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Abstract
The topic of comprehensibility of machine-learned theories has recently drawn increasing 
attention. Inductive logic programming uses logic programming to derive logic theories 
from small data based on abduction and induction techniques. Learned theories are rep-
resented in the form of rules as declarative descriptions of obtained knowledge. In ear-
lier work, the authors provided the first evidence of a measurable increase in human com-
prehension based on machine-learned logic rules for simple classification tasks. In a later 
study, it was found that the presentation of machine-learned explanations to humans can 
produce both beneficial and harmful effects in the context of game learning. We continue 
our investigation of comprehensibility by examining the effects of the ordering of concept 
presentations on human comprehension. In this work, we examine the explanatory effects 
of curriculum order and the presence of machine-learned explanations for sequential 
problem-solving. We show that (1) there exist tasks A and B such that learning A before 
learning B results in better comprehension for humans in comparison to learning B before 
learning A and (2) there exist tasks A and B such that the presence of explanations when 
learning A contributes to improved human comprehension when subsequently learning B. 
We propose a framework for the effects of sequential teaching on comprehension based 
on an existing definition of comprehensibility and provide evidence for support from data 
collected in human trials. Our empirical study involves curricula that teach novices the 
merge sort algorithm. Our results show that sequential teaching of concepts with increas-
ing complexity (a) has a beneficial effect on human comprehension and (b) leads to human 
re-discovery of divide-and-conquer problem-solving strategies, and (c) allows adaptations 
of human problem-solving strategy with better performance when machine-learned expla-
nations are also presented.
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1  Introduction

Human learning can be described as a concept formation progression in which observa-
tions of objects and events are summarised and formulated by some inter-dependent hier-
archical structure (Gennari et al., 1989). As an example, in the context of teaching algo-
rithms to human students, we may imagine a human teacher using the material in Fig. 1 
for teaching the merge sort algorithm. In a bottom-up teaching approach with increasing 
concept complexity, students learn how to merge first (left) and then move on to study 
sorting (right). In contrast, via a top-down teaching approach which presents concepts with 
decreasing complexity, students learn to sort first (right) without prior knowledge of merg-
ing and study merging afterwards (left). It might be of interest to the human teacher to 
question which approach yields higher student sorting performance and what effects the 
two teaching approaches have on students’ sorting strategies.

It was stressed by the Machine Learning pioneer (Michie, 1991) that an intelligent 
machine not only needs to excel humans in performance but should also possess the capac-
ity to effectively interact with and transfer knowledge to humans. An intelligent machine 
can in this way fulfil an integrated role that contributes to both the “stock of software” and 
the “stock of knowledge” (Michie, 1991). Owing to increasing awareness of the impor-
tance of explainable AI, reported by comprehensive reviews (Adadi & Berrada, 2018; 
Anjomshoae et al., 2019; Minh et al., 2021), a great number of studies have emerged with 
an emphasis on systems that provide support for human understanding. In addition, there 
is an increasing emphasis on AI that interacts to keep humans “in the loop” (Miller, 2019; 
Schmid, 2021). However, owing to the absence of quantifiable definitions and evaluation 
procedures, some issues such as ambiguity and lack of empirical evaluations have been 
highlighted (Freitas, 2014; Lipton, 2018; Miller, 2019).

At the intersection of these two paradigms is the research area that focuses on the 
comprehensibility of machine learning. An operational definition of comprehensibility 
was provided in Schmid et  al. (2017) for examining machine-human teaching inter-
action. This definition relates human comprehension to the out-of-sample prediction 
accuracy of human learners after studying training examples and a machine-learned 
logic program. It allowed the first demonstration (Muggleton et al., 2018) of Michie’s 

Fig. 1   An illustration of teaching materials of merging and sorting that can be learned in incremental order 
(left to right). All fruits have different weights which can be pairwise compared using the balance scale at 
the corner. On the left-hand side, two sets of apples should be merged into a larger collection in increas-
ing weights from left to right. On the right-hand side, a set of bananas needs to be arranged in increasing 
weights from left to right
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Ultra-Strong Machine Learning (USML) which stressed the role of teaching machine-
learned knowledge to humans such that their proficiency on a task can be raised to a 
higher level with respect to learning from randomly selected examples. Later results 
in Ai et  al. (2021) showed that explanations generated from machine-learned logic 
programs can have both beneficial and harmful effects on human comprehension and 
suggested, via a cognitive window framework, that explanatory effects are dependent 
on both descriptive and executional complexity. Despite the classification of explana-
tory effectiveness in Ai et  al. (2021), the effects of the order of concepts in a teach-
ing curriculum on human learning—an essential topic of machine learning and human 
problem solving that has yet to be explored for understanding the comprehensibility of 
machine-learned logic programs.

Based on established results and teaching procedures in Ai et al. (2021) and Mug-
gleton et al. (2018), in this work, we extend the frameworks of comprehensibility and 
explanatory effects to account for the impacts of sequential teaching on comprehen-
sion. We refer to the cognitive window framework which attributes the explanatory 
effects to (1) the descriptive complexity of machine-learned rules and (2) the cost of 
knowledge application with respect to an execution stack. A human trial of sequential 
teaching was conducted to examine the effects of concept ordering in curricula and 
explanations in the context of learning an efficient sorting strategy. We hypothesise the 
improvement of human comprehension from sequential teaching as the result of the 
reduction in the size of the hypothesis space associated with the target concept defini-
tion. Our proposed framework is consistent with empirical evidence collected from the 
human trial involving participants with no background in programming.

We summarise the paper’s contributions as follows:

•	 We define a measure to evaluate beneficial/harmful explanatory effects of a sequen-
tial teaching curriculum on human comprehension.

•	 We hypothesise the improvement of human comprehension from sequential teach-
ing curricula based on the Blumer bound (Blumer et al., 1989).

•	 We demonstrate based on an analysis of empirical results that a sequential teaching 
curriculum with increasing concept complexity has a beneficial effect on human 
comprehension.

•	 We show results that indicate the re-discovery of divide-and-conquer algorithms 
after human novices learn from concepts with increasing complexity.

•	 We provide evidence of the optimisation of problem-solving strategy as a result of 
additionally studying explanations generated from machine-learned logic rules.

This paper is organised as follows. In Sect. 2, we review the literature relevant to the 
paper. In Sect. 3, we present our theoretical framework of sequential teaching curric-
ula. In Sect. 4, we describe our empirical approach including the experimental hypoth-
eses. In Sect. 5, we show the results of our main Amazon Mechanical Turk experiment 
that involved teaching human participants to sort based on the training of merging two 
ordered sequences. In Sect.  5.5, we provide a detailed discussion of our findings on 
the effects of curriculum order and explanations on human comprehension. In Sect. 6, 
we provide a review of our work and comment on our contributions. We additionally 
discuss future extensions to the demonstrated results, behavioural cloning and human 
knowledge re-discovery.
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2 � Related work

This section summarises related research on human–machine teaching interactions and 
highlights our motivations. We give an overview of related results in human learning in 
Psychology. This is followed by a brief account of learning between humans and machines 
and objective means for evaluating the comprehensibility of machine explanations.

2.1 � Human learning in curricula with explanations

The ability of humans to recognise and extract knowledge useful to a problem-solving 
context is dependent on prior experience and understanding of related domains (Anzai & 
Simon, 1979). While a classification decision is dependent only on information concerning 
the current state, goal-directed decision-making requires consideration of a decision’s pos-
sible effect on future states (Barto et al., 1989). For sequential decision-making tasks such 
as the Tower of Hanoi, state transitions of the problem solution can be explicitly expressed 
by rules (Seger, 1994). “Chunking” reusable sub-goals was demonstrated as an efficient 
problem-solving approach to encode problem-solution structures and reduce the load on 
short-term memory (Anzai & Simon, 1979).

The reliance of human problem solving on the problem domain and experience of a per-
son (Dienes & Perner, 1999) can be attributed to implicit (System 1) and explicit (System 
2) knowledge (Kahneman, 2011). In contrast to implicit knowledge which is only attainable 
through practice, declarative knowledge can be transferred explicitly in the form of expla-
nations (Chi & Ohlsson, 2005). For knowledge accumulation, explicit explanations and 
hints help make sense of the new information and allow integration into existing knowl-
edge (Mayer, 2004). In the context of solving simple logical problems (Craig, 1956; Kittel, 
1957) and generating LOGO programs (Lee & Thompson, 1997), guided learning has been 
demonstrated more efficient than exploration-oriented approaches. However, multiple stud-
ies suggest that explanations should not be presented alone. As demonstrated by Aleven 
and Koedinger (2002), Anderson et al. (1997), Berry and Broadbent (1995), human learn-
ers do not always benefit from explanations when the specific problem-solving context is 
absent. The combination of explicit guidance and worked examples provides a good hands-
on problem-solving experience for learners to study and practise for themselves due to the 
limited capacity of working memory (Sweller et  al., 2007). The presentation of worked 
examples along with explanations makes this specific task context available and was shown 
to support learning (Alfieri et al., 2011; Reed & Bolstad, 1991).

2.2 � Teaching between the machine and humans

Machine teaching is an area of machine learning that focuses on the optimisation of train-
ing sets and the design of teaching protocols in an example-based setting (Zhu, 2015). Stud-
ies in machine teaching have provided formal methods for teaching situations in which the 
goal is to train human students via an optimal set of examples to learn a target hypothesis. 
The machine teacher in these setups (Mansouri et al., 2019; Rafferty et al., 2016; Yeo et al., 
2019) is provided information about the quantified cognitive model of the human learner 
and has access to the learning progress based on the student’s responses to examples. The 
teacher can then monitor the reactions of students which allows the teacher to make adjust-
ments to teaching materials. However, often excessive assumptions about the teacher’s 
knowledge are made for deriving theoretical results. The teacher is usually assumed to have 
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perfect knowledge about the computational model of students such as their learning rate 
and their background knowledge (Devidze et al., 2020). Thus, owing to the specificity of 
these theoretical models, they are difficult to apply in real-world teaching settings.

Communication of machine-learned solutions can be alternatively realised through 
explanations in the form of rules. For Inductive Logic Programming (ILP) (Muggleton, 
1991), systems use logic programs to represent hypotheses as generalisations of examples 
and background knowledge. ILP systems make use of both induction and abduction, which 
are critical mechanisms for human knowledge attainment (Hobbs, 2008; Lemke et  al., 
1967). A hypothesis learned by an ILP algorithm is represented as a set of rules and can 
be used to communicate the discovered knowledge to humans. For instance, an ILP system 
(Bain & Muggleton, 1994) learns optimal strategies of chess endgames for depths 0, 1 and 
2 and incorporates a complexity constraint on the number of clauses in a predicate defini-
tion based on the hypothesised limitation of working memory capacity of 7 ± 2 “chunks” 
(Miller, 1956). A fully automated discovery system (King et al., 2004) re-discovers the role 
of genes of known function by combining ILP-based scientific discovery software with a 
laboratory robot. In Sternberg and Muggleton (2003), the ILP system produces hypotheses 
as logic rules that depict the chemical connectivity of molecules and predict mutagenicity, 
which accommodates collaboration with a human chemist. However, in most systems, it 
remains an ongoing challenge to ensure human understanding due to the high complex-
ity of information encoded via these interfaces. In a recent work (Ai et al., 2021), it was 
shown that visual and textual explanations for playing a simple two-player game, generated 
based on rules learned by an ILP system, may cause improvement or degradation in human 
comprehension after a brief study. The authors demonstrated that the outcome of study-
ing explanations provided is affected by a cognitive window which takes account of the 
descriptive complexity and execution requirements of the rules.

2.3 � Operational measures of human understanding in AI

Explainable Artificial Intelligence (XAI) is an area of AI that studies AI systems that 
allow human understanding by providing human-readable explanations of decisions based 
on structures and functions. Researchers have attempted to devise AI systems to present 
knowledge attained in various formats, such as texts (Hind et al., 2019; McAuley & Lesko-
vec, 2013), visualisations (Poulin et al., 2006; Ribeiro et al., 2018; Tamagnini et al., 2017; 
Xu et  al., 2015) and visualisation-text hybrid demonstrations (Schmid & Finzel, 2020). 
Simpler explanations of local predictions can be devised to provide a localised under-
standing of a learned classification model (Ribeiro & Guestrin, 2016). For reinforcement 
learning applications, learned strategies are implicitly encoded by policy functions with 
continuous domains which are difficult for humans to understand. This concern about the 
opacity of learned strategies was addressed by incorporating the use of relational biases 
(Burke et al., 2019; Džeroski et al., 2001; Zambaldi et al., 2019) to enhance human under-
standability. In addition, case-based summaries of a policy (Amir et al., 2019) from sets of 
selected states in a larger state space of an agent allow a limited human understanding of 
the agent’s decisions.

In XAI, there exists a diversity of motivations and technical descriptions of systems 
which support human understanding. Terms such as transparency, interpretability, explain-
ability and comprehensibility are frequently used terms at the core of XAI (Arrieta et al., 
2020). Transparency typically refers to the ability of a model or a system to be human-
understandable on its own (Arrieta et  al., 2020). Interpretability relates to the degree of 
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clarity of information revealed to the user by a system (Minh et al., 2021). Explainability 
stresses the role of a system as an “explainer” interface to the user (Arrieta et al., 2020). 
Comprehensibility denotes a system’s ability to represent machine-learned knowledge in 
a human-understandable format (Arrieta et al., 2020; Gleicher, 2016). However, owing to 
the absence of operational definitions and procedures of evaluation, a great body of recent 
results was established based on subjective views (Freitas, 2014; Miller, 2019) which are 
discordant (Lipton, 2018) with respect to the sub-problem of XAI that the studies attempted 
to address. Studies were often found to report limited empirical evidence as support of the 
proclaimed effect and did not take into consideration that human understanding is just as 
vital as the computational procedures that generate explanatory information (Miller, 2019). 
It was stressed in Adadi and Berrada (2018) that a great body of studies did not evaluate 
the effect of explanations on their target users. Those works that did include explanatory 
effect evaluations often failed to provide a good account of the context, results and limita-
tions (Anjomshoae et al., 2019). A number of reports also brought to attention the potential 
misinterpretation and misuse of explanatory information. For example, partially transpar-
ent explanatory information may cause more confusion if key decision-making of systems 
is omitted (Rudin, 2019). The authors in Stumpf et  al. (2016) expressed trustworthiness 
concern and showed that human decision-making over-relied on the intelligent system even 
when explanatory information provided by the system was inaccurate.

The importance of comprehensibility has long been recognised in machine learning 
of human-oriented knowledge. Michalski (1983) suggested that comprehensible machine 
learning should produce outputs that share similar structure and semantics as those pro-
duced by human experts and should present learned knowledge in human-understand-
able “chunks”. Owing to the challenges of quantification, comprehensibility has usually 
been associated with the complexity of machine-learned models (Guidotti et  al., 2018). 
Research on the operational definition of machine learning comprehensibility can be traced 
back to Michie’s definition of Ultra-Strong Machine Learning in the 1980s (Michie, 1988). 
This criterion stresses machine learners’ ability to teach hypotheses to humans such that 
their performance over the task is improved by a substantial margin compared with human 
learning alone. An operational definition of comprehensibility (Muggleton et  al., 2018; 
Schmid et  al., 2017) was proposed which assesses human comprehension based on the 
human out-of-sample classification accuracy. In recent work Ai et  al. (2021), both ben-
eficial and harmful effects of explanatory machine learning were identified in the context 
of symbolic machine learning. However, the effects of the teaching order of concepts on 
human comprehension have not been fully explored in the literature on machine learning 
comprehensibility.

3 � Theoretical framework

To introduce our theoretical framework, in Sect.  3.1 we begin by referring to the logic 
notations and background of Meta-Interpretive Learning (MIL) (Muggleton et al., 2015). 
A MIL system MetagolO (Cropper & Muggleton, 2015) has been modified in Sect. 3.2 to 
learn a logic theory of sorting as explanations in our empirical human trial. In Sect. 3.3, the 
frameworks of comprehensibility (Schmid et al., 2017) and explanatory effects (Ai et al., 
2021) have been extended to account for sequential teaching curricula containing “blocks” 
of teaching materials. In Sect. 3.4, we refer to the cognitive cost of a logic program (Schmid 
et al., 2017) which was proposed to approximate the complexity of the human execution of 
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the logic program as humans simulate the knowledge being taught. We describe the cog-
nitive window and sequential teaching improvement conjectures in Sect. 3.5 based on Ai 
et al. (2021) and our proposed new framework.

3.1 � Meta‑interpretive learning

An Inductive Logic Programming (ILP) (Muggleton, 1991) algorithm uses background 
knowledge B to induce a hypothesis in the form of a logic program which entails all of 
the positive examples E+ and none of the negative examples E− . Meta-Interpretive Learn-
ing (MIL) (Muggleton et al., 2015) is a variant of ILP which supports predicate invention 
(Muggleton et al., 2015), dependent learning (Lin et al., 2014) and learning of recursive 
and higher-order programs. A MIL algorithm solves the following problem: given a tuple 
( B , M , E+ , E− , I  , H ) where the background knowledge B is a first-order logic program, M 
is a set of second-order clauses, positive examples E+ and negative examples E− are ground 
atoms, learns a logic program H such that

I  is a set of predicate symbols reserved for predicate invention. Output logic program H is 
a hypothesis in the hypothesis space H described by a finite number of predicate symbols 
and constants. The background knowledge B contains a set of predicate definitions as prim-
itives. The set of second-order clauses M is referred to as meta-rules. Each meta-rule con-
tains existentially quantified second-order variables and universally quantified first-order 
variables. A MIL algorithm employs meta-rules and substitutes second-order variables 
with predicate symbols to derive first-order theories as logical generalisations.

3.2 � MIL for learning sorting algorithm

The MIL system Metagol (Cropper & Muggleton, 2016) is an implementation of a meta-
interpreter in Prolog. Metagol supports predicate invention and dependent learning which 
reduces the size of the hypothesis space and improves learning performance (Crop-
per, 2017). MetagolO (Cropper & Muggleton, 2015) makes use of composite objects and 
actions defined from primitive objects and actions. MetagolO addresses the issue that most 
ILP systems only considered the textual complexity of hypothesis programs. The inability 
to distinguish two algorithms, for instance, insertion sort and quick sort, would result in the 
less computationally efficient but textually compact algorithm being learned. Both textual 
and resource costs of hypothesis programs are minimised by MetagolO using a technique 
called iterative descent (Cropper & Muggleton, 2015) which computes the resource cost 
of hypotheses of increasing sizes according to a pre-defined cost function. For learning 
robot postman and robot sorting strategies, the background knowledge is defined in com-
posite actions and objects and provided to MetagolO . The authors showed that MetagolO 
converges to hypotheses with the optimal resource complexity and learns resource-efficient 
robot strategies (Cropper & Muggleton, 2015).

We modify the background knowledge of MetagolO for learning a bottom-up variant 
of the merge sort algorithm (Goldstine & Neumann, 1963) for sorting positive integers. 
Merge sort is a recursive sorting algorithm based on a divide-and-conquer approach. The 

∀e+ ∈ E
+

M ∪ H ∪ B ⊧ e+

∀e− ∈ E
−

M ∪ H ∪ B ̸⊧ e−

M ∪ B ⊧ H
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conventional implementation recursively splits an input sequence into units and performs 
merging on these units to build up sorted sequences that are shorter. The aforementioned 
variant takes an input sequence as a list of sub-sequences of length one and iteratively 
merges two sub-sequences in a bottom-up fashion. For human learners with little or no 
prior knowledge of recursive sorting algorithms, we consider that iterative algorithms are 
conceptually easier teaching materials in the case of unfamiliarity with recursive programs. 
In addition, we assume that human sorting strategies do not usually involve merging. 
Humans may learn to utilise merging for creative sorting strategies.

A demonstration of the execution of the bottom-up merge sort algorithm is included 
in Example 1. To learn the bottom-up variant of merge sort,1 we define the world state 
that the robot sorter would see. MetagolO is provided with primitives to manipu-
late expressions which compactly represent ordered sequences. Let Lt_expr repre-
sent a non-empty monotonically increasing sequence of integers and be defined as 
Lt_expr ∶= Int | Lt_expr < Lt_expr.

Example 1  Let the sequence [4, 6, 5, 2, 3, 1] be an input to the bottom-up variant of merge 
sort. Merging is iteratively performed from the end of the list with lower indices. Merg-
ing takes two expressions as inputs, e.g. 4 and 6, and outputs one expression, e.g. 4 < 6 . 
In iteration 1, three merging would be executed on expressions 4 and 6, 5 and 2, 3 and 1 
which would return [4 < 6, 2 < 5, 1 < 3] . In iteration 2, one merging would be executed 
on two leftmost expressions 4 < 6 and 2 < 5 which would give [2 < 4 < 5 < 6, 1 < 3] . 
In iteration 3, expressions 2 < 4 < 5 < 6 and 1 < 3 are merged which would return 
[1 < 2 < 3 < 4 < 5 < 6] . Only one expression remains which represents the sorted 
sequence and the algorithm terminates with [1 < 2 < 3 < 4 < 5 < 6] as output.

Objects are separated into primitive objects Oprim and composite objects Ocomp 
where O = Oprim ∪ Ocomp denotes the set of all objects in the robot world. Each com-
posite object is defined by primitive objects or other composite objects. S is a set 
of states and each state is a tuple of objects. In particular, a state is defined as a tuple 
(exprs, energy, left_bag, right_bag,memory) with an arity of 5. The exprs is a list of 
Lt_expr . The energy records the resource cost. The left_bag and right_bag are lists of 
the parsed numbers. The memory is a list of newly created Lt_expr . An action a ∈ A is 
a function such that a ∶ S → S . Each action is either a primitive action included in Aprim 
or a composite action included in Acomp . Let A be an enumerable set of actions where 
A = Aprim ∪ Acomp . Every composite action is constructed based on primitive actions or 
other composite actions. A resource function r ∶ A × S → ℕ defines the resources con-
sumed by carrying out an action a ∈ A in state s ∈ S.

MetagolO ’s background knowledge is supplied with composite actions Acomp 
= {parse_exprs∕2 , compare_nums∕2 , single_expr∕2 , drop_bag_remaining∕2 , 
recycle_memory∕2} for learning merger/2 and sorter/2 in Table 1. Meta-rules in Table 2 
allow MetagolO to learn recursive programs. In merger/2, two Lt_expr from exprs are 
first parsed into left_bag and right_bag . Then numbers are compared pair-wise from two 
bags and the smaller number is appended to the last Lt_expr in memory. sorter/2 applies 
merger/2 over all Lt_expr in exprs. Constructed Lt_expr in memory are recycled back to 
exprs by recycle_memory∕2 . This process is iterated until there is only one Lt_expr left in 

1  Source code and demos are available on https://​github.​com/​LAi19​97/​seque​ntial-​teach​ing.

https://github.com/LAi1997/sequential-teaching
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exprs and memory is empty. We define a cost function for compare_nums∕2 such that the 
energy is incremented by one whenever two numbers are successfully compared. We addi-
tionally define a constraint over the world states. This constraint based on Spearman’s rank 
correlation coefficient (Spearman, 1904) ensures the expressions in the current state are not 
less sorted compared with expressions in the immediate next state.

3.3 � Explanatory effect of curriculum order

We have employed a quantifiable approach that provides operational definitions for the 
evaluation of the effect of sequential teaching on human comprehension. This allows us 
to better account for the context, results and limitations. We describe the basis of our 
framework by referring to previous work on comprehensibility (Schmid et  al., 2017) 

Table 1   When the robot performs parse_exprs∕2 , it parses two expressions by removing the “<” symbols, 
and it puts one sequence of numbers into the left bag and the other sequence of numbers into the right bag

compare_nums∕2 first selects a number from the left bag and a number from the right bag. Then it com-
pares the two numbers. Afterwards, compare_nums∕2 uses the smaller number to extend the last expression 
in the memory and puts the larger number back in its original bag. When one of the bags is empty, the robot 
performs drop_bag_remaining∕2 to append the rest of the numbers to the last expression in the memory. 
recycle_memory∕2 takes all expressions in the memory and fills the expression list exprs. single_expr∕2 
checks if there exists only one expression in the expression list exprs

Definition Rules

merger/2 merger(A,B):-parse_exprs(A,C),merger_1(C,B).
merger_1(A,B):- compare_
nums(A,C),merger_1(C,B)

merger_1(A,B):-compare_nums(A,C),drop_bag_
remaining(C,B).

sorter/2 (after learning merger/2) sorter(A,B):-merger(A,C),sorter(C,B).

sorter(A,B):-recycle_memory(A,C), sorter(C,B).
sorter(A,B):-single_expr(A,C), single_
expr(C,B).

sorter/2 (without learning merger/2) sorter(A,B):-parse_exprs(A,C),sorter(C,B).

sorter(A,B):-compare_nums(A,C), sorter(C,B).
sorter(A,B):-drop_bag_remaining(A,C), 
sorter(C,B).

sorter(A,B):-recycle_memory(A,C), sorter(C,B).
sorter(A,B):-single_expr(A,C), single_
expr(C,B).

Table 2   MetagolO uses two 
meta-rules

P, Q, and R are existentially quantified higher-order variables and x, y, 
and z are universally quantified first-order variables. ≻ is a total order-
ing constraint over the Herbrand base to guarantee the termination of 
hypotheses

Name Meta-rule Orders

Chain P(x, y) ← Q(x, z),R(z, y) P ≻ Q,P ≻ R

Tailrec P(x, y) ← Q(x, z),P(z, y) P ≻ Q , x ≻ z ≻ y
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and explanatory effects (Ai et al., 2021) (Table 3). Then we define a sequential teach-
ing curriculum and its relative effectiveness with respect to another sequential teaching 
curriculum.

Based on an operable definition of comprehensibility (Schmid et al., 2017), the authors 
in Ai et  al. (2021) explored the explanatory effects of machine-learned logic rules on 
human comprehension and proposed a framework of a cognitive window that focuses on 
the symbolic subset of machine learning. The definitions of comprehensibility and explan-
atory effects are extended in this present work to account for sequential teaching curric-
ula in the context of symbolic machine learning. We use the logic programs learned from 
MetagolO to generate explanations for our human trial. For the purpose of experimentation, 
we only consider curricula with noise-free training examples. This does not mean, how-
ever, that the proposed definitions could not be extended outside of the considered scope.

The operational definition of comprehensibility (Schmid et  al., 2017) is an objective 
means of evaluating human comprehension of a concept based on human out-of-sample 
predictive accuracy. It was extended in Ai et al. (2021) to define the explanatory effective-
ness of machine-learned logic programs which measures the extent to which examples with 
explanations generated from machine-learned logic programs can be simulated by humans.

Definition 1  (Unaided human comprehension of examples, Ch(D, H, E)) Given that D is a 
logic program representing the definition of a target predicate, H is a human group and E is 
a set of examples of the target predicate. The unaided human comprehension of examples 
E is the mean accuracy with which a human h ∈ H after a brief study of E and without fur-
ther sight can classify new material sampled randomly from the domain of D.

Compared with the unaided human comprehension of examples, the machine-
explained human comprehension of examples corresponds to the out-of-sample clas-
sification accuracy after studying the machine-learned explanation M(E) where M is a 
machine learning algorithm and E is a set of training examples.

Definition 2  (Machine-explained human comprehension of examples, Cex(D, H, M(E))): 
Given that D is a logic program representing the definition of a target predicate, H is a 
human group, M(E) is a theory learned using machine learning algorithm M and E is a 
set of examples of the target predicate. The machine-explained human comprehension 
of examples E is the mean accuracy with which a human h ∈ H after a brief study of an 
explanation based on M(E) and without further sight can classify new material sampled 
randomly from the domain of D.

Table 3   A summary of the 
connections between definitions 
of comprehensibility, explanatory 
effects and cognitive window 
in Muggleton et al. (2018), Ai 
et al. (2021) and the proposed 
framework to account for effects 
of sequential teaching curricula

Framework Definitions and 
results in previous 
works

Extended definitions and 
results for sequential 
teaching

Comprehensibility Definitions 1 and 2 Definitions 5 to 7
Explanatory effects Definitions 3 and 4 Definitions 8 and 9
Cognitive window Definitions 10 

to 14, Remark 1 
and Conjecture 1 
to 2

Conjecture 3
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The explanatory effect of a machine-learned theory on human comprehension of a task 
is defined as the difference between machine-explain and unaided human comprehension 
of examples of the task.

Definition 3  (Explanatory effect of a machine-learned theory, Eex(D, H, M(E))): Given 
a logic program D representing the definition of a target predicate, a human group H and 
a machine learning algorithm M, the explanatory effect of the theory M(E) learned from 
examples E is

In the case that the explanations provided by the machine lead to a positive improve-
ment, the explanatory effect of the learned theory is beneficial to human comprehension. 
When this difference is negative, the explanatory effect of the machine-learned theory is 
harmful to human comprehension.

Definition 4  (Beneficial/harmful effect of a machine-learned theory): Given a logic pro-
gram D representing the definition of a target predicate, a set of training examples E, a 
group of humans H, and a symbolic machine learning algorithm M:

•	 M(E) learned from E is beneficial to H if Eex(D,H,M(E)) > 0

•	 M(E) learned from E is harmful to H if Eex(D,H,M(E)) < 0

•	 Otherwise, M(E) learned from E does not have an effect on H

Whether or not an explanatory effect is significantly beneficial or harmful can be deter-
mined empirically by applying an independent two-sample t-test or similar method to the 
means of unaided- and machine-explained human comprehension. In the case that the 
mean difference is not significant, we cannot classify the effect of a machine-learned the-
ory as either beneficial or harmful.

The definitions of human comprehension and explanatory effects are extended to 
account for the ordering of concepts. We define a sequential teaching curriculum to contain 
a set of concept definitions, sets of examples and explanations. The arrangement of con-
cepts in a curriculum can be decided based on an ordering function which outputs a score 
to rank concepts.

Definition 5  (Curriculum rank function, �(D, E, M)) Given a set of predicate defi-
nitions Ds, sets of examples Es and a set of machine learning algorithms Ms, 
� ∶ Ds × Es ×Ms → ℕ is a rank function that returns the rank value of any predicate defi-
nition D ∈ Ds in a curriculum.

A sequential teaching curriculum contains “chunks” of teaching material and a curricu-
lum has at least one such “chunk”. The order of concepts received by humans is deter-
mined by a defined rank function which assigns a score to every block of teaching material 
which contains the concept definitions, examples and explanations.

Definition 6  (Sequential teaching curriculum, ST(Ds, Es, � , Ms)): Given that Ds = {D1,D2

,... Dn} is a set of predicate definitions of size n, Es = {E1,E2,..., En} contains sets of examples 
where Ei are examples of Di for 1 ≤ i ≤ n , Ms denotes a set of machine learning algorithms 
and � ∶ Ds × Es ×Ms → ℕ is a rank function, a sequential teaching curriculum ST(Ds, Es 

Eex(D,H,M(E)) = Cex(D,H,M(E)) − Ch(D,H,E)
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� , Ms) is an enumerable set of tuples {(R1,D1,E1,M1), (R2,D2,E2,M2), ..., (Rn,Dn,En,Mn)} 
in which Rj = �(Dj,Ej,Mj) is the rank of a concept in the curriculum for 1 ≤ j ≤ n . A 
sequential teaching curriculum enumerates concepts with respect to increasing rank value.

Human comprehension is considered aided by explanations if the machine-learned logic 
program in a teaching material block is not empty. Otherwise, human comprehension is 
established based on training examples alone. We proceed to define the effect of a sequen-
tial teaching curriculum on the human comprehension of a concept.

Definition 7  (Human comprehension of examples in a sequential teaching curriculum, 
Cseq(T ,H) ): Given that T = ST(Ds,Es, �,Ms) is a sequential teaching curriculum where Ds 
is a set of n predicate definitions, Es are sets of examples, � ∶ Ds × Es ×Ms → ℕ is a rank 
function, Ms is a set of machine learning algorithms and H is a human group, the human 
comprehension of examples in the sequential teaching curriculum is

We provide examples of sequential teaching definition which specify a curriculum that 
presents training materials of merging before introducing training materials of sorting and 
a curriculum with the reverse order of teaching.

Example 2  Let Ds = {merger, sorter} denote predicate definitions of merging and 
merge sort, Emerge and Esort be the respective example sets and Es = {Emerge,Esort} and 
Ms = {MetagolO} which generates explanations. We define �merge∕sort (merger, Emerge , 
MetagolO ) = 0 and �merge∕sort (sorter, Esort , MetagolO ) = 1. Let �sort∕merge (merger, Emerge , 
MetagolO ) = 1 and �sort∕mergel (sorter, Esort , MetagolO ) = 0. The merge-then-sort curric-
ulum is represented by ST(Ds, Es, �merge∕sort,Ms) which teaches merging before teaching 
sorting and the sort-then-merge curriculum is denoted by ST(Ds, Es, �sort∕merge,Ms) which 
teaches sorting before teaching merging. �merge∕sort specifies the ordering of concepts in the 
merge-then-sort curriculum ST(Ds, Es, �merge∕sort , Ms) and �sort∕merge defines the ordering of 
concepts in the sort-then-merge curriculum ST(Ds, Es, �sort∕merge , Ms).

Definition 8  (Effect of a sequential teaching curriculum, Eseq(C1 , C2 , D)): C1 = Cseq

(ST(Ds, Es, �1 , Ms), H) and C2 = Cseq(ST(Ds, Es, �2 , Ms), H) are sequential teaching cur-
ricula where Ds is a set of n predicate definitions and D ∈ Ds is a predicate definition, 
Es = {E, ...} are sets of examples, �1, �2 ∶ Ds × Es ×Ms → ℕ are two rank functions, Ms 
is a set of machine learning algorithms and H is a human group. R1 = �1(D,E,M1) and 
R2 = �2(D,E,M2) are the ranks of D in C1 and C2 where M1,M2 ∈ Ms . The explanatory 
effect of curriculum C1 over curriculum C2 on predicate definition D is

where (R1, �1) ∈ C1 , (R2, �2) ∈ C2.

In Definition  7, comprehension measurements are obtained with respect to the rank-
ing of concepts in a sequential teaching curriculum. The effect of a sequential teaching 

Cseq(T ,H) =

⎧
⎪⎨⎪⎩
(Ri, �)

�����

� = Ch(Di,H,Ei), Mi(Ei) = �

� = Cex(Di,H,Mi(Ei)), Mi(Ei) ≠ �

for (Ri,Di,Ei,Mi) ∈ S, 1 ≤ i ≤ n

⎫⎪⎬⎪⎭

Eseq(C1,C2,D) = �1 − �2
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curriculum reflects the degree to which human comprehension of a concept is affected by 
a curriculum. Given two sequential teaching curricula and a concept of interest, the effect 
of one curriculum over another curriculum corresponds to the difference in comprehension 
measurements of the concept. A significant difference in human comprehension as a result 
of learning from one curriculum over another curriculum can be classified as a beneficial 
or harmful effect of learning from the former curriculum.

Definition 9  (Beneficial/harmful effect of a sequential teaching curriculum): Given that C1 
= Cseq(ST(Ds, Es, �1 , Ms), H) and C2 = Cseq(ST(Ds, Es, �2 , Ms), H) are sequential teaching 
curricula where Ds is a set of n predicate definitions and D ∈ Ds is a predicate definition, 
Es are sets of examples, �1, �2 ∶ Ds × Es ×Ms → ℕ are two rank functions, Ms is a set of 
machine learning algorithms, and H is a human group, the curriculum C1 in comparison 
with the curriculum C2 is

•	 beneficial to H on D if Eseq(C1,C2,D) > 0

•	 harmful to H on D if Eseq(C1,C2,D) < 0

•	 Otherwise there is no effect on H for D in curriculum C1 compared with curriculum C2

The effect on the predicate D is beneficial when the curriculum ordered by �1 results in 
a better comprehension of D than the comprehension of D in the curriculum ordered by �2 . 
Conversely, the effect on D is harmful in the case that a degradation of comprehension is 
observed when comparing the comprehension of D between curricula described by �1 and 
�2 . As with the effect of a machine-learned theory (Definition 4), whether or not an effect 
of a sequential teaching curriculum is significantly beneficial or harmful can be determined 
using an independent two-sample t-test or similar method.

3.4 � Cognitive cost of a logic program

A consensus between the literature on cognitive psychology and artificial intelligence 
(Miller, 1956; Johnson-Laird, 1986; Newell, 1990) is that the information processing of 
humans in working memory can be modelled by manipulation of symbols in machines 
which can be formally captured by Turing machines. The limitation on working mem-
ory capacity corresponds to a bounded tape length and instruction complexity in Turing 
Machines. For rule-based concept acquisition (Bruner et al., 1956), human concept attain-
ment is analogical to a search in a collection of hypotheses guided by some preference 
ordering which is comparable to version space learning in machine learning (Mitchell, 
1982). In addition, the organisation of complex action sequences into hierarchical struc-
tures in human information processing is an efficient mechanism for general problem-
solving. In the contexts of analogical problem-solving (Carbonell, 1985) and production 
systems (Newell, 1990), top-level goals are decomposed into sub-goals which can be 
described by a set of rules that guide actions in problem-solving sequences. Although rules 
generally can be considered as procedural knowledge, in complex domains human verbali-
sation of rules utilises declarative memory (Anderson et al., 1993; Schmid & Kitzelmann, 
2011). The explicit representations of a human problem-solving solution correspond to 
rule-like descriptions. For the following definitions, we assume that:

•	 Human learners are version space learners who can make only limited hypothesis space 
searches
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•	 Human learning is guided by meta-rules which construct the sub-goal structure and 
uses predicates as background knowledge

•	 An increase in the execution complexity of the problem solution can have a negative 
effect on performance

•	 Rules can be declaratively represented in a verbalisable form whose complexity can be 
measured by the Kolmogorov complexity

The cognitive cost is a variant of Kolmogorov complexity (Kolmogorov, 1963) proposed 
in Ai et al. (2021). The cognitive cost estimates the textual complexity of logic terms and 
atoms declared in the execution stack of working memory. These logic terms and atoms are 
instances of predicates in a datalog program during the execution of a goal.

A datalog program is a declarative subset of logic programs that represent data struc-
tures using predicate arguments but do not use function symbols. Given logic terms and 
atoms T1, T2, ...,Tn−1, Tn , a tuple of finite arity can be represented as

Similarly, a list of finite size can be represented as

where � denotes an empty character. The cost of logic terms and atoms is computed based 
on the length of the representation, in particular, the number of symbols involved.

Definition 10  (Cognitive cost of a logic term and atom, C(T)): Given T a logic term or 
atom, the cost of C(T) can be computed as follows:

•	 C(⊤) = C(⊥) = 1

•	 A variable V has cost C(V) = 1

•	 A constant c of a finite length has cost C(c) which is the number of digits and charac-
ters in c

•	 An atom Q(T1, T2, ...) of a finite arity has cost C(Q(T1, T2, ...)) = 1 + C(T1) + C(T2)+...

Example 3  An atom list(1, list(0, �)) which represents a list [1, 0] has a cognitive cost 
C(list(1, list(0, �))) = 5.

Example 4  An atom merger(State1, State2) with variables State1 and State2 has a cognitive 
cost C(merger(State1, State2)) = 3.

In the event of a query q, an execution stack resembles the mental computation and rep-
resents the memory of grounded logic terms and atoms instantiated.

Definition 11  (Execution stack of a datalog program, S(P,  l, q)): Given a query q and a 
non-negative integer l, the execution stack S(P, l, q) of a datalog program P is a finite set 
of size l of atoms or terms evaluated during the execution of P to compute an answer for q. 
An evaluation in which an answer to the query is found ends with value ⊤ , and an evalua-
tion in which no answer to the query is found ends with ⊥.

The cognitive cost represents the tax of memorising goals in the human short-term 
memory. The effort of maintaining goals in working memory correlates to the performance 

tuple(T1, tuple(T2, tuple(..., tuple(Tn−1, tuple(Tn, �))...)))

list(T1, list(T2, list(..., list(Tn−1, list(Tn, �))...)))
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of human problem-solving (Carpenter et al., 1990). The complexity of executing a set of 
rules is estimated by the sum of the cognitive cost of logic terms and atoms in the execu-
tion stack. The depth bound of an execution stack denotes the limitation of working mem-
ory and ensures the computation of the sum of cognitive costs halts.

Definition 12  (Cognitive cost of a datalog program, Cog(P, q)): Given a query q, a non-
negative integer l, the cognitive cost of a datalog program P is

Example 5  The program merger/2 in Table 1 takes two input Lt_expr expressions in the 
expression list of a world state and produces an expression Lt_expr in the memory of 
the output world state. The output expression contains integers of increasing magnitude 
from left to right connected by the “<” symbol. Given ex1 = list(1, list(0, �)) , lb1 = � , 
rb1 = � and m1 = � , s1 = tuple(ex1 , tuple(0, tuple(lb1,tuple(rb1,m1)))) denotes the initial 
world state and C(s1) = 13 . Let ex2 = list(� , � ), lb2 = list(1, �) , rb2 = list(0, � ) and m2 = � . 
s2 = tuple(ex2 , tuple(0, tuple(lb2,tuple(rb2,m2)))) denotes the world state after executing 
parse_expr∕2 and C(s2) = 15 . parse_expr∕2 takes two expressions from the expression list 
and puts one expression into the left bag and puts the other into the right bag. Let V1 and V2 
be variables. The length of the execution stack denoted by S(merger, 4,merger(s1,V1)) is 4. 
The cognitive cost of executing merger/2 given the query merger(s1,V1) is 60. 

S(merger, 4,merger(s1,V1)) C(T)

merger(s1,V1) 15
parse_expr(s1,V2) 15
parse_expr(s1, s2) 29
⊥ 1
Cog(merger,merger(s1,V1)) 60

In human problem solving, the role of background knowledge is to facilitate the transfer 
of existing solutions (Anderson & Thompson, 1989; Novick & Holyoak, 1991) to the cur-
rent context. In the case that auxiliary knowledge is absent, the construction of the solution 
relies on lower-level sub-goals and performance is limited by human operational error. A 
primitive problem solution thus denotes a program that involves the minimum amount of 
background knowledge of the task.

Definition 13  (Minimum primitive solution program, M̄(𝜙,E) ): Given a set of primitives 
� and examples E, a datalog program learned from examples E using a symbolic machine 
learning algorithm M̄ and a set of primitives 𝜙′ ⊆ 𝜙 is a minimum primitive solution pro-
gram M̄(𝜙,E) if and only if for all sets of primitives 𝜙′′ ⊆ 𝜙 where |𝜙′′| < |𝜙′| and for all 
symbolic machine learning algorithm M′ using �′′ , there exists no machine-learned pro-
gram M�(E) that is consistent with examples E.

Definition 14  (Cognitive cost of a problem solution, CogP(E, M̄,𝜙, q) ): Given examples E, 
primitive set � , a query q and a symbolic machine learning algorithm M̄ that learns a mini-
mum primitive solution, the cognitive cost of a problem solution is

Cog(P, q) =
∑

t∈S(P,l,q)

C(t)
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where M̄(𝜙,E) is a minimum primitive solution program.

The presence of informative knowledge enables efficient problem-solving as projections 
from background knowledge and allows shortcuts in the construction of the current solu-
tion process. In comparison with a primitive problem solution, executional shortcuts in a 
non-primitive solution could lead to less cognitive load on working memory and fewer 
performance errors during the execution of the solution.

3.5 � Conjectures of human comprehension

Michie (1982) discussed the effect of the representational and executional cost of a pro-
gram on human understanding. He described the notion of a human window in terms of 
a class of programs with the right balance of storage and computational complexity that 
are fit for human understanding. The cognitive window framework (Ai et al., 2021) shares 
Michie’s view of the human window and describes two constraints of machine-learned 
theory in regard to its effects on human comprehension. The first constraint relates to the 
size of the hypothesis space associated with the representation of a machine-learned logic 
theory. This constraint specifies the limitation of human search in the hypothesis space.

Conjecture 1  (Cognitive bound on the hypothesis space size, B(P, H)): Consider a sym-
bolic machine-learned datalog program P using p predicate symbols and m meta-rules 
each having at most j body literals. Given a group of humans H, B(P, H) is a population-
dependent bound on the size of hypothesis space such that at most n clauses in P can be 
comprehended by all humans in H and B(P,H) = mnp(1+j)n.

The conjecture of the human searchable hypothesis space size B(P,  H) relates to the 
MIL complexity analysis in Cropper (2017); Lin et  al. (2014). The authors in Ai et  al. 
(2021) demonstrated empirical evidence which supports Conjecture 1. Humans learned 
can only learn some of the rules for a two-players simple game when the descriptive size of 
the rules is high. This implies that the hypothesis space associated with the program class 
is too large for a complete search and imposes a high cognitive load on working memory. 
Since only a fraction of the original rules is learned, problem solutions which produce 
action sequences are not complete and errors become more likely to occur.

The cognitive window conjecture describes that a machine-learned theory has a harm-
ful explanatory effect on comprehension when learning requires a search in a hypothesis 
space that is too large for working memory to manage. In addition, a machine-learned the-
ory has no beneficial explanatory effect if its cognitive complexity in executing explained 
knowledge is not lower than the cognitive complexity of a solution that uses less auxiliary 
knowledge.

Conjecture 2  (Cognitive window of a machine-learned theory): Given a logic program D 
representing the definition of a target predicate, a machine learning algorithm M, a mini-
mum primitive solution learning algorithm M̄ and examples E, M(E) is a machine-learned 
theory using the primitive set � and belongs to the program class with hypothesis space S. 
For a human group H, Eex satisfies both 

CogP(E, M̄,𝜙, q) = Cog(M̄(𝜙,E), q)
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1.	 Eex(D,H,M(E)) < 0 if |S| > B(M(E), H)
2.	 Eex(D,H,M(E)) ≤ 0 if Cog(M(E), x) ≥ CogP(E, M̄,𝜙, x) for all unseen query x that 

h ∈ H have to perform after study

Explanations are only beneficial if they are of appropriate complexity and are not over-
whelming nor more cognitively expensive than a primitive solution to the problem. This 
cognitive window suggests that complex machine-learned models and models which can-
not provide abstract descriptions are difficult to be comprehended by humans effectively.

Remark 1  MetagolO is provided with a set of composite predicate definitions Acomp
= {parse_exprs∕2, compare_nums∕2, single_expr∕2, drop_bag_remaining∕2, recycle_memory∕2} 

to learn merger/2 in Table  1. Acomp is constructed from a set of primitive action defini-
tions Aprim . The composite actions of breaking number sequences into individual numbers 
( parse_exprs∕2 ), comparing two numbers ( compare_nums∕2 ) and appending two sorted 
sequences ( drop_bag_remaining∕2 ) are sufficient for merging and the respective predicates 
appear in the learned logic program merger/2. Given action definitions A = Aprim ∪ Acomp , 
since composite actions Acomp are constructed from multiple primitive actions from Aprim , 
Acomp is the necessary and sufficient subset of A to learn a definition of merging. This 
implies that merger/2 learned by MetagolO(E) is the minimum primitive solution. There-
fore, given test examples X of merging and sufficient training examples E, Cog(merger, x) 
= CogP(E, MetagolO , A, x) for all x ∈ X.

The complexity analysis based on the Blumer bound (Blumer et  al., 1989) in Crop-
per (2019) attributes a sample complexity decrease to the introduction of new predicate 
symbols to the machine learner. Previously learned predicate definitions extend the back-
ground. Reusing learned concepts leads to a decrease in the size of the target hypothesis 
and a reduction in the size of the hypothesis space which improves learning performance 
(Cropper, 2019). Based on our assumptions in Sect. 3.4, we consider an analogy between 
the human reusing of previously learned concepts and the introduction of predicate defini-
tions into a new learning context. By referring to Definition 9, we attribute a beneficial 
effect of a curriculum on human comprehension over another curriculum to an improve-
ment in the sample complexity based on the analysis in Cropper (2019).

Conjecture 3  (Sequential teaching curriculum improvement): C1 = Cseq(ST(Ds, Es, �1 , Ms), 
H) and C2 = Cseq(ST(Ds, Es, �2 , Ms), H) are sequential teaching curricula where Ds is a 
set of n predicate definitions and D ∈ Ds is a predicate definition, Es are sets of examples, 
�1, �2 ∶ Ds × Es ×Ms → ℕ are rank functions, Ms is a set of machine learning algorithms 
and H is a human group. R1 , R2 denote ranks of D such that (R1,D) ∈ C1 and (R2,D) ∈ C2 . 
For 1 ≤ i ≤ n such that (Ri,Di) ∈ C1 and Ri < R1 , let p denote the sum of the number of 
predicates in Di and u be the minimum number of clauses to express D using Di . For 
1 ≤ j ≤ n such that (Rj,Dj) ∈ C2 and Rj < R2 , let p + c denote the number of predicates in 
Dj and u + k be the minimum number of clauses to express D using Dj . Eseq(C1,C2,D) > 0 
when:

Given a target predicate D and a fixed human search bound B(D, H) for a human group 
H, human learners are more likely to find D if the hypothesis space associated becomes 
smaller as a result of learning new knowledge prior to learning D. For a fixed set of training 

u ln(p) < (u + k) ln(p + c)
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examples in two curricula, a reduction in sample complexity correlates to a decrease in 
predictive error and an improvement in performance.

4 � Experimental framework

In previous works (Ai et  al., 2021; Muggleton et  al., 2018), human comprehension was 
measured by the accuracy with which participants answered classification questions. The 
accuracy of problem-solving performance for classification tasks and sequential decision-
making tasks can be different due to the nature of the operations involved. In this section, 
we present our approach to evaluating human sorting performance based on statistics and 
describe our experimental hypotheses in relation to the theoretical framework.

4.1 � Evaluating human comprehension of sorting

For merging and sorting, human comprehension corresponds to the competence of par-
ticipants to arrange items with respect to the total ordering of the items. Decisions related 
to the arrangement of items are reflected by the classification of items into respective 
positions in the sequence. While the out-of-sample classification accuracy is an objective 
measure of human comprehension for classification tasks, it does not estimate the error 
of sequential predictions. Although alternative metrics exist, we use Spearman’s rank cor-
relation coefficient (Spearman, 1904) as a means to assess the error between the expected 
sequence and the actual sequence provided by a participant. Spearman’s rank correlation 
coefficient is a non-parametric rank correlation test and indicates the degree of monotonic 
ordering between two variables. Given two sequences of values representing samples of 
two variables, when Spearman’s rank correlation coefficient is +1 or −1 , it means the var-
iables are perfectly monotonic functions of each other. On the other hand, when Spear-
man’s rank correlation coefficient tends to 0, it indicates there is no monotonic relationship 
between the two variables. We use Spearman’s rank correlation coefficient to examine the 
extent of monotonic alignment between a sequence of integers that has been provided by a 
human and the correctly arranged sequence produced by a machine algorithm.

In addition, we take into consideration the possibility that participants provide incor-
rect answers that are inversely sorted with respect to the order specified in the experiment 
instructions. In this case, a coefficient score tending to −1 would mean that the participant 
successfully managed to sort the sequence but forgot the specified ordering. In the experi-
ment trials, we found that such answers rarely occurred. However, in order to avoid diluting 
the significance of results due to the inclusion of negative coefficients, we define the fol-
lowing function to discount negative coefficients and normalise all of them into the interval 
[0, 1].

Definition 15  (Normalised performance score, perf (Rh,Rm) ) Given two sets of integers 
Rh and Rm , a defined discounting constant 0 < c < 1 and the Spearman’s rank correlation 
coefficient � , the normalised performance score is defined as

perf (Rh,Rm) =

{
𝜌(Rh,Rm), 𝜌(Rh,Rm) ≥ 0

|𝜌(Rh,Rm)| ⋅ c, 𝜌(Rh,Rm) < 0



3609Machine Learning (2023) 112:3591–3632	

1 3

Example 6 shows the performance evaluation of two unordered sequences by comparing 
them to a sorted sequence.

Example 6  Let Rh1 denote the sequence [4, 6, 5, 2, 3, 1], Rh2 denote the sequence [1, 2, 6, 
3, 4, 5] and Rm be the perfectly monotonic sequence [1, 2, 3, 4, 5, 6] sorted by a machine 
program. Compared with Rm , Rh2 has only one number that is out of place. However, Rh1 is 
almost a sequence with decreasing magnitude with numbers 2 and 4 misplaced. Given Rm 
is a monotonically increasing sequence, Rh2 aligns better with the machine output Rm and 
perf (Rh1,Rm) = .386 < perf (Rh2,Rm) = .657.

The Spearman’s rank correlation coefficient lies in the interval [ −1 , 1] and the absolute 
value of the negative coefficient is multiplied by a discounting constant. Based on results 
from multiple trials, the discounting constant c is set to .5 to moderately penalise responses 
that involve reversed sorted sequences.

4.2 � Experimental hypotheses

We define our experimental hypotheses in this section. Table  4 shows the experimental 
variables and treatments. We examine the effect of the curriculum order (CO) via two 
teaching arrangements: (a) learning merging before learning sorting (MS) and (b) learning 
sorting before learning merging (SM). In addition, we assess the effect of the presence of 
explanations (EX) in two environments: (a) learning with explanations of merging (WEX) 
(b) learning without explanations of merging (WOEX).

Explanations are not provided for learning sorting to avoid introducing merge prema-
turely in the curricula that learn sorting before learning merging. We use the normalised 
performance score perf in Definition 15 to measure both human performances of merging 
and sorting (PS).

Let Ds = {merger, sorter} denote target theories of merging and sorting. Let 
Es = {Emerge,Esort} where Emerge denotes a sufficient set of examples for learning the target 
theory of merging and Esort is a sufficient set of examples for learning the target theory of 
sorting. Both human learners and MetagolO are provided with the same sets of examples 
Es. Let Ms = {MetagolO, �} denote the machine learning algorithms used to learn rules for 
generating explanations and ∅ is an empty program. H stands for a human group. The rank 
functions for curricula that learn merging before learning sorting are defined as �MS∕WEX 
and �MS∕WOEX . The rank functions of curricula that learn merging before learning sorting 

Table 4   We consider two independent experimental variables

The order of concepts in the curriculum (CO) is varied between learning merging before learning sort-
ing (MS) and learning sorting before learning merging (SM). The presence of explanations generated from 
machine-learned rules (EX) alters between learning with explanations (WEX) and learning without expla-
nations (WOEX). The performance score of human participants (PS) is the dependent experimental vari-
able

Variable name Variable type Treatment abbreviations

Curriculum order (CO) Independent variable MS, SM
Presence of explanations (EX) Independent variable WEX, WOEX
Performance score (PS) Dependent variable –
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are defined as �SM∕WEX and �SM∕WOEX . The definitions of the rank functions are summarised 
in Table 5.

Let CMS∕WEX = Cseq(ST(Ds, Es, �MS∕WEX , Ms), H) denote the human comprehension of 
the sequential teaching curriculum that learns merging before learning sorting with expla-
nations of merging. Let CMS∕WOEX = Cseq(ST(Ds, Es, �MS∕WOEX , Ms), H) denote the human 
comprehension of the sequential teaching curriculum that learns merging before learning 
sorting without explanations of merging. Let CSM∕WEX = Cseq(ST(Ds,Es, �SM∕WEX , Ms), H) 
denote the human comprehension of the sequential teaching curriculum that learns sort-
ing before learning merging with explanations of merging. Let CSM∕WOEX = Cseq(ST(Ds,Es, 
�SM∕WOEX , Ms), H) denote the human comprehension of the sequential teaching curricu-
lum that learns sorting before learning merging without explanations of merging. We then 
introduce hypotheses that focus on how curriculum order and explanations generated from 
machine-learned rules affect human learning of sorting. In Table 6, we show how the fol-
lowing experimental hypotheses relate to the conjectures and our framework.

H1: Learning merging before learning sorting leads to a beneficial 
effect on human comprehension of sorting (Eseq(CMS∕WEX ,CSM∕WEX , sorter)
Eseq(CMS∕WEX ,CSM∕WEX , sorter) + Eseq(CMS∕WOEX ,CSM∕WOEX , sorter) > 0) with respect to learning 
sorting before learning merging.

In H1, we examine whether human learners achieve better sorting performance from 
the curriculum with increasing concept complexity (MS) than from the curriculum with 
decreasing concept complexity (SM).

Table 5   Definitions of the rank 
functions. In curricula MS/WEX 
and MS/WOEX, humans learn 
merging before learning sorting

In curricula SM/WEX and SM/WOEX, humans learn sorting before 
learning merging. The rank functions of MS assign a lower rank value 
to merging. The rank functions of SM assign a lower rank value to 
sorting. In curricula MS/WEX and SM/WEX, explanations about 
merging are generated from MetagolO

Curricula abbreviation Rank function definitions

MS/WEX �MS∕WEX(merger, Emerge , MetagolO ) = 0
�MS∕WEX(sorter, Esort , �) = 1

MS/WOEX �MS∕WOEX(merger, Emerge , ∅ ) = 0
�MS∕WOEX(sorter, Esort , �) = 1

SM/WEX �SM∕WEX (merger, Emerge , MetagolO) = 1
�SM∕WEX (sorter, Esort , �) = 0

SM/WOEX �SM∕WOEX (merger, Emerge , �) = 1
�SM∕WOEX (sorter, Esort , �) = 0

Table 6   A summary of experimental independent variables, definitions and results related to each experi-
mental hypothesis

Hypotheses Independent experimental variables Related definitions

H1 CO
H2 EX Definition 5 to 9, 15 and Conjecture 3
H3 CO and EX
H4 EX Definition 1 to 4, 15 and Conjecture 2
H5 EX Definition 15
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H2: Learning merging with explanations results in a beneficial explanatory effect on 
human comprehension of sorting (Eseq(CMS∕WEX ,CMS∕WOEX , sorter) + Eseq(CSM∕WEX , 
CSM∕WOEX , sorter) > 0) with respect to learning merging without explanations.

In H2, we assess if learning merging with aids in the form of explanations constructed 
from machine-learned rules (WEX) improves sorting performance compared with learning 
merging without explanations (WOEX).

H3: Learning merging with explanations further increases the beneficial effect of cur-
riculum order on human comprehension of sorting (Eseq(CMS∕WEX ,CMS∕WOEX , sorter)
− Eseq(CSM∕WEX ,CSM∕WOEX , sorter) > 0) with respect to learning merging without 
explanations.

In H3, we inspect if there is an interaction effect between curriculum order (CO) and 
explanations (EX) on sorting performance.

We suspect that for human learners who have no previous programming experience, 
learning merging in the presence of explanations results in adapting new sorting strategies 
in comparison with learning merging in the absence of explanations. Since merging can be 
taught in isolation and it does not depend on the knowledge of sorting in the curricula, we 
refer to Definition 4 and the cognitive window to account for the effect of explanations on 
merging. However, owing to MetagolO learning a minimum primitive solution merger/2, 
we anticipate no beneficial effect on human comprehension of merging as a result of learn-
ing from explanations. Let A denote the background knowledge of MetagolO containing 
definitions of primitive and composite actions and X denote questions that the human 
group H performs in the merge performance test.

H4: Learning merging with explanations generated from rules without a low 
cognitive cost (Cog(merger, x) ≥ CogP(Emerge,MetagolO,A, x) for all x ∈ X ) does 
not result in a beneficial explanatory effect on human comprehension of merging 
(Eex(merger,H,merger) ≤ 0).

In H4, we examine if learning with explanations of merging (WEX) results in no 
observable performance difference or worse performance with respect to learning without 
explanations of merging (WOEX).

H5: Learning merging with explanations before learning sorting leads to adaptation of 
efficient human sorting strategies with better performance.

We consider executed comparisons of human participants as problem-solving traces. In 
Sect. 5.4, we estimate through human trace analysis the correspondence between human 
sorting strategies and machine sorting algorithms in training and performance tests. An 
underlying assumption is that learning a new strategy during the performance test is chal-
lenging without feedback and strategy adaptation is easier during the training stage. In 
addition, we assume that the presence of explanations and the incremental curriculum con-
tribute to efficient and effective human decision-making. Therefore, in H5, we inspect the 
performance of specific sorting strategies that increase in usage from sort training to sort 
performance test.

5 � Experiments

We first describe the implementation of a pre-test which was given to all participants at the 
beginning of the experiment. In addition, we report the masking and presentation of the 
sorting task in Sect. 5.2. In Sect. 5.3, we explain the setup of the experiment which was 
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carried out on a crowdsourcing platform Amazon Mechanical Turk. Results are demon-
strated in Sect. 5.4 which is followed by a discussion of our findings.

5.1 � MaRs‑IB pre‑test

We have reason to assume that the participant’s performance in the experimental task var-
ies depending on their cognitive abilities. Recording their cognitive ability provides us 
with two possibilities: 

1.	 It allows statistical control of the participants’ cognitive ability.
2.	 It can be determined whether the mean cognitive ability in all experimental conditions 

is the same. If that is the case, mean differences in performance between the conditions 
can be interpreted without having to control for each participant’s cognitive ability first.

There have been two major suggestions for recording this control: either confront partici-
pants with a version of the experimental task itself or use a short intelligence test in the 
form of a Raven Matrices short test (Arthur & Day, 1994) or similar material. We argue 
that using the experimental task will undermine the sequential nature of our experiment, as 
either group would start with the low-complexity task or with the high-complexity task. A 
third option is for each group to start with their respective first task, which would introduce 
task familiarity effects (the high-complexity-first condition would have completed more 
high-complexity tasks than the low-complexity-first condition). This approach does not 
pose a good control since each group would complete a different task.

Using an intelligence test avoids interference with the experiment since the test should 
not influence strategy development in the experimental task in a way that could be con-
sidered to work against the sequential order of the experiment. However, the original 
Raven Matrices test and many comparable tests are expensive and cannot be digitized due 
to copyright. The matrix reasoning item bank (MaRs-IB) has neither of these two issues 
(Chierchia et al., 2019), thus making it an appropriate candidate for establishing a measure 
of intelligence in an online experiment. In addition, the authors of the MaRs-IB test set 
reported acceptable internal consistency and convergent validity, and reasonable test-retest 
reliability (Chierchia et al., 2019). Although there is no normalized score which would be 
comparable to the IQ, the MaRs-IB test can serve as a measure of the relative cognitive 
ability of participants. Another concern regards the open access to the material (Chierchia 
et al., 2019) and familiarity with the test from other studies. This risk can be mitigated by 
randomised arrangement and the selection of items from the multiple test sets provided by 
the authors.

5.1.1 � Application

The authors Chierchia et al. (2019) provided three sets of 80 items (Fig. 2). Each of these 
sets uses different symbols and is available in three further variations though colour-vision-
deficient subjects were informed not to participate. The testing procedure described in the 
validation paper (Chierchia et  al., 2019) will be consistently completed in under 10 min 
(8 min test and a series of practice items beforehand) and is thus applicable for our use 
case. Participants will train on 10 practice items until they completed three of them cor-
rectly. An item in the full test starts with a 500 ms fixation cross, followed by a 100 ms 
white screen mask (Chierchia et al., 2019). The matrix will then be displayed for 30 s, or 
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until the participant responded (whichever happens earlier). After 25  s a clock indicates 
that participants have 5  s left for this specific item (Chierchia et  al., 2019). Participants 
complete these items for a total of 8 min. The accuracy with which the participant chooses 
the correct missing pattern in the given time frame is considered the measurement of pre-
test performance.

5.2 � Materials

The arrangement of objects arguably makes up a great proportion of human daily tasks. 
This implies a high familiarity of human participants with the task of sorting. The pre-
ferred sorting approaches of humans with no background knowledge in programming 
could resemble some sorting algorithms. However, we assume that learning recursive algo-
rithms such as merge sort without a well-defined curriculum demands a great effort and 
applying such algorithms efficiently is challenging.

5.2.1 � Problem masking

In order to prevent participants from relying on the total ordering of natural numbers, we 
designed an isomorphic problem that represented integer sequences by the weights of fruits 
in piles. Numbers were masked by visual icons of fruits and the numeric values were hid-
den from participants. A balance scale mechanism (Fig. 3) was introduced to allow partici-
pants to compare the weights between two fruits and acted as an instrument for construct-
ing the total ordering of the numbers. The immediate access to the total ordering of natural 
numbers was prevented and participants had to establish it themselves. This setup was used 
for teaching both merging and sorting. A solution of this setup corresponded to a solution 
of merging and sorting a sequence of numbers without changing the underlying solution 
structure.

According to the definition of isomorphic problems (Simon & Hayes, 1976), the new 
fruit weighing problems are isomorphic to the respective problems for merging and sort-
ing numbers. Such isomorphic translations only affect the initial stage of problem-solv-
ing while attempting to recognise a useful analogy via analogical access but do not 
hinder problem-solving via analogical inference if an analogy for the problem has been 

Fig. 2   Each MaRs-IB item 
consists of an incomplete 3 × 3 
matrix in which 8 cells with 
shaped icons depict a modifica-
tion rule to (an) abstract shape(s). 
The test asks the participant to 
fill in the missing piece at the 
right bottom corner of the 3 × 3 
matrix by choosing one of four 
provided options (A, B, C and 
D). The correct answer to this 
example is A
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consciously recognized (Gentner & Landers, 1982; Holyoak & Koh, 1987; Reed et  al., 
1990). Owing to the difficulty of immediately recalling past experiences of merging and 
sorting, we anticipated that participants would initially perform less optimal merging and 
sorting strategies and there would be more potential for performance improvement later.

For the training and performance test of merging and sorting, we randomly sampled 
sequences of various lengths to provide a spectrum of problem difficulty. For each of the 
question sequences, we made sure that it was not trivial and required an appropriate level 
of computational effort for a machine program to sort. A question in the merge training and 
performance test involved two sub-sequences of similar sizes as inputs and the length of 
each sub-sequence ranged from 1 to 4.

In the sort training and performance test, a question consists of a fruit sequence and the 
length of sequences varied from 6 to 10. In the pilot trials, we identified a higher usage of 
the insertion sort algorithm. For generating sort training and testing questions, we made an 
adjustment to include sequences that would lead to an advantage in the number of compari-
sons made when applying the merge sort algorithm over the insertion sort algorithm. This 
change would allow room for people to optimise their sorting strategy instead of adhering 
to what they already knew. The sequences in performance tests are different from those in 
the training stages but they share similar patterns.

5.2.2 � Problem setup

To make the experiment more engaging, we introduced the task background where 
each participant was asked to help two robots, Alice and Bob, perform tasks in two 
warehouses. Each robot was responsible for a distinct task and provided information 
about the associated task to the participant. The robot Alice was designed to teach 
merging while the other one Bob taught participants how to sort. To evoke an under-
standing of the connection between merging and sorting, at the beginning of the 

Fig. 3   Participants were asked to distinguish between two alternative choices by using the provided balance 
scale and submit the correct sequence by pressing a button to the right
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experiment, participants were explicitly reminded with a note of the link between task 
materials taught by two robots and were encouraged to pay attention to the connection.

To learn merging, participants were asked to learn from the robot Alice and help it 
operate a special machine to arrange fruits on a conveyor belt. In Fig. 3, fruits labelled 
with A, B, C and D were inputs to a machine called the “blue star” that represented the 
merging operation. Each question in the sections related to merging asked the partici-
pant to merge two sequences of fruits.

The balance scale to the left of the interface page (Figs. 3, 4 and 5) allowed partici-
pants to compare the weights of fruits by entering two fruits’ alphabetic labels on both 
sides of the balance. Participants were presented with instructions to use the balance 
scale. The balance would tilt to the side of the fruit that is heavier. A piece of text 
would be shown to further clarify the result of comparing two fruits. Participants were 
provided with the information that the two input sequences of fruits in the questions 
had increasing weights from left to right. Two output answer choices differed in the 
fruits that were highlighted with the yellow colour. Participants were asked to select 
from one of the two output answer choices that had the fruits in the correct order.

Feedback was presented as shown by Fig. 4 on whether the participant’s selection 
was correct. Based on the same initial problem state, this feedback provides a pair of 
positive and negative examples which helps contrast the correct and wrong sequence 
of decision-making. The white blocks on the right-hand-side of Fig.  4 contain tex-
tual and graphical explanations that instantiate the logic rules learned by MetagolO in 
Table  1. Groups without machine-learned explanations would only see blank white 
boxes with no textual and graphical explanations during the merge training stage of the 
experiment.

Fig. 4   On the top row, the visualisations show the comparison result (fruits B and C). The textual explana-
tions explicitly describe the objects involved (fruits B and C) and the actions performed (comparison and 
appending) which resulted in C being appended before B due to C’s lesser weight. On the bottom row, the 
interface highlighted in red that fruits were out of order (B and C) and described the correct ordering
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5.3 � Method and design

The experiment,2 was implemented based on a four-group factorial 2 × 2 design to account 
for all combinations (Table 7) of the two independent experimental variables, the curricu-
lum order (CO) and the presentation of explanations (EX). Figure 6 shows two curricu-
lum orders. In the curriculum shown by Fig. 6a, participants received training material on 
merging first. In the reverse curriculum demonstrated by Fig. 6b, subjects were trained on 
sorting first.

Participants were not allowed to repeat the experiment. Every participant was assigned 
to one group and went through training and test with no repeat. All groups received the 
same material of training examples and test questions. The numbers of questions in the 
experiment sections merge training, merge testing, sort training and sort testing were 6, 5, 
4 and 8 respectively. However, the number sequences used for merging were different from 
those used for sorting in order to prevent participants from reusing previous answers.

We recorded participants’ basic information such as their age, gender and education 
after acquiring their consent. This allows us to control the distribution of background in 
experiment groups. To control participants’ cognitive ability, we then collected their 
responses in the MaRs-IB pre-test based on Sect.  5.1. The experiment would start with 
a participation consent followed by the MaRs-IB pre-test and an introduction to the task 
background. Participants were advised prior to the beginning of the experiment on the 

Fig. 5   Sort training interface. In sort training, participants were advised to sort sequences of fruits (in this 
case fruits A, D, B, C, E and F) in the centre white box called the “whiteboard” and provided instructions 
to efficiently use it. The “whiteboard” was a device of the interface which allowed a free arrangement of 
the input fruit sequence by using a mouse to drag and drop fruits. The labels and fruits were intention-
ally randomised before the experiment so that participants would not receive the wrong impression that the 
sequence had been already alphabetically ordered

2  The experiment interface is available on https://​github.​com/​LAi19​97/​seque​ntial-​teach​ing. The interface 
was created using PsychoPy (Peirce et al., 2019) an open-source package for implementing free interfaces 
with stimulus presentation and control in Python and JavaScript.

https://github.com/LAi1997/sequential-teaching
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approximate length of the experiment and the requirements. Participants were informed 
that if they have colour-vision deficiency, they should not participate in the study.

In order to gain information about participants’ experience relating to programming and 
sorting algorithms, we additionally asked participants to fill out the following questions 
after the completion of all performance tests: (1) whether participants have a degree in 
computer science or a certificate in programming, (2) if they have studied or are learning 
sorting algorithms in school and (3) whether they know or have applied any sorting algo-
rithms while being presented with a list of sorting algorithms (two of which are distracting 
choices and do not exist).

Task-related information was presented via the interface throughout the experiment. 
All groups received a performance test of sorting last. This experiment design ensured all 
groups experienced the same amount of training and performance tests respecting the cur-
riculum order.

In merge training, participants first answered the displayed question illustrated by Fig. 3 
and were taken to the next page where feedback and explanations were presented. In Fig. 4, 
explanations are presented in two rows which demonstrate the correct and the wrong action 
sequences. The format in which participants were asked to input their responses is the 
same in the merge performance test, sort training and sort performance test. When provid-
ing a sequence response, participants were required to input labels representing the fruit 
sequence that they believed to have increasing weights from left to right. Another robot 
instructor Bob helped participants learn to operate the machine “purple diamond” to sort 
fruits.

In the sort training and performance test, participants should put fruits into shipping 
boxes by entering fruit labels into a sequence of text boxes. In the sort training (Fig. 5), 
participants were informed of the number of comparisons their robot instructor Bob made 

Table 7   Group 1 learned 
merging before learning sorting 
and was provided with visual and 
textual explanations of merging 
based on machine-learned rules

Group 2 received the same curriculum as Group 1 but without expla-
nations. The participants in Group 3 learned sorting prior to learning 
merging with explanations in the same format as received by Group 1. 
Group 4 did not get explanations

CO EX

WEX WOEX

MS Group 1 (MS/WEX) Group 2 (MS/WOEX)
SM Group 3 (SM/WEX) Group 4 (SM/WOEX)

Fig. 6   In setup a, participants learned merging before learning sorting (MS). In setup b, participants 
learned sorting before learning merging (SM)
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to sort the input sequences. Participants were asked to sort the same input sequences and 
encouraged to use fewer comparisons. The intention of this competition was to provide an 
incentive for participants to consciously think about how to revise their strategy in order to 
improve sorting efficiency. This information was accessible by participants in all groups 
during the sort training. In the sorting sections, participants were also provided with the 
balance scale instrument.

Participants were encouraged to take two sessions of one-minute rest, one after the 
MaRs-IB pre-test and one prior to the final performance test of sorting. The break sessions 
allowed participants to recharge and regain attention to perform tasks in later stages. The 
progress bar at the top of the interface showed the percentage of materials that the par-
ticipants had completed with respect to all materials in the experiment. Participants could 
use the progress bar to estimate the time that they would need to finish the experiment 
within the allocated session. For all training and performance test sections, we recorded 
response time, answers and the comparisons made for analysis. The final section included 
four reflective questions. We asked participants whether they understood the connection 
between the two tasks or used what they learned in one task for the other task. We also 
checked their background in programming and sorting algorithms in the survey at the end 
of the experiment.

5.4 � Results

Prior to the experiment, we conducted two experimental trials with one sample of students 
from the University of Bamberg and another student sample from Imperial College Lon-
don. The trial studies provided additional insights into the interface and helped us revise 
the experimental design. However, due to the limited scale of the trials, we were not able to 
observe any meaningful outcome. We proceeded to recruit a larger sample of 124 mixed-
background participants from Amazon Mechanical Turk (AMT). These 124 participants 
from AMT were randomised and assigned to the four groups. A partition of 79 participants 
was created based on the MaRs-IB test and those included had a test accuracy within one 
standard deviation ( � = .169 ) of the mean ( � = .654 ). Demographically, this partition had 
a lower male-to-female ratio (36 to 42, one opted out), most participants were between 25 
to 54 in age (61 of 79) and almost all had a college degree or higher (67 of 79).

5.4.1 � Analysis of task performance

We focused on this AMT sample partition and employed a quantitative approach to test 
hypotheses H1 to H5. The AMT partition had an even distribution of participants in the 
four groups, Group 1 (MS and WEX, n = 20 ), Group 2 (MS and WOEX, n = 20 ), Group 
3 (SM and WEX, n = 20 ) and Group 4 (SM and WOEX, n = 19 ). Figure 7a, b present 
the mean performance score (PS) of the groups in the merge performance test and sort 
performance test. For each performance test, we carried out an ANOVA test to assess the 
effect of the independent experimental variables followed by a Tukey’s HSD test. We used 
a significance criterion � = .05 for both tests.

Figure  7a illustrates almost no change to the mean merge performance score when 
explanations were introduced. The one-way ANOVA test did not demonstrate a significant 
effect of the machine-learned theory (EX) on the merge performance test score (PS). Fig-
ure  7b illustrates a pattern that switching from the curriculum order MS to SM results 
in a reduction in performance. The two-way ANOVA test indicated a significant effect 



3619Machine Learning (2023) 112:3591–3632	

1 3

( F = 10.4, p = .001 < .05 ) of curriculum order (CO) on sort performance test score (PS). 
The post-hoc Tukey’s HSD test confirmed a significantly beneficial effect ( p = .001 < .05 ) 
of the sequential teaching curriculum MS (Group 1 and Group 2) over SM (Group 3 and 
Group 4). The two-way ANOVA test did not show a significant effect of the machine-
learned theory (EX) on sort performance test score (PS) and there is no evidence of an 
interaction effect between curriculum order (CO) and presence of explanations (EX).

5.4.2 � Analysis of human sorting strategy

In addition to the performance score, we analyse the correspondence between human sort-
ing strategies and machine sorting algorithms. For sorting, sequential decision-making is 
revealed through the actions that human sorters make to arrange items according to a spec-
ified order. In particular, we consider the comparisons of objects as traces of decision mak-
ing which indicate the sorting strategy used by human sorters and the sorting algorithm 
implemented by a machine program.

When there is a consistently high correlation of comparison execution between a 
human sorter and a machine algorithm, we assume that this human executes a strategy 
that closely implements the machine algorithm. Considering the target human population 
has limited programming experience, we additionally assume that a human sorting strat-
egy would implement at best quick sort, merge sort, insertion sort, bubble sort or diction-
ary sort. Based on the results and preferences of the trial participants, we include hybrid 
variants of insertion sort and dictionary sort. These hybrid variants initially perform inser-
tion sort until the intermediate result reaches length k and then execute binary searches of 
the conventional dictionary sort to insert the rest of the numbers into the partially sorted 
sequence. In total, we implemented twenty-four algorithms including the conventional 

Fig. 7   Performance test scores (PS) of four groups, Group 1 (MS/WEX) Group 2 (MS/WOEX), Group 3 
(SM/WEX) and Group 4 (SM/WOEX) with standard errors. Across the x-axis in a, data points indicate the 
change in the mean merge performance score as a result of learning with explanations. In b, the red line 
shows the mean sort performance score when participants learned with explanations and the blue line rep-
resents the mean sort performance score when participants learned without explanations. Across the x-axis 
in b, data points show the change in the mean sort performance score as a result of altering the curriculum 
arrangement
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implementations of quick sort, merge sort, insertion sort, bubble sort and dictionary sort as 
well as their variants (different pivoting, merge and insertion implementations).

Example 7  Given Ns = [4, 6, 5, 2, 3, 1] is a sequence of numbers for a human participant 
h and a set of machine algorithms to sort. Let Mh denote the human sorting algorithm and 
ht(Ns,Mh) = [(6, 4), (5, 2), (3, 1), (4, 2), (5, 4), (6, 5), (2, 1), (3, 2), (4, 3)]. We are able to 
find a close match of the human trace. The machine trace is produced by the bottom-up 
variant of the merge sort algorithm denoted as M′ and mt(Ns,M�) = [(4, 6), (5, 2), (2, 4), 
(4, 5), (5, 6), (3, 1), (1, 2), (2, 3), (3, 4)]. For each of the N × N combinations of number 
pairs, we check whether it is a member of the traces. Two symmetric pairs of numbers, e.g. 
(4, 6) and (6, 4), are considered identical. We create the following 2 × 2 contingency table. 

Not in human trace In human trace

Not in machine trace 13 1
In machine trace 1 10

The Chi-squared test3 in this example has a X2 = 14.3 with p < .001 which confirms the 
correlation of number pairs in ht(Ns, Mh) and mt(Ns,M�) . For common pairs of numbers in 
ht(Ns, Mh) and mt(Ns,M�) , we obtain their ranks and compute Spearman’s rank correlation 
coefficient. The correlation coefficient is.9 and p < .001 which confirms the monotonic 
relationship between the two traces.

Given an input set of integers Ns and a sorting algorithm M, a sorting trace M(Ns) is a 
list of pairs < ni, nj > denoting the comparisons of integers made by M where ni, nj ∈ Ns . 
We employ two statistical tests (Example  7) to estimate the correspondence between a 
human sorting trace and a machine sorting trace. Let n be an integer and Ns denote the 
set of integers in the interval [1, n]. Let Tr be a cross product defined by Tr ∶ Ns × Ns , a 
comparison in a trace is a pair < ni, nj >∈ Tr where ni, nj ∈ Ns . Given a human trace with 
sorting algorithm Mh and a machine trace with algorithm M, for every pair < ni, nj >∈ Tr , 
we check if < ni, nj > is a member of ht(Ns,Mh) and if < ni, nj > is a member of mt(Ns, M). 
We then perform a Chi-squared test of independence with a significance level � = .025 
using the 2 × 2 contingency table and check for rejection. The significance criterion of the 
Chi-squared test is set at.025 to reduce the probability of mismatching a human trace with 
a wrong machine trace. A rejection of the Chi-squared test’s null hypothesis implies an 
association between comparisons made by the human sorter and comparisons made by the 
program. Once a test is rejected, we exclude comparison pairs that are not in the intersec-
tion of ht(Ns,Mh) and mt(Ns, M) from both traces and compute Spearman’s rank correla-
tion coefficient (Spearman, 1904). The intention of computing Spearman’s rank correlation 
coefficient is to examine the ordering alignment of compared integer pairs.

Since performing comparisons in the reverse order of the machine trace does not cor-
respond to a reverse execution of the algorithm, we confirm a match ( � = .05 ) between 
a human strategy and a machine algorithm only when Spearman’s rank correlation coef-
ficient is positive.

3  We add one to all frequency counts to avoid including zeros in the table for the Chi-squared test.
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Table 8 demonstrates the change in the distribution of strategy as the difference in mean 
strategy frequency from the training and performance test. In addition, Table 9 shows the 
strategy adaptation of participants. Participants were categorised with respect to whether 
they had applied a particular strategy in the training phase and in the performance test. We 
then employ McNemar’s tests (approximated by binomial distribution for small frequen-
cies) to determine if there is a difference in the number of participants who applied the 
strategy in the test and who used it in training. For strategies that have been identified to 
have increased applications from the training to performance test, we additionally examine 
the performance of these strategies using t-tests.

Group 1 (MS/WEX) and Group 3 (SM/WEX) both received explanations (WEX). 
According to Table  8, from training to performance test the average use of quick sort 
in Group 1 increased by .063 and the average application of dictionary sort in Group 3 
improved by .088. McNemar’s test ( � = .05 ) reports a significant change in the application 
of quick sort in Group 1 ( p = .031 < .05 ). There is no significant difference in the applica-
tion of dictionary sort in Group 3. Based on Table 9, in Group 1, we can observe that more 
participants used quick sort in the performance test (13) than in the training stage (7).

Further t-tests ( � = .05 ) on performance test scores showed that in Group 1 quick sort 
like approaches ( � = .834, � = .274 ) achieved a higher mean score ( p = .043 < .05 ) 
than the rest of the strategies ( � = .729, � = .337 ) and in Group 3 responses correspond-
ing to dictionary sort like approaches ( � = .885, � = .288 ) had a better performance 
( p = .007 < .05 ) than the other strategy categories ( � = .679, � = .373).

Table 8   Mean strategy frequency in sort training and sort performance test

Eachhuman sorting trace in the sort training and sort performance test was matched toone of the follow-
ing categories of sorting algorithms, bubble sort (BS), dictionarysort (DS), insertion sort (IS), merge sort 
(MS), quick sort (QS), a combinationof insertion and dictionary sort (Hybrid) and unclassified (Other). The 
number ofhuman sorting traces in each category was averaged by the total number of traces.Wehighlight 
positive differences greater than .05 in grey and in bold font. In each group,the highlighted difference is the 
largest increase in algorithm application frequencyfrom sort training to sort performance test

PS Categories

BS DS IS MS QS Hybrid Other

Group 1 (MS/WEX) – – – – – – –
Training .012 .075 .150 .000 .175 .162 .425
Performance test .056 .094 .162 .025 .238 .175 .250
Differences .044 .019 .012 .025 .063 .013 − .175
Group 2 (MS/WOEX) – – – – – – –
Training .000 .062 .162 .025 .162 .225 .362
Performance test .012 .038 .181 .100 .194 .181 .294
Differences .012 − .024 .019 .075 .032 − .044 − .068
Group 3 (SM/WEX) – – – – – – –
Training .012 .050 .088 .038 .225 .175 .412
Performance test .019 .138 .100 .025 .244 .119 .356
Differences .007 .088 .012 − .013 .019 − .056 − .056
Group 4 (SM/WOEX) – – – – – – –
Training .000 .079 .184 .026 .158 .237 .316
Performance test .013 .099 .243 .053 .158 .237 .197
Differences .013 .020 .059 .027 .000 .000 − .119
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Group 2 (MS/WOEX) and Group 4 (SM/WOEX) did not receive explanations 
(WOEX). From Table 8, in Group 2 the frequency of application of merge sort increased 
by.075 and in Group 4 the average use of insertion sort increased by.059. McNemar’s tests 
show significant changes in the application of merge sort in Group 2 ( p = .016 < .05 ) and 
insertion sort in Group 4 ( p = .001 < .05 ). In Table  9, we can observe that in Group 2 
more participants were using merge sort in test (9) than in training (2). In Group 4, almost 
all participants used insertion sort in the performance test (18) compared with in the train-
ing (7).

Additional t-tests ( � = .05 ) showed no performance difference in Group 2 between merge 
sort like approaches ( � = .872, � = .209 ) and the other strategies ( � = .827, � = .288 ). In 
contrast, insertion like approaches ( � = .877, � = .285 ) in Group 4 achieved a higher mean 
score ( p = .001 < .05 ) than the other strategies ( � = .644, � = .399).

Table 9   The number of participants in Group 1 to 4 who had applied one of the highlighted algorithms 
(QS, MS, DS and IS) in the training and the performance test

In Table 8, algorithms QS, MS, DS and IS have increased application frequency in Group 1, 2, 3 and 4 
respectively. Every participant was categorised with respect to whether they had applied the strategy at least 
once in sort training and performance test. While apart from those four algorithms analyses were performed 
in each group with other strategies, the results presented were the most distinguished

Group 1 (MS/WEX) Training

Quick Sort Application No application Total

Performance test Application 7 6 13
No application 0 7 7
Total 7 13 20

 Group 2 (MS/WOEX) Training

Merge Sort Application No application Total

Performance test Application 2 7 9
No application 0 11 11
Total 2 18 20

 Group 3 (SM/WEX) Training

Dictionary Sort Application No application Total

Performance test Application 3 7 10
No application 1 9 10
Total 4 16 20

 Group 4 (SM/WOEX) Training

Insertion Sort Application No application Total

Performance test Application 7 11 18
No application 0 1 1
Total 7 12 19



3623Machine Learning (2023) 112:3591–3632	

1 3

5.5 � Discussion

In Table 10, we present experimental hypotheses H1 to H5 and summarise their test out-
comes. Since this work investigates the effect of curriculum order, we have acknowledged 
the possibility of recency and primacy effects on human sorting performance. Recency and 
primacy effects Murdock (1962) are cognitive biases which lead to better recall of items 
and concepts that are positioned towards the beginning and the end of a sequence. As it is 
part of our experimental plan to explore how human comprehension is affected by different 
sequential orders of concepts, it is difficult to completely eliminate the impact of position 
effects. In addition, Table 9 shows that various degrees of adaptations to efficient sorting 
algorithms happened in multiple groups. This indicates the adjustment of participants to 
different decision-making processes beyond making better or worse recall as a result of 
learning in sequential curricula.

Based on the definition of sorter/2 learned by MetagolO after learning merger/2 in 
Table 1, the program size is u = 3 and the number of predicates including those used in 
merger/2 is p = 8 . For the definition of sorter/2 learned by MetagolO without learning 
merger/2 in the same table, the size of sorter/2 is u + k = 5 and the number of predicates 
used is p + c = 6 . According to the Conjecture 3, 3 ⋅ ln(8) < 5 ⋅ ln(6) and learning merging 
before learning sorting results in a reduction in the size of the hypothesis space associ-
ated with the target hypothesis of sorting. The ANOVA test and Tukey’s HSD test on sort 
performance test scores (Fig. 7b) demonstrated a beneficial effect from curriculum order. 
A higher sorting performance has been observed only in groups with the incremental cur-
riculum setup. Since all four groups received the same material in each stage of the exper-
iment so we can eliminate the possibility of learning merging or sorting being a major 
effect which led to the observed difference in sorting performance. Hence, we attribute the 
improvement in the performance score of sorting to the incremental curriculum order. This 
evidence confirms hypothesis H1 and Eseq(CMS∕WEX , CSM∕WEX , sorter ) + Eseq(CMS∕WOEX , 
CSM∕WOEX , sorter ) > 0 which supports Conjecture 3.

Results on merge and sort performance tests did not show explanatory effects of the 
merger/2 rules learned by MetagolO . The ANOVA test did not show a significant effect 

Table 10   H1 to H3 are hypotheses concerning the effects of curriculum order and explanations on human 
sorting comprehension

Hypotheses H4 and H5 relate to explanatory effects on human comprehension of merging and sorting strat-
egy. At the top of table, H stands for hypothesis, T denotes test outcome. In the rightmost column, C is an 
abbreviation for confirmed, and N stands for not confirmed

H T

H1 Learning merging before learning sorting leads to a beneficial effect on human comprehension of 
sorting with respect to learning sorting before learning merging

C

H2 Learning merging with explanations results in a beneficial explanatory effect on human compre-
hension of sorting with respect to learning merging without explanations

N

H3 Learning merging with explanations further increases the beneficial effect of curriculum order on 
human comprehension of sorting with respect to learning merging without explanations

N

H4 Learning merging with explanations generated from rules without a low cognitive cost does not 
result in a beneficial explanatory effect on human comprehension of merging

C

H5 Learning merging with explanations before learning sorting leads to adaptation of efficient human 
sorting strategies with better performance

C
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of explanations on human comprehension and there was no significant interaction effect 
on human comprehension. Therefore, we reject hypotheses H2 and H3 due to the lack of 
evidence. Learning merging with explanations did not improve or degrade human com-
prehension of sorting in regard to learning merging without explanations. In addition, the 
ANOVA test on the merge performance test scores did not demonstrate an effect of expla-
nations on human comprehension. This result confirms H4 and supports Conjecture 2.

Since merging was taught in isolation independent from other secondary or tertiary con-
cepts, we refer to the cognitive window (Remark 1) for a plausible account of this lack of 
explanatory effect on human comprehension of merging. The cognitive cost of executing 
explained rules of merging is not sufficiently lower than the cognitive cost of operating a 
merging solution without the auxiliary information. Owing to limited cognitive capacities, 
a reduction in computational cost usually corresponds to an improvement in performance. 
However, solutions of merging after receiving explanations were not sufficiently optimised 
to yield an observably higher performance score compared with human primitive solutions 
in the absence of explanations. Given the tasks and the sequential teaching setup, an incre-
mental curriculum order had a significant effect and improved human comprehension. The 
results provided a demonstration of the beneficial effect of sequential teaching on human 
comprehension.

Furthermore, we examined human comparisons and estimated sorting algorithms that 
best resembled human sorting traces. This analysis (Table 8) led to the recognition of four 
possible sorting strategy adaptations. From Table  9 and McNemar’s tests, we show that 
there is a significant difference in the algorithm application of quick sort in Group 1, merge 
sort in Group 2 and insertion sort in Group 4. We argue that these results support a higher 
proportion of strategy adaptations to these algorithms. The additional t-tests compared the 
sorting performance of adapted strategies with other strategies. Quick sort in Group 1, dic-
tionary sort in Group 3 and insertion sort in Group 4 had higher performance in compari-
son with other algorithms. Table 11 summarises the participants’ adaptations to algorithms 
and the performance of responses with these adaptations.

Strategy adaptations in Group 1 (MS/WEX) and Group 4 (SM/WOEX) were signifi-
cant and resulted in higher performance scores of the associated responses compared with 
the other strategies. After sort training, Group 1 used a higher volume of quick sort like 
strategies. The quick sort algorithm is computationally efficient with an average linearith-
mic run-time and a worst-case quadratic run-time. Utilising the efficiency benefit of con-
centrating on parts of the original problem one at a time, quick sort creates a pivot to con-
struct two sorted sub-sequences. Based on the follow-up t-tests, adaptation to quick sort 
led to better comprehension compared with responses that used the other sorting strategies. 
Since in Group 1 participants learned merging with explanations before learning sorting, 

Table 11   Summary of the significance of participant’s strategy adaptation and performance improvement of 
the adapted algorithm compared with other algorithms

A tick denotes a significant analysis result, and a cross indicates an insignificant analysis outcome

Algorithm Is adaptation Is performance
Group adapted significant improvement significant

Group 1 (MS/WEX) QS ✓ ✓

Group 2 (MS/WOEX) MS ✓ X
Group 3 (SM/WEX) DS X ✓

Group 4 (SM/WOEX) IS ✓ ✓
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this refutes the null hypothesis of H5. This positive difference in sorting performance from 
using quick sort in Group 1 allows us to confirm hypothesis H5.

The t-test results of Group 1 and 3 (summarised in Table 11) suggest that curriculum 
order does not affect the performance of adapted strategies since Group 1 experienced the 
incremental curriculum and Group 3 received the decremental curriculum. This observa-
tion contrasts with the overall performance analysis which shows curriculum order affects 
the performance of sorting. It implies that the decremental curriculum in Group 3 reduces 
the performance of strategies that have a lower change in application rate. We postulate 
that without the benefit of the incremental curriculum and a compact hypothesis space 
(Conjecture  3), it is difficult to develop rules that consistently represent the other algo-
rithms (quick sort and merge sort). In addition, we observed in Group 1 that learning incre-
mentally with explanations led to a significant adaptation of an efficient sorting strategy 
(quick sort) which also has enhanced performance. This shows the association of a higher 
task competency with the development of novel problem solutions in novices.

5.5.1 � Impacts of explanations on performance

As summarised in Table  11, in Group 1 and 3 where explanations were presented, the 
adaptations to efficient sorting approaches correspond to improved performance. A signifi-
cant number of participants adapted to quick sort like approaches and some participants 
adjusted to dictionary sort like strategies in Group 3. Although the dictionary sort algo-
rithm shares many similar traits to insertion sort, dictionary sort is considered a divide-
and-conquer algorithm which iteratively makes binary searches for the correct position of 
an object in a sequence.

We attribute this phenomenon to a better understanding of efficiently merging: two 
input sequences are sorted and redundant comparisons can be avoided by interleaving com-
parisons of fruits from input sequences. Provided explanations emphasised the optimal 
problem-solution structure and illustrated the action sequence by walking through exam-
ples with participants. The contexts provided by explanations and examples are effective 
for the human learning of abstract concepts (Aleven & Koedinger, 2002; Anderson et al., 
1997; Berry & Broadbent, 1995; Reed & Bolstad, 1991). We suggest that in the presented 
teaching setup, explanations of merging involving examples grounded the concept of 
binary selection and contextualised the construction of problem solutions that utilised this 
information. As a result, problem solutions that incorporated this idea had less potential 
for errors and achieved higher performance. This proposition can be partially supported by 
the increase in the usage of insertion sort like strategies in Group 4 (SM/WOEX) where 
explanations were absent. While insertion sort like strategies correlated to better scores in 
sort performance test responses of Group 4, the insertion sort algorithm does not involve a 
divide-and-conquer or binary selection component to sorting and does not share these fea-
tures with quick sort or dictionary sort.

5.5.2 � Impacts of curriculum order on strategy adaptation

Another observation from Tables  9 and 11 is that a significant number of responses in 
Group 2 (MS/WOEX) adapted to merge sort. While this strategy adaptation of Group 2 
to merge sort did not correlate with a higher performance score compared with the other 
strategies, divide-and-conquer algorithms such as quick sort and merge sort that require an 
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advanced understanding of computational algorithms could be rather difficult for novices 
to comprehend in a limited time frame. Based on Tables 9 and 11, it is noteworthy that a 
significant number of participants in Group 1 and 2 appeared to have developed sorting 
approaches similar to these well-known divide-and-conquer algorithms when they were 
presented with concepts with increasing complexity. A tentative account of this phenom-
enon can be referred to Conjecture 3. In Conjecture 3, two curricula are compared in terms 
of the size of the composite hypothesis spaces of learning some target predicates. Learning 
concepts in an incremental fashion reduces the size of the hypothesis space. Since humans 
have limited working memory capacity, it becomes easier for humans to find a consistent 
hypothesis that incorporates new information in the associated hypothesis space.

Despite performance improvements of adapted strategies in both Group 1 and 3, the 
adaptation of an efficient strategy was significant and led to better performance in only 
Group 1, as summarised in Table 11. Since Group 1 exclusively experienced incremental 
curriculum and machine-learned explanations, this result highlights the impact of combin-
ing both components on human learning for promoting task performance and developing 
novel problem solutions. Although it cannot be assessed by the present framework whether 
the participants mentally formulated quick sort or merge sort in an explicit way, further 
investigations of sequential teaching could devise machine learning to derive human strat-
egy from behavioural traces.

6 � Conclusions and further work

Previous publications (Ai et al., 2021; Muggleton et al., 2018) on the topic of comprehen-
sibility have investigated the classification of explanatory machine learning into beneficial 
and harmful categories. The current work proposes an extension of frameworks of compre-
hensibility (Muggleton et al., 2018) and explanatory effects (Ai et al., 2021) to account for 
the effects of sequence teaching. Owing to the reduction in the size of the hypothesis space 
(Cropper, 2019), we hypothesise that learning concepts with increasing complexity enables 
humans to learn the target hypotheses given limited working memory capacity. This con-
jecture is supported by our empirical results.

In the limited scope of our experiment which focuses on human learning of sorting 
algorithms, we have identified an instance of sequential teaching curricula in which learn-
ing merging before learning sorting results in a better human comprehension of sorting in 
contrast to learning sorting before learning merging. This result demonstrates an improve-
ment in human comprehension as a result of learning concepts with increasing complexity. 
We refer to the cognitive window (Ai et al., 2021) to account for the lack of explanatory 
effects on human comprehension of merging. It is difficult to improve human comprehen-
sion from explanations generated from machine-learned rules when the cognitive cost of 
the task is already low. In this case, explanations do not cause a sufficiently high improve-
ment in the cognitive cost of performing the task. However, we have taken a rather con-
servative approach which has led to interesting preliminary results of sequential teaching 
in a specific domain. While this work is an extended investigation of machine learning 
comprehensibility based on translated logic programs, we also acknowledge the potential 
of developing comprehensibility definitions beyond symbolic machine learning and our 
noise-free framework for future work.

Instruction-based teaching approaches have the advantage of clarity and directness for 
human learning (Sweller et al., 2007) and allow previous knowledge to be integrated with 
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new problem-solving contexts (Mayer, 2004). However, such teaching approaches may 
impose an over-restriction on the links between actions and outcomes and therefore fail 
to trigger an individualised understanding generalised from the material (Bruner, 1961). 
In the human trial, we employed a mixed approach to teaching that combined instruction-
based learning with discovery learning. We explored a machine-human teaching interac-
tion where curricula allow a higher degree of freedom for learners to re-discover computa-
tionally efficient algorithms. We observed adaptations of human sorting strategies to utilise 
advanced techniques of divide-and-conquer. Such strategy adaptations were observed in 
humans who learned with explanations and in humans who learned concepts with incre-
mental complexity. When both conditions were fulfilled, humans adapted to an efficient 
divide-and-conquer strategy with higher performance. We attribute these results to the con-
textualisation of abstract concepts by explanations and the accessibility of learned knowl-
edge from the reduction in complexity in searching the hypothesis space. In these cases, 
human learners were able to adapt sorting strategies reminiscent of efficient machine sort-
ing algorithms. Although the analysed participant sample had no background in program-
ming, they adapted sorting strategies by employing divide-and-conquer techniques com-
monly found in efficient computational sorting algorithms. While not all inspected human 
learners managed to consistently perform these sorting algorithms after studying from 
short learning sessions, being able to develop “near-miss” versions of the merge sort algo-
rithm is a remarkable achievement for those with no background in programming.

An exciting prospect of sequential teaching curricula is that machines and humans 
could take up more active roles to enable two-way cooperative learning (Sheridan, 2016). 
Sequential teaching curricula can be extended to represent the coordination between 
humans and machines in a back-and-forth fashion. Human implicit decision-making (Sys-
tem 1) could be made explicit (System 2) (Kahneman, 2011) to benefit human problem-
solving (Schmid & Kitzelmann, 2011) by machine-learned theories via a process known as 
behavioural cloning (Bratko et al., 1995). Traces of human problem solutions can be pro-
vided as inputs to an ILP system, which might produce explicit algorithms from the traces 
to present to the human as explanations. A “clean up” effect on a human’s behaviours can 
be achieved based on the error estimation of the machine-learned human algorithm in 
training. The debugging of behaviours guided by the prediction of error of a human strat-
egy can be beneficial in intelligent tutoring (Zeller & Schmid, 2016) and for cooperative 
programming in algorithmic debugging (Shapiro, 1982).

Future work may also explore the phenomenon of human re-discovery of well-estab-
lished domain knowledge. An investigation of partially guided development of efficient 
problem-solving strategies would require exposing the implicit cognitive processes. Exter-
nal tools such as eye-tracking devices (Bera et  al., 2019) can be used to capture subtle 
motions of the human body to help us infer implicit human decision-making. Our observa-
tions have shown the creativeness of human learning in exploiting the analogical transfer of 
partial solution structure. For machine learners, insights obtained in other domains can be 
utilised to learn flexible and efficient problem solutions (Bratko, 2010; Leban et al., 2008). 
For human learners, the division of information into smaller “chunks” and the presenta-
tion of rule-based explanations facilitate the transfer of prior knowledge into a new prob-
lem-solving context (Anzai & Simon, 1979). The inclusion of both teaching techniques 
has the potential to trigger sudden realisations of previously incomprehensible concepts 
that might lead to innovative learning outcomes. In contrast, the absence of these teach-
ing mechanisms might hinder human learning of complex tasks and lead to more labori-
ous problem-solving strategies. However, further investigations are needed to gain a better 
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understanding of the degree to which sequential teaching curricula with machine-learned 
explanations facilitate novel human comprehension.
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