ Xj,k −medianl∈D(Xl,k) ∣)

Sr = {d ∈ D ∶ Xd,k ≤ �}

1435Machine Learning (2024) 113:1421–1443

1 3

a few minor adjustments. Unlike counterfactual explanations that compute a minimal
set of changes enough to alter the model’s decision, PI-explanations compute a mini-
mal set of feature values that is enough to maintain the model’s decision, no matter
the values of the remaining features. Moreover, as it was the case with the counterfac-
tual explanations, the proposed framework allows for assigning non-uniform weights
to each feature, something that is not possible using symbolic approaches, such as Shi
et al. (2020).

The procedure of computing the prime implicants of an instance is a simple modifica-
tion of the one developed for computing counterfactuals. Let us assume the instance of
interest is X = (X1,X2,… ,Xn) . Furthermore, without loss of generality, we can assume
that it is classified as 1, by the model. To compute the prime implicants of X, we have to
form the objective function (with all coefficients equal to 1) and all the constraints that
are necessary so the solution to the optimization problem is classified as 1, both of which
should be performed in the same way as discussed in the main text. Finally, instead of
minimizing this function, we have to maximize it. Intuitively, by doing so, we ask what is
the largest set of features that can change values, without altering the model’s decision.

Let us assume that the solution to this problem dictates that variables Xi1
,Xi2

,… ,Xik
 ,

should change values. while the variables in Z = {X1,X2,… ,Xn}⧵{Xi1
,Xi2

,… ,Xik
}

should not. Then Z is equal to the prime implicants. To see this, let us assume that Z
contains m elements, and that the number of prime implicants of X are l < m . Then,
this means that as long as these l variables maintain their values, the model will clas-
sify the datapoint as 1. In turn, this means that all the remaining n − l variables can
switch values, and that this would be a feasible solution to the optimization prob-
lem of the previous paragraph. Now this leads to a contradiction, since by assump-
tion the solution alters the values of n − m variables, meaning that the inequality
n − m ≥ n − l ⇒ l ≥ m should hold, which is not possible. A similar argument makes
sure that conditional prime implicants can be generated by just incorporating the con-
straint that the conditioning variable maintains its value. This can be readily done,
since it exactly corresponds to adding a diversity constraint.

8.3 The non‑binary case

So far we have assumed that all variables (or rules) are binary, but it is possible to extend
our framework to the non-binary case, by utilizing a simple transformation. In general,
let X be a variable taking values in {0, 1,… , k} . We can now introduce k new binary vari-
ables, X0,X1,… ,Xk , such that Xi = 1 ⇔ X = i . Furthermore, we need to add the constraint ∑k

i=0
Xi = 1 to enforce that X takes exactly one value. Employing this trick it is immediate

to handle the non-binary case.

8.4 Diversity

One of the benefits of our proposal is that it is seamless to generate diverse counterfactuals.
This is not true for many of the existing techniques, but it is a benefit of employing ILP, as
recognized by Russell (2019). In the BNC case it is as simple as just setting the variables to
their desired values, leaving everything else intact. In the DT and RF cases, since variables
variables may be continuous, a user could ask for counterfactuals that satisfy conditions
such as a ≤ X ≤ b , for a variable X (or a set of variables). This is again easy to handle,
since the condition a ≤ X ≤ b , is enough to decide the values of some of the constraints

1436 Machine Learning (2024) 113:1421–1443

1 3

in Fx . Then, it is just a matter of plugging these values into the optimization problem and
proceeding as normal, leaving the rest unchanged.

9 Experiments

In this section we will demonstrate some of the advantages of utilizing the proposed frame-
work. To this end, we will examine three different case studies, based on the COMPAS,
LSAT, and Congressional Voting Records datasets. For the first two, we are going to
employ a DT and a RF, respectively, while for the last one we use a Naive Bayes Classifier,
although any BNC can be used. In Tables 1, 2, counterfactual conditions are in bold, while
diversity conditions are underlined, inside a parenthesis.

COMPAS is a popular algorithm for assessing the likelihood that a person will reof-
fend (recidivate) within two years from being released from prison. It has drawn significant
attention within the fairness in AI community, due to the number of biases it exhibits, such
as favoring white inmates against black ones (Dressel & Farid, 2018). The dataset con-
tains the COMPAS training variables (age, race, sex, number of prior crimes, number of
juvenile felonies), whether the inmate actually reoffended within a 2-year period (2 year
residivism), as well as the final score generated by the algorithm. A DT was trained on this
dataset, predicting the risk of reoffending.

Table 1 shows the records of 5 inmates, where the first row represents the factual data-
point, the second an unconstrained counterfactual, and the third one is making use of the

Table 1 COMPAS dataset instances

Sex Age Race Juvenile
felonies

Prior crimes 2 year
residi-
vism

Outcome

Factual Male 33 Caucasian 0 2 Yes Low score
Counterfactual Male 33 Caucasian >0 2 Yes High score
Diverse coun-

terfactual
Female 33 Caucasian (=0) 0 2 Yes High score

Factual Male 21 Black 0 0 Yes High score
Counterfactual Male ≤ 19.5 Black 0 0 Yes Low score
Diverse coun-

terfactual
Male (>20) > 21.5 Black 0 0 Yes Low score

Factual Male 27 Black 0 0 No Low score
Counterfactual Male 27 Black 0 >4.5 No High score
Diverse coun-

terfactual
Male <21.5 Black 0 (=0) 0 No High score

Factual Male 32 Black 0 0 No Low score
Counterfactual Male 27 Black 0 >1.5 No High score
Diverse coun-

terfactual
Male 32 Caucasian ≥ 1 (≤ 1) 0 No High score

Factual Male 43 Caucasian 0 2 No Low score
Counterfactual Female 43 Caucasian 0 2 No High score
Diverse coun-

terfactual
(Male) 43 Caucasian 0 >4 No High score

1437Machine Learning (2024) 113:1421–1443

1 3

diversity constraints. Looking at the first instance, we see that the unconstrained counter-
factual is in fact an infinite counterfactual set, since any instance satisfying “juvenile felo-
nies > 0” is a valid counterfactual. In contrast, all of the methods in Kanamori et al. (2020,
2021); Karimi et al. (2020); Mohammadi et al. (2021); Verma et al. (2022) generate single
instances, so it would be impossible to attain an infinite set, while methods that may yield
infinite counterfactual sets, such as Cui et al. (2015); Tolomei et al. (2017), do not sup-
port diverse counterfactuals. Our approach supports both of these features which enables
acquiring more in-depth model insights, since although having just a single counterfactual
would still be useful, uncovering the underlying condition that needs to change (“juvenile
felonies > 0”) is more informative than providing specific realizations of this change (e.g.
“juvenile felonies = 1”). The same observation holds for all of the instances in Table 1,
since each one is associated with an infinite counterfactual set. This feature of our approach
was enabled by representing the underlying DT as a collection of propositional rules, and
formulating the ILP problem in terms of the obtained rules, instead of the plain input vari-
ables (in this case, age, race, sex, number of prior crimes, number of juvenile felonies).

At this point, focusing on the first instance, the unconstrained counterfactual alone does
not provide any indications that the underlying model exhibits biased behaviour. This pre-
sents a great opportunity to demonstrate the advantage of generating diverse counterfactu-
als, since by enforcing the constraint “juvenile felonies = 0”, the resulting counterfactual
suggests that had the inmate been female, the model would have predicted a high score of
reoffending, thus uncovering the hidden bias exhibited by the model. The same holds for
the fourth instance in Table 1, which highlights how diversity constraints can be used to
guide an analysis that aims at exposing biased models (more details in the following exper-
iment). Compared to other approaches that support generating diverse counterfactual, such
as the ones in Shih et al. (2018); Shi et al. (2020); Choi et al. (2020); Karimi et al. (2020);
Mohammadi et al. (2021), our framework is the only one that allows for infinite sets of
diverse counterfactuals (as shown for example in the second instance in Table 1). Finally,
in contrast to the aforementioned approaches, our method is not based on the Hamming

Table 2 LSAT dataset instances

Sex LSAT Race UGPA Outcome

Factual Male 34 White 3 Pass
Counterfactual Male ≤ 19.25 White 3 Fail
Diverse counterfactual Male (>25) 34 Black < 1.95 Fail
Factual Male 36.5 White 3.2 Pass
Counterfactual Male ≤ 20.75 Black ≤1.95 Fail
Diverse counterfactual Male ≤ 19.25 (White) White ≤ 2.15 Fail
Factual Female 43 White 2.8 Pass
Counterfactual Female ≤ 26.75 White 2.8 Fail
Diverse counterfactual Female (<20)≤ 19.25 White ≤ 2.15 Fail
Factual Male 35 White 2.7 Pass
Counterfactual Male 35 Black ≤ 1.95 Fail
Diverse counterfactual Male ≤ 19.25 (White) White 2.7 Fail
Factual Male 33 White 3 Pass
Counterfactual Male 33 Black ≤ 1.85 Fail
Diverse counterfactual Male ≤19.25 (White) White 3 Fail

1438 Machine Learning (2024) 113:1421–1443

1 3

distance, so it is possible to incorporate the relative importance of each variable in the
objective function, resulting in counterfactuals that are closer to the data manifold.

LSAT LSAT is another popular dataset in the fairness literature, since it exhibits a
strong bias against black people, too. In this setting, the model has to predict whether stu-
dents will pass the bar, based on their sex, age, law school admission test (lsat), and under-
graduate gpa (ugpa). Table 2 shows 5 student records, along with the model’s prediction.
All of the instances are associated with infinite counterfactual sets, which, as discussed in
the previous experiment, facilitates gaining a more thorough understanding of the underly-
ing model.

For example, focusing on the first instance, making sure that lsat is less than 19.25 is
enough to alter the model’s prediction. While looking at this counterfactual does not reveal
any biases, the relative discrepancy between the factual value of lsat and the counterfactual
condition (about 15 points), should be an indicator that constraining the lsat value closer to
its factual value, could expose biased behavior. While incorporating inequality constraints
is in general very challenging, our framework can handle them seamlessly, since it reduces
to assigning specific values to some of the indicator variables. In contrast, although the
approaches in Shih et al. (2018); Shi et al. (2020); Choi et al. (2020); Karimi et al. (2020);
Mohammadi et al. (2021) accommodate for generating diverse counterfactuals, they only
allow for constraints of the form xi = � , so it would not be possible to constrain the range
of a variable and conduct the same kind of analysis. Going back to the instance under con-
sideration, enforcing that lsat is greater than 25 leads to a counterfactual that clearly show-
cases the bias in the model, since the student’s race is a factor that can alter the model’s
prediction. This case captures the advantages that come with diversity and inequality con-
straints, when interrogating a model for biased behaviour.

Moreover, the obtained insights can help guide a more targeted analysis and inspect the
dataset for the reasons behind the observed bias. In our case, looking at the dataset we see
that 96.7% of male, white students passed the bar, while the same percentage for male,
black students was 77.8% . Furthermore, the number of white students in the dataset was
about 21 times that of black ones. This shows that black, male students are severely under-
represented, while the imbalance between successful/unsuccessful students in the two
groups may lead the model to assign significant predictive power to a student’s race.

Next, taking into account the generated counterfactuals it is possible to look for imbal-
ances that are not as apparent. To this end, we inspected the dataset for black, male students
with lsat < 19.5 (based on the counterfactual condition) and gpa = 3 , only to find out that
all such students failed to pass the bar. However, for white, male students, with the same
characteristics, half of them passed the bar. On top of this discrepancy, even the specific
instances prompted biased behavior, since, for example, a black student with lsat = 19 ,
gpa = 3 , failed, while a white one with lsat = 17.5 , gpa = 3 , succeeded, encouraging the
model to take racial information into account.

Following this analysis, it should come as no surprise that the RF picked up a corre-
sponding bias, since by looking at the individual DTs we found out that there are 6 differ-
ent paths that lead to a positive outcome for white, male students with gpa < 3 , as opposed
to only 1 for black students. This means that the RF is more “forgiving” towards white stu-
dents with low gpa, in contrast to black ones. Targeting these two specific subgroups was
guided by the insights obtained by combining infinite counterfactual sets with diversity and
inequality constraints, which allowed for generating multiple counterfactuals that led to the
discovery of significant information regarding both the dataset and the model.

 Congressional Voting Records This dataset contains the votes of the U.S. House of
Representatives Congressmen on 16 key votes. This time, the problem is to predict whether

1439Machine Learning (2024) 113:1421–1443

1 3

Ta
bl

e
3

 C
on

gr
es

si
on

al
 V

ot
in

g
Re

co
rd

s d
at

as
et

 in
st

an
ce

s

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

O
ut

co
m

e

Fa
ct

ua
l

+
+

+
−

−
−

+
+

+
−

+
−

−
−

+
+

D
em

oc
ra

t
Pr

im
e

im
pl

ic
an

ts
✓

✓
✓

✓
D

em
oc

ra
t

C
on

di
tio

na
l p

rim
e

im
pl

ic
an

ts
✓

✓
✓

✓
✓

D
em

oc
ra

t
Fa

ct
ua

l
+

+
−

+
+

+
−

−
−

+
−

+
−

+
−

+
Re

pu
bl

ic
an

Pr
im

e
im

pl
ic

an
ts

✓
✓

✓
✓

✓
Re

pu
bl

ic
an

C
on

di
tio

na
l p

rim
e

im
pl

ic
an

ts
✓

✓
✓

✓
✓

✓
✓

Re
pu

bl
ic

an
Fa

ct
ua

l
+

−
+

−
−

−
−

+
+

+
−

−
−

−
+

+
D

em
oc

ra
t

Pr
im

e
im

pl
ic

an
ts

✓
✓

✓
D

em
oc

ra
t

C
on

di
tio

na
l p

rim
e

im
pl

ic
an

ts
✓

✓
✓

✓
D

em
oc

ra
t

Fa
ct

ua
l

−
−

−
+

+
+

−
−

−
−

−
+

+
+

−
+

Re
pu

bl
ic

an
Pr

im
e

im
pl

ic
an

ts
✓

✓
✓

✓
✓

✓
Re

pu
bl

ic
an

C
on

di
tio

na
l p

rim
e

im
pl

ic
an

ts
✓

✓
✓

✓
✓

✓
Re

pu
bl

ic
an

Fa
ct

ua
l

−
−

+
−

−
+

+
+

+
+

+
−

−
−

+
+

D
em

oc
ra

t
Pr

im
e

im
pl

ic
an

ts
✓

✓
✓

D
em

oc
ra

t
C

on
di

tio
na

l p
rim

e
im

pl
ic

an
ts

✓
✓

✓
✓

✓
D

em
oc

ra
t

1440 Machine Learning (2024) 113:1421–1443

1 3

a person is a Democrat or a Republican, based on these 16 votes. To this end, we trained a
Naive Bayes classifier, however the same analysis can be performed for any BNC. Table 3
shows how 5 particular congressman voted (where + represents voting for, and − voting
against). This time, instead of computing counterfactuals, we will present prime implicant
explanations to demonstrate the flexibility of the proposed framework. In addition, we
should note that of all the works discussed in Sect. 2, only those that are based on tractable
architectures (Shih et al., 2018; Shi et al., 2020; Choi et al., 2020) allow for generating
both counterfactual and prime implicant explanations, however, they do not support infinite
counterfactual sets or any other distance function apart from the Hamming distance. More-
over, as shown in Sect. 8.1, counterfactuals generated by the aforementioned approaches
can be retrieved by our framework by adjusting the parameters of the distance function.

Focusing on the first instance, the unconditional prime implicants (shown with ✓) form
a set of 4 elements, meaning that as long as the votes regarding topics 3, 4, 5, 14 remain
the same, the model will always classify that person as a Democrat. Moreover, to further
inspect the model, it is possible to compute conditional prime implicants. For example,
requiring that the first vote remains the same, we see that the resulting explanation now has
5 elements, some of them not present in the unconditional explanation. This result indi-
cates there is some relationship among these variables, which could in turn motivate addi-
tional analysis. This example shows how prime implicants and counterfactuals can be used
to gain complementary insights, identifying conditions that can alter or maintain a mod-
el’s predictions. This observation highlights the overall strengths of our approach, since
it accommodates for generating multiple explanation types, while also combining various
useful properties (infinite counterfactuals, diversity, flexible distance functions) to enable
an in-depth model inspection. In contrast, most approaches are either tailored to counter-
factuals (Verma et al., 2020), support a subset of the aforementioned properties, or are lim-
ited by the expressiveness of the distance function.

10 Future work and conclusions

In this work we present a framework for generating counterfactual explanations for (ensem-
bles of) multilinear models. This way we extend the methodology in Russell (2019), as
well as generalize some of the results in Shih et al. (2018). We show how to apply our
results to DTs, RFs, and BNCs, but any multilinear model can be utilized, instead. This is
in contrast to methods like, Fernández et al. (2020), since this is based on a modification of
the CART algorithm, so it is only applicable to DTs and RFs. Analogously, for BNCs, we
show how our framework permits more expressive distance functions, that incorporate the
relative importance of each term, instead of treating all feature changes as equally impor-
tant or feasible. Moreover, we demonstrate how diversity constraints can facilitate inspect-
ing a model for biased behaviour, in cases where unconstrained counterfactuals do not ini-
tially reveal such information, guiding the discovery of certain underrepresented groups of
the population in the dataset.

In our opinion there are a lot of interesting research directions to go from here. A
first remark is that as can be seen from the complexity results, the worst case scenario
is exponential, so there are cases where encoding a DP can be impractical. These situ-
ations highlight the importance of developing approximate representations of DPs,
that correctly classify instances with high probability. This seems like a natural next
step, especially considering the long-standing research line of approximate reasoning

1441Machine Learning (2024) 113:1421–1443

1 3

in BNs, as well as some recent attempts at approximate reasoning with DTs and RFs
(Deng, 2014). An alternative way to address this issue, without resorting to approxima-
tions, could be to embed it into optimization frameworks, such as column generation
(Michele Conforti, 2014), that can effectively handle large problems. Other interesting
directions include defining probabilistic versions of DPs, reflecting how probable an
assignment is, since currently all assignments are treated as equally probable. Advances
in these areas could facilitate generating out-of-the-box counterfactuals, leading to their
wider adaptation in practical applications.

Author Contributions IP conceived the presented idea, developed the theory and run the experiments. VB
supervised the project. Both authors contributed to the final version of the manuscript.

Funding Vaishak Belle was partly supported by a Royal Society University Research Fellowship. Ioannis
Papantonis was partly supported by the EPSRC grant Towards Explainable and Robust Statistical AI: A
Symbolic Approach.

Availability of data and material The data that support the findings of this work were derived from the fol-
lowing resources available in the public domain: https:// github. com/ propu blica/ compas- analy sis/ blob/ mas-
ter/ compas- scores- two- years. csv (Compass dataset), https:// stora ge. googl eapis. com/ lawsc hool_ datas et/ bar_
pass_ predi ction. csv (Lsat dataset), https:// archi ve. ics. uci. edu/ ml/ datas ets/ Congr essio nal+ Voting+ Recor ds
(Congressional voting records dataset).

Declarations

Conflict of interest The authors declare that the research was conducted in the absence of any commercial or
financial relationships that could be construed as a potential conflict of interest.

Code availability The code will be made publicly available online, upon acceptance of this work. https://
github. com/ Giann isPap anton is/ Diver seCou nterf actua ls.

Consent to participate Not applicable.

Consent for publication Not applicable.

Ethics approval Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Belle, V., & Papantonis, I. (2020). Principles and practice of explainable machine learning.
CoRR,abs/2009.11698.

Binns, R., Van Kleek, M., Veale, M., Lyngs, U., Zhao, J., & Shadbolt, N. (2018). ’It’s reducing a human
being to a percentage’: Perceptions of justice in algorithmic decisions. In Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems, CHI’18, Association for Computing
Machinery, (pp. 1–14), New York, NY, USA.

https://github.com/propublica/compas-analysis/blob/master/compas-scores-two-years.csv
https://github.com/propublica/compas-analysis/blob/master/compas-scores-two-years.csv
https://storage.googleapis.com/lawschool_dataset/bar_pass_prediction.csv
https://storage.googleapis.com/lawschool_dataset/bar_pass_prediction.csv
https://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records
https://github.com/GiannisPapantonis/DiverseCounterfactuals
https://github.com/GiannisPapantonis/DiverseCounterfactuals
http://creativecommons.org/licenses/by/4.0/

1442 Machine Learning (2024) 113:1421–1443

1 3

Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science and Statistics).
Berlin, Heidelberg: Springer.

Boutilier, C., Friedman, N., Goldszmidt, M., & Koller, D. (1996). Context-specific independence in
Bayesian networks. In Proceedings of the Twelfth International Conference on Uncertainty in Arti-
ficial Intelligence, UAI’96, (pp. 115–123), San Francisco, CA: Morgan Kaufmann Publishers Inc.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.
Bryant, R. E. (1992). Symbolic Boolean manipulation with ordered binary-decision diagrams. ACM

Computing Surveys, 24(3), 293–318.
Choi, A., Shih, A., Goyanka, A., & Darwiche, A. (2020). On symbolically encoding the behavior of ran-

dom forests. CoRR,abs/2007.01493.
Choi, M. J., Tan, V. Y. F., Anandkumar, A., & Willsky, A. S. (2011). Learning latent tree graphical mod-

els. Journal of Machine Learning Research, 12, 1771–1812.
Conforti, M., Cornuéjols, G. Z. (2014). Integer programming. In Graduate Texts in Mathematics, (p.

271). Springer: Cham.
Cui, Z., Chen, W., He, Y., & Chen, Y. (2015). Optimal action extraction for random forests and boosted

trees. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, (pp. 179–188).

Darwiche, A. (2003). A differential approach to inference in Bayesian networks. Journal of the ACM, 50(3),
280–305.

Deng, H. (2014). Interpreting tree ensembles with in trees. arXiv: 1408. 5456.
Dhar, V. (1998). Data mining in finance: Using counterfactuals to generate knowledge from organizational

information systems. Information Systems, 23(7), 423–437.
Díaz, Ó., Dalton, J. A., & Giraldo, J. (2019). Artificial intelligence: A novel approach for drug discovery.

Trends in Pharmacological Sciences, 40(8), 550–551.
Dressel, J. & Farid, H. (2018). The accuracy, fairness, and limits of predicting recidivism. Science Advances,

4(1), eaao5580.
Fatum, R., & Hutchison, M. M. (2010). Evaluating foreign exchange market intervention: Self-selection,

counterfactuals and average treatment effects. Journal of International Money and Finance, 29(3),
570–584.

Fernández, R. R., Martín de Diego, I., Aceña, V., Fernández-Isabel, A., & Moguerza, J. M. (2020). Random
forest explainability using counterfactual sets. Information Fusion, 63, 196–207.

Friedman, N., Geiger, D., Goldszmidt, M., Provan, G., Langley, P., & Smyth, P. (1997). Bayesian network
classifiers. Machine Learning, 29, 131–163.

Gens, R. & Domingos, P. (2012). Discriminative learning of sum-product networks. Advances in Neural
Information Processing Systems, 25.

Kanamori, K., Takagi, T., Kobayashi, K., & Arimura, H. (2020). Dace: Distribution-aware counterfactual
explanation by mixed-integer linear optimization. In IJCAI, (pp. 2855–2862).

Kanamori, K., Takagi, T., Kobayashi, K., Ike, Y., Uemura, K., & Arimura, H. (2021). Ordered counter-
factual explanation by mixed-integer linear optimization. In Proceedings of the AAAI Conference on
Artificial Intelligence, 35, 11564–11574.

Karimi, A. -H., Barthe, G., Balle, B., & Valera, I. (2020). Model-agnostic counterfactual explanations for
consequential decisions. In International Conference on Artificial Intelligence and Statistics, (pp. 895–
905). PMLR.

Lewis, D. (1974). Tijdschrift Voor Filosofie. Counterfactuals, 36(3), 602–605.
Lv, J., Dong, B., Lei, H., Shi, G., Wang, H., Zhu, F., Wen, C., Zhang, Q., Fu, L., Gu, X., et al. (2021). Arti-

ficial intelligence-assisted auscultation in detecting congenital heart disease. European Heart Journal-
Digital Health, 2(1), 119–124.

Mishler, A., Kennedy, E. H., & Chouldechova, A. (2021). Fairness in risk assessment instruments: Post-
processing to achieve counterfactual equalized odds. In Proceedings of the 2021 ACM Conference on
Fairness, Accountability, and Transparency, (pp. 386–400).

Mohammadi, K., Karimi, A.-H., Barthe, G., & Valera, I. (2021). Scaling guarantees for nearest counterfac-
tual explanations. In Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society, (pp.
177–187).

Moore D. H. (1987). Classification and regression trees, by leo breiman, jerome h. friedman, richard a.
olshen, and charles j. stone. brooks/cole publishing, monterey, 1984, 358 pages, \$27.95. Cytometry,
8(5):534–535.

Mothilal, R. K., Sharma, A., & Tan, C. (2020). Explaining machine learning classifiers through diverse
counterfactual explanations. In Proceedings of the 2020 Conference on Fairness, Accountability, and
Transparency. Association for Computing Machinery.

http://arxiv.org/abs/1408.5456

1443Machine Learning (2024) 113:1421–1443

1 3

Pearl, J. (2009). Causality: Models, Reasoning & Inference (2nd ed.). Cambridge: Cambridge University
Press.

Prosperi, M., Guo, Y., Sperrin, M., Koopman, J. S., Min, J. S., He, X., Rich, S., Wang, M., Buchan, I. E.,
& Bian, J. (2020). Causal inference and counterfactual prediction in machine learning for actionable
healthcare. Nature Machine Intelligence, 2(7), 369–375.

Quinlan, J. R. (1987). Simplifying decision trees. International Journal of Man–Machine Studies, 27(3),
221–234.

Rooshenas, A. & Lowd, D. (2014). Learning sum-product networks with direct and indirect variable interac-
tions. In Proceedings of the 31st International Conference on International Conference on Machine
Learning, (vol. 32, ICML’14, pp. I-710–I-718). JMLR.org.

Ruben, D. (1990). Explaining Explanation. New York: Routledge.
Russell, C. (2019). Efficient search for diverse coherent explanations. In Proceedings of the Conference on

Fairness, Accountability, and Transparency, FAT* ’19, (pp. 20–28), New York, NY, USA.
Sampson, R. J., Laub, J. H., & Wimer, C. (2006). Does marriage reduce crime? A counterfactual approach

to within-individual causal effects. Criminology, 44(3), 465–508.
Shi, W., Shih, A., Darwiche, A., & Choi, A. (2020). On tractable representations of binary neural networks.
Shih, A., Choi, A., & Darwiche, A. (2018). A symbolic approach to explaining Bayesian network classifiers.

In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-
18, International Joint Conferences on Artificial Intelligence Organization, (pp. 5103–5111).

Tolomei, G., Silvestri, F., Haines, A., & Lalmas, M. (2017). Interpretable predictions of tree-based ensem-
bles via actionable feature tweaking. In Proceedings of the 23rd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, (pp. 465–474).

Vaishya, R., Javaid, M., Khan, I. H., & Haleem, A. (2020). Artificial intelligence (AI) applications for
Covid-19 pandemic. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(4), 337–339.

VanderWeele, T. J. (2020). Invited commentary: Counterfactuals in social epidemiology-thinking outside of
“the box’’. American Journal of Epidemiology, 189(3), 175–178.

Verma, S., Boonsanong, V., Hoang, M., Hines, K. E., Dickerson, J. P., & Shah, C. (2020). Counterfactual
explanations and algorithmic recourses for machine learning: A review. arXiv preprint arXiv: 2010.
10596.

Verma, S., Hines, K., & Dickerson, J. P. (2022). Amortized generation of sequential algorithmic recourses
for black-box models. In Proceedings of the AAAI Conference on Artificial Intelligence, 36, 8512–8519.

Wachter, S., Mittelstadt, B., & Russell, C. (2017). Counterfactual Explanations Without Opening the Black
Box: Automated Decisions and the GDPR. European Economics: Microeconomics & Industrial Organ-
ization eJournal.

Weissler, E. H., Naumann, T., Andersson, T., Ranganath, R., Elemento, O., Luo, Y., Freitag, D. F., Benoit,
J., Hughes, M. C., Khan, F., et al. (2021). The role of machine learning in clinical research: transform-
ing the future of evidence generation. Trials, 22(1), 1–15.

Zhao, H., Melibari, M., & Poupart, P. (2015). On the relationship between sum-product networks and
Bayesian networks. In Proceedings of the 32nd International Conference on Machine Learning.

Zhao, H., Poupart, P., & Gordon, G. J. (2016). A unified approach for learning the parameters of sum-prod-
uct networks. In Advances in Neural Information Processing Systems.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://arxiv.org/abs/2010.10596
http://arxiv.org/abs/2010.10596

	Principled diverse counterfactuals in multilinear models
	Abstract
	1 Introduction
	2 Related work
	3 Background
	3.1 Decision trees
	3.2 Random forests
	3.3 Sum-product networks

	4 Problem derivation
	5 Counterfactuals for DTs
	6 Counterfactuals for RFs
	7 Counterfactuals for BNCs
	8 Parameters, prime implicants, the non-binary case and diversity
	8.1 Parameters
	8.2 Prime implicants
	8.3 The non-binary case
	8.4 Diversity

	9 Experiments
	10 Future work and conclusions
	References

