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Abstract
Boolean networks (BNs) are well-studied models of genomic regulation in biology where 
nodes are genes and their state transition is controlled by Boolean functions. We propose 
to learn Boolean functions as Boolean formulas in disjunctive normal form (DNFs) by an 
explainable neural network Mat_DNF and apply it to learning BNs. Directly expressing 
DNFs as a pair of binary matrices, we learn them using a single layer NN by minimizing 
a logically inspired non-negative cost function to zero. As a result, every parameter in the 
network has a clear meaning of representing a conjunction or literal in the learned DNF. 
Also we can prove that learning DNFs by the proposed approach is equivalent to infer-
ring interpolants in logic between the positive and negative data. We applied our approach 
to learning three literature-curated BNs and confirmed its effectiveness. We also examine 
how generalization occurs when learning data is scarce. In doing so, we introduce two new 
operations that can improve accuracy, or equivalently generalizability for scarce data. The 
first one is to append a noise vector to the input learning vector. The second one is to con-
tinue learning even after learning error becomes zero. The first one is explainable by the 
second one. These two operations help us choose a learnable DNF, i.e., a root of the cost 
function, to achieve high generalizability.
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1  Introduction

Boolean networks (BNs) are a simple yet effective model of gene regulatory networks 
where nodes are genes and their state transition is controlled by Boolean functions (Kauff-
man, 1969). They have been studied mathematically (Cheng and Qi, 2010; Kobayashi and 
Hiraishi, 2014), logically in AI (Inoue et al., 2014; Tourret et al., 2017; Chevalier et al., 
2019; Gao et al., 2022) and from the viewpoint of deep learning (Zhang et al., 2019). Their 
learning is reduced to learning Boolean functions from a set of input–output pairs and can 
be carried out for example by the REVEAL algorithm (Liang et al., 1998) or by the BestFit 
extension algorithm (Lähdesmäki et al., 2003).

In this paper, we propose a new approach to learning Boolean functions. We introduce a 
simple ReLU neural network (NN) called Mat_DNF that learns Boolean functions and out-
puts Boolean formulas in disjunctive normal form (DNFs). We represent a DNF by a pair 
(C,D) of binary matrices where C stands for conjunctions and D a disjunction respectively. 
Mat_DNF learns a matricized DNF (C,D) as network parameters from the learning data by 
minimizing a non-negative cost function J(C,D) to zero. As a result, every network param-
eter in Mat_DNF has a clear meaning of (potentially) denoting a literal or a conjunction 
(disjunct1) in the learned DNF.

Although there exist several ways to represent Boolean functions such as decision trees 
(Oliveira and Sangiovanni-Vincentelli, 1993), polynomial threshold functions (Hansen and 
Podolskii, 2015), Boolean circuits (Malach and Shalev-Shwartz, 2019) and support vector 
machines (Mixon and Peterson, 2015), we choose DNFs for two reasons: one is explain-
ability and the other is to relate the learning process to logical inference. Explainability is 
guaranteed as our network parameters directly represent a matricized DNF. Moreover since 
the learned output is a DNF, exploring the logical relationship between the learning data 
and the learned DNF becomes possible and we find that the learned DNF is what is called 
an interpolant in logic (Craig, 1957) interpolating between the positive and negative input 
data, which uncovers a new connection that connects neural learning to symbolic inference.

Boolean function learning can be either discrete or continuous. One group such as SAT 
encoding with integer programming (Kamath et  al., 1992) and stochastic local search 
(Ruckert and Kramer, 2003) works in discrete spaces. The other group uses NNs in con-
tinuous spaces such as simulating Boolean circuits (Malach and Shalev-Shwartz, 2019), 
Neural Logic Networks (Payani and Fekri, 2019) and Net-DNF (Katzir et al., 2021). Our 
learning is just between the two. Unlike the former, Mat_DNF is differentiable2. Unlike 
the latter, it explicitly operates on matricized DNFs, discrete expressions, which are not 
implicitly embedded in the neural network architecture.

In the context of BN learning, Mat_DNF offers a robust yet explainable end-to-end 
approach as an alternative to previous ones (Liang et al., 1998; Lähdesmäki et al., 2003; 

1  For a disjunction A ∨ B , the subformula A (resp. B) is called a disjunct. If A ∨ B is a DNF, each disjunct is 
a conjunction of literals. Disjuncts are sometimes called terms.
2  Mat_DNF uses min1(x) = min (x, 1) in stead of ReLU(x) (note min1(x) = 1 − ReLU(1 − x) holds) for 
computing disjucntion, which is originated from real-valued Łukasiewicz logic. min1(x) is non-differentia-
ble at x = 1 . However non-differentiable points form a Lebesgue measure zero set and the probability of hit-
ting a non-differentiable point in learning is zero. So practically the non-differentiability of min1(x) causes 
no problem. Theoretically the subgradient method may be usable in a special case. There are other types of 
differentiable logic and logical operators applicable to them (van Krieken et al., 2022).
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Inoue et al., 2014; Tourret et al., 2017; Gao et al., 2022). Compared to the REVEAL algo-
rithm (Liang et al., 1998) and the BestFit extension algorithm (Lähdesmäki et al., 2003), 
Mat_DNF imposes no limit on the number of function variables. So if there are 18 genes 
(Irons, 2009), DNFs in 18 variables are considered. The LF1T algorithm (Inoue et  al., 
2014) symbolically learns a BN represented as a ground normal logic program from state 
transitions. Generalization is done by resolution. The NN-LFIT algorithm (Tourret et al., 
2017) adopts a two-stage approach that learns features by a feed-forward NN and extracts 
DNFs from the learned parameters. D-LFIT (Gao et al., 2022) takes a further elaborated 
approach of combining two neural networks to reduce search space. By comparison, Mat_
DNF is a much simpler single layer NN whose learned parameters directly represent a 
DNF and there is no need for post processing.

To improve the accuracy of the DNF learned from insufficient data, we introduce two 
operations. The first one is “noise-expansion”. It appends a noise vector to the input learn-
ing vector.3 The second one is “over-iteration” which keeps learning even after learning 
error becomes zero. Since adding a noise vector causes extra steps of parameter update 
while moving around local minima of the cost function J , the net effect of the first one is 
attributable to the second one. The fact that these two operations can considerably improve 
accuracy means that the choice of a root of the cost function J(C,D) = 0 , or more generally 
the choice of a local minimum significantly affects accuracy and generalizability.

Finally we confirm the effectiveness of our approach through three learning experi-
ments with literature-curated BNs (Fauré et al., 2006; Irons, 2009; Krumsiek et al., 2011). 
We applied Mat_DNF to learning data generated from these BNs to see if Mat_DNF can 
recover the original DNFs in BNs. For the first two synchronous BNs (Fauré et al., 2006; 
Irons, 2009), the recovery rate is high. By detailed analysis of the learning results, it is sug-
gested that this high recovery rate is due to the effect of over-iteration caused by implicit 
noise-expansion. However, the third asynchronous BN (Krumsiek et  al., 2011; Ribeiro 
et al., 2021) presents a much more difficult case and only six DNFs are completely recov-
ered out of 11 original DNFs, though this result is comparable to that of rfBFE (Gao et al., 
2018), one of the state-of-the-art BN learning algorithms.

Thus our contributions are three fold. First a proposal of new approach to the end-to-
end learning of Boolean functions by an explainable single layer NN Mat_DNF together 
with its application to BN learning, second the establishment of the equivalence between 
neural learning of DNFs by Mat_DNF and symbolic inference of DNFs as interpolants 
between the positive and negative data and third the introduction of two new operations, 
noise-expansion and over-iteration, that can improve accuracy by shifting the choice of a 
local minimum.

In what follows, after a preliminary section, we introduce Mat_DNF in Sect.  3. We 
then prove the relationship between the learning by Mat_DNF and the inference of inter-
polants in logic in Sect. 4. Section 5 examines the behavior of Mat_DNF w.r.t. insufficient 
learning data and introduces noise-expansion and over-iteration that improve accuracy. 
Section 6 reports three BN learning experiments and Sect. 7 discusses related work. Sec-
tion 8 is the conclusion.

3  In this paper, noise does not mean classification noise but irrelevant bits in the learning data that disturb 
Boolean function learning.
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2 � Preliminaries

Throughout this paper, bold italic capital letters such as A stand for matrices and so do 
bold italic lower case letters such as a for vectors. We equate a one-dimensional matrix 
with a vector. The i-th element of a is designated by a(i) and the i,  j-th element of A by 
A(i, j) . Given two m × n matrices A and B , [A;B] represents the 2m × n matrix of A stacked 
onto B . ‖a‖1 =

∑
i ∣ a(i) ∣ denotes the 1-norm of a and ‖A‖F the Frobenius norm of A . Let 

a and b be n dimensional vectors. Then (a ∙ b) stands for their inner product (dot product) 
and a⊙ b their Hadamard product, i.e., (a⊙ b)(i) = a(i)b(i) for i(1 ≤ i ≤ n) . For a scalar 
� , (a)≥� denotes a binary vector such that (a)≥�(i) = 1 if a(i) ≥ � and (a)≥�(i) = 0 other-
wise for i(1 ≤ i ≤ n) . Similarly 1 − a denotes the complement of a , i.e. (1 − a)(i) = 1 − a(i) 
for i(1 ≤ i ≤ n) . These notations naturally extend to matrices like (A)≥� and 1 − A . 
min1(x) = min (x, 1) is a function returning the lesser of 1 and x. min1(A) is the compo-
nent-wise application of min1(x) to A . We implicitly assume that all dimensions of vectors 
and matrices in various expressions are compatible. Let d1 ∨⋯ ∨ dh be a DNF in n vari-
ables. If every disjunct di is a conjunction of n distinct literals, it is said to be full. For a set 
S, ∣ S ∣ stands for the number of elements in S.

3 � Learning DNFs in vector spaces

3.1 � Evaluating matricized DNFs

Let � = (x1 ∧ x2) ∨ (x1 ∧ ¬x3) be a DNF in three variables. � has two disjuncts (x1 ∧ x2) 
and (x1 ∧ ¬x3) . We represent � by a pair (C,D) of binary matrices:

         x1 x2 x3 ¬x1 ¬x2 ¬x3

     C =

[
1 1 0 0 0 0

1 0 0 0 0 1

]
 D = [1 1]

As can be seen, each row of C represents a disjunct (conjunction of literals) of 
� . For example, the first row of C represents the first disjunct (x1 ∧ x2) by setting 
C(1, 1) = C(1, 2) = 1 . D on the other hands represents the choice of a conjunction as a dis-
junct; in the current case, both disjuncts in C are chosen as disjunct of � as designated by 
D = [1 1] . If D = [1 0] , � will contain only the first disjunct (x1 ∧ x2) in C . Generally a 
DNF � in n variables with at most h disjuncts is represented by an h × 2n binary matrix C 
and a 1 × h binary matrix D . By default, we consider a DNF � and its matrix representation 
(C,D) exchangeable and call (C,D) matricized DNF �.

Now we describe how � is evaluated as a Boolean function �(x) over its domain 
I0 = {1, 0}n of bit sequences. Each x ∈ I0 is equated with a binary column vector called 
“interpretation vector” representing an interpretation (assignment) such that a variable xj 
( 1 ≤ j ≤ n ) is mapped to x(j) ∈ {1, 0} . Henceforth for convenience we treat I0 as an n × 2n 
binary matrix packed with such 2n possible interpretation vectors and specifically call it the 
domain matrix for n variables.

Let x be an interpretation vector in I0 . A matricized DNF � = (C(h × 2n),D(1 × h)) is 
evaluated by x as follows. First compute a column vector N = C[(1 − x);x] . N(j) ( 1 ≤ j ≤ h ) 
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denotes the number of literals contained in the j-th conjunction of C and falsified by x , and 
hence min1(N)(j) = 0 holds if-and-only-if the j-th conjunction is false in x . Next compute 
a column vector M = 1 − min1(N) which is the bit inversion of min1(N) and M(j) gives 
the truth value ∈ {0, 1} of the j-th conjunction in C . Finally compute a scalar V = DM . It 
denotes the number of disjuncts in � satisfied by x . Hence (V)≥1 ∈ {0, 1} gives the truth 
value of � evaluated by x . Write x ⊧ 𝜑 when � is true in x , i.e. x satisfies � . In fact we have 
x ⊧ 𝜑 if-and-only-if (V)≥1 = 1.

Write C = [CP
C

N] where CP(h × n) (resp. CN(h × n) ) is a submatrix representing posi-
tive (resp. negative) occurrences of variables in � . Then the whole evaluation process is 
described by one line (1):

where �(x) denotes the truth value ∈ {0, 1} of � as a Boolean function evaluated by x . 
This notation is naturally extended to a set of interpretation vectors like �(I0) . 1h and 1n are 
all-one vectors of length h and n respectively. We rewrite (1) to (2). What the latter tells 
us is that our evaluation process is exactly a forward pass of a single layer ReLU network 
consisting of a linear output layer and a hidden layer with a weight matrix CP − C

N and a 
bias vector 1h − C

P
1n . We name this ReLU network Mat_DNF. It is a simple NN special-

ized for DNFs derived from the evaluation process of a DNF where the disjunction x ∨ y is 
replaced by min1(x + y) as in Łukasiewicz’s many valued logic.

3.2 � Learning DNFs by Mat_DNF

By adding a backward pass to the equation (1), Mat_DNF can learn Boolean functions. 
Here we describe how Mat_DNF learns them. Let f be a target Boolean function in n vari-
ables and I0 = [x1 ⋯ x2n ] the domain matrix for n variables. In learning, we are given a 
submatrix I1(n × l) = [xi1 ⋯ xil

] (l ≤ 2n) of I0 . I1 is mapped by f to a 1 × l row vector 
I2 = f (I1) = [f (xi1 )⋯ f (xil )] . (I1, I2) = (I1, f (I1)) is called an input–output pair for f and 
I1 its input domain. Learning a DNF � here thus means a learner receives an input–out-
put pair (I1, I2) = (I1, f (I1)) for a target Boolean function f and returns a DNF � such that 
�(I1) = I2 . Mat_DNF receives (I1, I2) and returns a matricized DNF � such that �(I1) = I2 
when it stops with learning error = 0.

Let C̃ and D̃ be real matrices. They are relaxation versions of C and D . Intro-
duce max0(x) = max(x, 0) (ReLU), Ñ = C̃[(1 − I1);I1] , M̃ = 1 − min1(Ñ) , Ṽ = D̃M̃ , 
Y = ‖�C⊙ (1 − �C)‖2

F
 and Z = ‖�D⊙ (1 − �D)‖2

F
 . Then define a non-negative cost function 

J(C̃, D̃) by

(1)�(x) =(D(1h − min1(C[(1n − x);x])))≥1

(2)

=(D(1h − min1((C
N − C

P)x + C
P
1n)))≥1

=(D(ReLU((CP − C
N)x + 1h − C

P
1n)))≥1

becauseReLU(x) = max(x, 0) = 1 − min1(1 − x)
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The first term (I2 ∙ (1 − min1(Ṽ))) is a non-negative scalar and deals with the case of 
f (xij ) = I2(ij) = 1 ( 1 ≤ j ≤ l ). Likewise the second term ((1 − I2) ∙ max0(Ṽ)) is non-nega-
tive and takes care of the case of f (xij ) = I2(ij) = 0 . Y and Z are penalty terms to make C̃ 
and D̃ binary respectively.

Proposition 1  J(C̃ , D̃ ) = 0 if-and-only-if C̃ and D̃ are binary matrices representing a DNF 
� such that �(I1) = I2.

Proof  We prove only-if part. The converse is obvious. Suppose J = J(C̃,D̃ ) = 0. Every term 
in (3) is zero. Y = Z = 0 immediately implies C̃ and D̃ are binary. Let � be a DNF repre-
sented by them. The first term deals with the case of I2(ij) = f (xij ) = 1 (1 ≤ j ≤ l) . It is a 
sum of non-negative summands of the form (1 − min1(Ṽ(ij))) . Hence J = 0 implies 
min1(Ṽ(ij)) = 1 , i.e. � is true in xij ∈ I1 when I2(ij) = 1 . The second term is dual to the first 
term, dealing with the case of I2(ij) = 0 . Similarly to the first term, we can prove that � is 
false in xij ∈ I1 when I2(ij) = 0 . By combining the two, we conclude that � gives I2 when 
evaluated by I1 , i.e., �(I1) = I2 . 	�  ◻

Learning by Mat_DNF is carried out based on Proposition 1 by minimizing J until J = 0 
using gradient descent. C̃ and D̃ are iteratively updated by their Jacobians, JC̃

a
 for C̃ and JD̃

a
 for 

D̃ , for example like C̃ = C̃ − �JC̃a  where 𝛼 > 0 is a learning rate. To compute the Jacobians, we 
introduce �W = −(�V)≤1 ⊙ I2 + (�V)≥0 ⊙ (1 − I2) . Then JC̃

a
 and JD̃

a
 are computed by (4).

These Jacobians are derived as follows. We first derive JC̃
a
 . Let C̃pq = C̃(p, q) be an arbi-

trary element of C̃ . Put ΔY = (1 − 2�C)⊙ Y . We have

where Ipq is a zero matrix except for the p,  q-th element which is 1. We 
use (A ∙ B) =

∑
i,j A(i, j)B(i, j) to denote the dot product of A and B . Note 

(A ∙ (B⊙ C)) = ((B⊙ A) ∙ C) and (A ∙ (BC)) = ((BT
A) ∙ C) = ((ACT ) ∙ B) hold. Then put 

�Y = (ΔY ∙ Ipq) and compute the partial derivative of J w.r.t. C̃pq as follows:

(3)J =(I2 ∙ (1 − min1(Ṽ))) + ((1 − I2) ∙ max0(Ṽ)) + (1∕2)Y + (1∕2)Z.

(4)
J
C̃

a
=((−(�N)≤1)⊙ (�D

T
�W))[(1 − I1);I1]

T + (1 − 2�C)⊙ Y

J
D̃

a
=�W �M

T
+ (1 − 2�D)⊙ Z

𝜕 �M∕𝜕�Cpq = − 𝜕 min1(
�N)∕𝜕�Cpq

= − (�N)≤1 ⊙ (Ipq(1 − [I1;(1 − I1)]))
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Since p, q are arbitrary, we have

Next we derive JD̃
a
= 𝜕J∕𝜕�D similarly. Put ΔZ = (1 − 2�D)⊙ Z and �Z = (ΔZ ∙ Ipq) . Then 

for arbitrary p,q, we see

So we reach JD̃
a
= 𝜕J∕𝜕�D = �W �M

T
+ ΔZ . In actual learning, we use an adaptive gradient 

method Adam (Kingma and Ba, 2015) instead of gradient descent with a constant learning 
rate.

3.3 � Learning algorithm

Given an input–output pair (I1, I2) such that f (I1) = I2 for the target Boolean function f, 
Mat_DNF returns a matricized DNF � = (C,D) giving �(I1) = I2 , basically by running 
Algorithm 1 until J = 0.

𝜕J∕𝜕�Cpq

= (I2 ∙ (−(
�V)≤1 ⊙ (𝜕�V∕𝜕�Cpq))) + ((1 − I2) ∙ ((

�V)≥0 ⊙ (𝜕�V∕𝜕�Cpq))) + 𝛿Y

= ((−(�V)≤1 ⊙ I2) ∙ (𝜕
�V∕𝜕�Cpq)) + (((�V)≥0 ⊙ (1 − I2)) ∙ (𝜕

�V∕𝜕�Cpq)) + 𝛿Y

= ((−(�V)≤1 ⊙ I2 + (�V)≥0 ⊙ (1 − I2)) ∙ (
�D(𝜕 �M∕𝜕�Cpq))) + 𝛿Y

= ((−(�N)≤1 ⊙ (�D
T
(−(�V)≤1 ⊙ I2 + (�V)≥0 ⊙ (1 − I2))))(1 − [I1;(1 − I1)])

T ∙ Ipq)

+ (ΔY ∙ Ipq)

= (((−(�N)≤1 ⊙ (�D
T
�W))(1 − [I1;(1 − I1)])

T + ΔY ) ∙ Ipq)

J
C̃

a
=𝜕J∕𝜕�C

=(−(�N)≤1 ⊙ (�D
T
�W))(1 − [I1;(1 − I1)])

T + ΔY

where �W = −(�V)≤1 ⊙ I2 + (�V)≥0 ⊙ (1 − I2).

𝜕J∕𝜕�Dpq =(I2 ∙ −𝜕 min1(
�V)∕𝜕�Dpq) + (1 − I2 ∙ 𝜕 max0(

�V)∕𝜕�Dpq) + 𝛿Z

=((−(�V)≤1 ⊙ I2) + (�V)≥0 ⊙ (1 − I2) ∙ 𝜕
�V∕𝜕�Dpq) + 𝛿Z

=(((−(�V)≤1 ⊙ I2) + (�V)≥0 ⊙ (1 − I2))
�M

T
∙ Ipq) + 𝛿Z

=(�W �M
T
∙ Ipq) + (ΔZ ∙ Ipq)

=((�W �M
T
+ ΔZ) ∙ Ipq).
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We however take a practical approach of thresholding (C̃, D̃) to binary (C , D) even 
before J = 0 is reached assuming J is small and C̃, D̃ are close to binary matrices. In more 
detail, the inner q-loop in Algorithm 1 below iteratively updates (C̃, D̃) at most max_itr 
times while thresholding them optimally to binary (C,D) (line 6,7,8)4 and computing 
learning_error using them. If � = (C,D) achieves learning_error = 0 , it exits from the 
q-loop and p-loop and returns � . If learning_error > 0 happens even after max_itr itera-
tions, it restarts the next q-loop with (C̃, D̃) perturbated by (5) where Δa and Δb are matri-
ces of the same size as C̃ and D̃ respectively. They are comprised of elements sampled 
from the standard normal distribution N(0, 1) . The perturbated C̃ and D̃ are used as initial 
parameters in the next loop (line 16). This perturbation is intended to escape from a local 
minimum.

(5)
C̃0 =

√
2∕(h ⋅ 2n)Δa + 0.5, C̃ = 0.5 ⋅ (C̃ + C̃0)

D̃0 =
√
2∕hΔb + 0.5, D̃ = 0.5 ⋅ (D̃ + D̃0)

4  For example, C̃ is thresholded into (C̃)≥� where � is between the maximum and minimum elements of C̃ . 
We choose the best � by trying 10 different � ’s that gives the least learning_error.
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Restart is allowed at most max_try times. Note that Mat_DNF possibly fails to achieve 
learning_error = 0 within given h, max_itr and max_try,5 but when Mat_DNF returns a 
matricized DNF � = (C,D) with learning_error = 0, it is guaranteed that J(C,D ) = 0 and 
�(I1) = I2 hold.

4 � Learning as logical interpolation: a logical perspective

Here we characterize the learning of DNF � by Mat_DNF from a logical perspective. Write 
⊧ 𝜙1 ⇒ 𝜙2 if �1 ⇒ �2 is a tautology. If we also have ⊧ 𝜙2 ⇒ 𝜙3 , �2 is called an interpolant 
between �1 and �3 . Roughly, Craig’s interpolation theorem (Craig, 1957) in first order logic 
states the existence of such interpolant. We prove that our learning of � from an input–out-
put pair (I1, I2) such that �(I1) = I2 is logically viewed as an inference of an interpolant �.6

Suppose (I1, I2) is an input–output pair for some n-variable Boolean function f and 
f (I1) = I2 holds. We divide the input binary matrix I1(n × l) into two submatrices IP

1
(n × lP) 

and IN
1
(n × lN) where lP + lN = l . IP

1
 represents the positive (resp. negative) data and if 

x ∈ I
P

1
 (resp. x ∈ I

N

1
 ), f (x) = 1 (resp. f (x) = 0 ) holds.

We consider IP1  as full DNF, DNF(IP
1
) in notation, in the following way. Let x be an inter-

pretation vector in I1 . Introduce conj(x) denoting a conjunction l1 ∧⋯ ∧ ln of literals such 
that lj = xj if x(j) = 1 , else lj = ¬xj (1 ≤ j ≤ n) . For example if x = [1 0 1]T , 
conj(x) = x1 ∧ ¬x2 ∧ x3 . Put DNF(IP

1
) =

⋁
x∈IP

1
conj(x) and call it the positive DNF for 

(I1, I2) . Likewise we define DNF(IN
1
) =

⋁
x∈IN

1
conj(x) and call it the negative DNF for 

(I1, I2) . For simplicity, we equate DNF(IP
1
) and DNF(IN

1
) respectively with the positive data 

I
P

1
 and negative data IN

1
.

Proposition 2  Let (I1, I2) be an input–output pair for a Boolean function f such that 
f (I1) = I2 . Also let DNF(IP

1
) and DNF(IN

1
) respectively be the positive and negative DNF 

for (I1, I2) . For a DNF � , �(I1) = I2 if-and-only-if � is an interpolant between DNF(IP
1
) 

and ¬ DNF (IN
1
).

Proof  We first prove the only-if part. Suppose �(I1) = I2 . Let i be an interpretation vector 
over n variables satisfying DNF(IP

1
) . It satisfies some disjunct conj(x ) in DNF(IP

1
) . Since 

conj(x ) is a conjunction of n distinct literals, the fact that i satisfies conj(x ) implies i = x as 
vector. On the other hand, we have �(I1) = I2 = f (I1) by assumption and hence �(x) = f (x) 
as x ∈ I

P

1
⊆ I1 . We also have f (x) = 1 as x ∈ I

P

1
 . Putting the two together, we conclude 

�(i) = �(x) = f (x) = 1 . Since i is arbitrary and satisfies � , ⊧ DNF(IP
1
) ⇒ 𝜑 is proved. 

⊧ 𝜑 ⇒ ¬DNF(IN
1
) is proved similarly by proving ⊧ DNF(IN

1
) ⇒ ¬𝜑.

To prove the if-part, recall that an interpolant � satisfies ⊧ DNF(IP
1
) ⇒ 𝜑 and 

⊧ DNF(IN
1
) ⇒ ¬𝜑 . So if x ∈ I

P

1
 (resp. x ∈ I

N

1
 ), then DNF(IP

1
)(x) = 1 and hence �(x) = 1 

holds (resp. then DNF(IN
1
)(x) = 1 and hence �(x) = 0 holds). In other words, if x ∈ I

P

1
 , 

�(x) = 1 = f (x) and if x ∈ I
N

1
 , �(x) = 0 = f (x) . So we reach �(I1) = f (I1) = I2 . 	�  ◻

5  This happens, for example, when learning data is inconsistent and there is no Boolean function satisfying 
the learning data. It also can happen when the target function is difficult to learn as the case of the n-parity 
function with large n.
6  Craig’s interpolation theorem is the one for first-order logic but its propositional version has long been 
practically applied to model checking (Vizel et al., 2015; McMillan et al., 2018)
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By Proposition 2, we can say that � returned by Mat_DNF with learning_error = 0 is 
an interpolant between DNF(IP

1
) and ¬DNF(IN

1
) . We can also say by combining Proposi-

tion 1 and 2 that finding a root of J(C,D) = 0 defined by (3), learning a DNF � satisfying 
�(I1) = I2 and inferring an interpolant � between DNF(IP

1
) and ¬DNF(IN

1
) are one and the 

same thing, they are all equivalent.
The recognition of this equivalence has some interesting consequences. The first one 

is that from the viewpoint of classification, learning by Mat_DNF consists of learning the 
feature space of conjunctions C̃ and its linear separation by a hyperplane specified by a 
continuous disjunction D̃ as shown in the equation (2). Hence it seems possible to modify 
Mat_DNF so that it can search for a “max-margin interpolant” corresponding to the max-
merging hyperplane, which is expected to generalize well. Sharma et. al already proposed 
to use SVM to infer interpolants (Sharma et al., 2012) where SVM is applied to the pre-
defined feature space. In our “max-margin interpolant” inference, if realized, the feature 
space itself will be learned by Mat_DNF.

The second one is the possibility of a neural end-to-end refutation prover. Let S be a set 
of ground clauses. Also let S = S1 ∪ S2 be any split of S such that atom(S1) ∩ atom(S2) ≠ � 
where atom(Si) denotes the set of atoms in Si ( i = 1, 2 ). It can be proved that S is unsatisfi-
able if-and-only-if there is an interpolant � between S1 and ¬S2 (proof omitted as it is out of 
the scope of this paper (Vizel et al., 2015; McMillan et al., 2018)). We can apply Mat_DNF 
to infer this � assuming that S1 is positive data ( � is true over S1 ) and S2 is negative data ( � 
is false over S2 ) respectively.

The third one concerns the generalizability of the DNF � learned by Mat_DNF. 
It is observed that � tends to overgeneralize positive data IP

1
 in the input data. That is, 

⊧ DNF(IP
1
) → 𝜑 holds but sometimes the degree of generalization by logical implication 

measured by the distance between DNF(IP
1
) and � is too high, which adversely affects the 

accuracy of � . Later in Sect. 5.5, we propose a way of controlling the distance between 
DNF(IP

1
) and � and show that the accuracy of � is actually improved.

5 � Learning random DNFs

5.1 � Performance measures and generalization

First we define some performance measures concerning Mat_DNF to clarify the meaning 
of generalization. Let f be a target Boolean function in n variables, I0 the domain matrix for 
n variables and (I1, f (I1)) ( I1 ⊆ I0 ) an input–output pair for f supplied as learning data for 
Mat_DNF. We introduce “domain ratio” dr = ∣I1∣

∣I0∣
 ( 0 ≤ dr ≤ 1 ) where ∣ I ∣ denotes the num-

ber of interpretation vectors in I . Domain ratio dr is the relative size of learning data to the 
whole domain data. In what follows, purely for convenience, we use dr even when dr ⋅ ∣ I0 ∣ 
is not an integer. In such case, it means I1 contains the ⌊dr⋅ ∣ I0 ∣⌋ number of interpretation 
vectors of I0.

Suppose we have obtained a DNF � = (C,D) with learning_error = 0 by run-
ning Mat_DNF on (I1, f (I1)) . Compute �(I0) = (D(1 − min1(C[(1 − I0);I0])≥1 
(see (1)) and exact_error = ‖f (I0) − �(I0)‖1 which is the number of different bits 
between f (I0) and �(I0) . Introduce acc_DNF, the “exact accuracy” of � , by defining 
acc_DNF = 1 − exact_error∕2n . Since learning_error is zero, � perfectly reproduces 
f (I1) and hence it follows that acc_DNF = dr + (1 − dr) ⋅ acc_pred where acc_pred 
is the prediction accuracy of � over the unseen domain data I0⧵I1 not used for learning. 
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Consequently we have acc_pred = (acc_DNF − dr)∕(1 − dr) . Thus prediction accuracy 
and exact accuracy are mutually convertible. Finally we define generalization. Introduce 
acc_dr = dr + 0.5 ⋅ (1 − dr) = 0.5 ⋅ (1 + dr) which is the expected accuracy of a base line 
learner learning data with domain ratio dr that completely memorizes learning data (dr) 
and makes a random guess on unseen data ( 0.5 ⋅ (1 − dr) ). We say generalization occurs 
when acc_DNF > acc_dr = 0.5 ⋅ (1 + dr) , or equivalently acc_pred > 0.5 holds (because 
acc_DNF − acc_dr = (1 − dr) ⋅ (acc_pred − 0.5)).

5.2 � Measuring accuracy for random DNFs

We conduct a learning experiment with small random DNFs to examine the learning 
behavior of Mat_DNF w.r.t. data scarcity controlled by domain ratio dr and see how gen-
eralization occurs7.8 We first randomly generate a DNF �0 in n = 5 variables that consists 
of three disjuncts, each containing at most 5 lals a half of which is negative on average. We 
also generate a domain matrix I0(n × 2n) for n = 5 variables. Next suppose a domain ratio 
dr is given. For this dr, we generate a binary matrix I1(n × l) consisting of l = 2n ⋅ dr inter-
pretation vectors randomly sampled without replacement from I0 . Then we run Mat_DNF 
on the learning data (I1,�0(I1))

9 and obtain a DNF �1 that perfectly classifies the learning 
data, i.e. �1(I1) = �0(I1) and compute the exact accuracy acc_DNF of �1 . We repeat this 
process 100 times and obtain the average acc_DNF of �1 against dr.

By varying dr ∈ {0.1,… , 1.0} , we obtain a curve of exact accuracy w.r.t. dr denoted 
as acc_DNF in Fig. 1. There acc_dr denotes the expected accuracy of the base line learner 
performing only memorization and random guess. Other two curves, acc_DNF_noise and 
acc_over, are explained next. We observe that acc_DNF is always (and slightly) above acc_
dr for all dr’s. So this experiment confirms that generalization in our sense actually occurs 
and the learned DNF does more than just pure memorization and random guess by detect-
ing some logical pattern.

5.3 � Noise‑expansion and over‑iteration

The acc_DNF_noise and acc_DNF_over curves in Fig. 1 demonstrate that generalization occurs 
with a greater degree than acc_DNF, i.e. acc_DNF_noise ≈ acc_DNF_over > acc_DNF 
holds at most dr’s. They are obtained by two different operations, acc_DNF_noise by “noise-
expansion” and acc_DNF_over by “over-iteration”, respectively.

The first operation, noise-expansion, means the expansion of an input vector in the 
learning data I1 by a random bit vector. For example, a 5 bit input vector x = [0 1 0 1 0]T 
in I1 is expanded into a 10 dimensional vector xnoise = [x;n] = [0 1 0 1 0 1 0 0 1 1]T by 
appending a random bit vector n = [1 0 0 1 1]T to x . In learning, each x in I1 is expanded 

7  All programs used in this paper are written in GNU Octave 4.2.2 and run on a PC with Intel(R) 
Core(TM) i7-10700@2.90GHz CPU with 26GB memory. Due to the naive nature of our implementation of 
Mat_DNF, the experiment scale is small.
8  We also implemented Mat_DNF by PyTorch and conducted a learning experiment for the 7-parity func-
tion from complete data. We chose the parity function because it is known to be hard to learn. As average 
over 5 trials, the PyTorch version took 42.9 s(10.5) on Google Colaboratory (GPU) while the octave version 
(CPU) took only 9.6  s(11.5). Although the difference may be due to our naive use of PyTorch, it seems 
likely that our matrix-based implementation is suitable for Octave.
9  The learning parameters are set to � = 0.1, max_try = 20, max_itr = 500 and h = 1000.
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into xnoise and then used for learning. Although each input vector in I1 gets longer 
(length doubled) by noise-expansion, the number of input vectors remains the same. 
It simply means Mat_DNF has an additional task of identifying those variables in an 
input vector xnoise that are relevant to the output, hereby causing additional update steps 
in Algorithm 1. So from the viewpoint of minimizing J to zero, the net effect of noise-
expansion is to force Mat_DNF to find another root of J even when J = 0 is reached in 
the original learning task. This point is made clear by comparing with “over-iteration” 
explained below.

The second operation, over-iteration, forces Mat_DNF to skip a root of J = 0 found first 
and keep learning. Only after some prespecified extra steps (for example extra_update = 
20 in the case of acc_DNF_itr in Fig. 1) have been made, Mat_DNF is allowed to return 
when a root of J is found again. Intuitively, this operation have the effect of avoiding a root 
near the initializing point that often overfits the learning data and exploring a root in the 
relatively flat landscape of J . In other words, over-iteration searcher for a root of J closer to 
a global minimum such as the target DNF.

Observe that as the acc_DNF_noise and acc_DNF_over curves in Fig. 1 show, not only 
both noise-expansion and over-iteration improve exact accuracy, or equivalently prediction 
accuracy, but with a similar degree of improvement. Hence it seems reasonable to hypoth-
esize that noise-expansion causes over-iteration and over-iteration causes the improvement 
of exact accuracy.

The result of this experiment also indicates the importance of an intentional choice of a 
local minimum (choosing a root in our case) which is independently suggested by “flood-
ing” (Ishida et al., 2020) and “grokking” (Power et al., 2021). In flooding, learning is con-
trolled by gradient descent and ascent to keep training error small but non-zero. In grok-
king, learning is continued even after learning accuracy is saturated, and then test accuracy 

0 0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

1

domain ratio dr

ac
c

acc_dr
acc_DNF
acc_DNF_noise
acc_DNF_over

Fig. 1   “exact accuracy” of DNF learned with noise-expansion and over-iteration
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suddenly rises to a high level. Our over-iteration has a similar effect of moving around 
local minima in a flat loss landscape, leading to better generalization.

5.4 � The logical relations and over‑iteration

When a learning target is a DNF �0 , we naturally ask a logical question of whether the 
consequence relation and equivalence relation between �0 and a learned DNF � hold or 
not. We also interested in the distance between them10 because we expect � to be logi-
cally related to �0 when � is close to �0 . So we estimate the probability p_conseq (resp. 
p_equiv) of � being a logical consequence of �0 , i.e., ⊧ 𝜑0 ⇒ 𝜑 in notation (resp. � being 
logically equivalent to �0 , i.e., ⊧ 𝜑0 ⇔ 𝜑 ) for a 5-variable DNF �0 generated as in the pre-
vious section, together with the average distance between �0 and � by running Mat_DNF 
100 times11 and counting the number of runs that make these logical relations hold and 
computing the average distance. We obtain Table 1.

In Table 1, distance_itr is the same as distance between the target DNF �0 and a learned 
DNF � but obtained by over-iteration with extra_update = 60. The same applies for p_
equiv_itr and p_equiv.

First we can recognize in the table that larger data gives us a more exact solution. That 
is, the distance between the target DNF �0 and a learned DNF � monotonically decreases 
as dr gets closer to 1. Furthermore the effect of over-iteration is clearly visible. It gets the 
learned DNF much closer to the target DNF, from 7.5 to 4.2 at dr = 0.5 for example. In 
other words, it chooses a root of the cost function J near the target �0.

Concerning logical relations, observe that p_conseq and p_equiv in Table 1 more or less 
monotonically increase as dr increases. So again, larger data gives a bigger chance of the 
logical relationship. Second observe that p_conseq, the probability of ⊧ 𝜑0 ⇒ 𝜑 , is rather 
high through all dr’s but lowered considerably by over-iteration. Third over-iteration has 
the opposite effect on p_equiv, the probability of ⊧ 𝜑0 ⇔ 𝜑 however. It greatly improves 
the chance of ⊧ 𝜑0 ⇔ 𝜑 after dr > 0.5 . For example, p_equiv suddenly jumps up from 0.02 
to 0.19 at dr = 0.7 and from 0.20 to 0.55 at dr = 0.9 (see bold figures in Table 1). This 
positive effect of over-iteration on p_equiv becomes critical when applying Mat_DNF to 
Boolean network learning. This is because the primary purpose of our Boolean network 

10  The distance between �0 and � in n variables is defined to be the number of interpretation vectors x in 
the domain matrix for n variables such that �0(x) ≠ �(x).
11  Learning parameters are � = 0.1, max_try = 20, max_itr = 500 and h = 1000.

Table 1   Domain ratio dr, 
distance and the probability 
of logical consequence and 
equivalence

dr 0.1 0.3 0.5 0.7 0.9 1.0

distance 13.6 11.8 7.5 4.2 1.4 0.0
distance_itr 10.9 6.7 4.2 2.1 0.7 0.0
p_conseq 0.54 0.88 0.94 0.89 0.92 1.0
p_conseq_itr 0.24 0.16 0.30 0.58 0.84 1.0
p_equiv 0.01 0.00 0.03 0.02 0.20 1.0
p_equiv_itr 0.00 0.01 0.06 0.19 0.55 1.0
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learning is to recover the original DNFs in the target Boolean network and over-iteration in 
this section enhances the chance of discovering such DNFs.

5.5 � Controlling logical generalization

Over-iteration wanders in the search space for a better local minimum. Here we introduce 
another more proactive approach for the same purpose based on Proposition 2 in Sect. 4. 
This approach has the sense of search direction, away from negative data and toward posi-
tive data, thus making it possible to control the degree of generalization of the learned 
DNF.

Let �0 be a target DNF, I0 the domain of �0 , (I1, I2) an input–output pair for learning 
where I1 ⊆ I0 and I2 = �0(I1) . Also let DNF(IP

1
) and DNF(IN

1
) respectively be the positive 

and negative DNF for (I1, I2) introduced in Sect. 4 associated with the positive data IP
1
 and 

negative data IN
1

 in I1.
Our idea is based on the empirical observation that when learning random DNFs form 

insufficient data by Mat_DNF, despite the fact that the target DNF �0 and the learned DNF 
� are both interpolants between the DNF(IP

1
) and ¬DNF(IN

1
) according to Proposition 2, 

their distance to DNF(IP
1
) and DNF(IN

1
) often differs greatly. Since learning data is ran-

domly generated using the target DNF �0 , usually �0 is located (almost) in the middle 
between DNF(IP

1
) and DNF(IN

1
) distance-wise. However, it is observed that the learned � 

is very close to the negative data DNF(IN
1
) . In other words, due to the learning bias of 

Mat_DNF, � tends to overgeneralize positive data by yielding disjuncts outside the original 
positive data DNF(IP

1
).

To combat this overgeneralization of positive data by Mat_DNF, we add a special term 
Jint to the cost function J to suppress the generation of disjuncts in � . Concretely Jint is com-
puted as follows.

Here IP
0
 is the set of interpretation vectors which, when considered as conjunctions, can be 

added to DNF(IP
1
) as disjuncts in the learned � . M̃

P is the truth values of continuous con-
junctions represented by C̃ . D̃M̃

P is the truth values of the continuous DNF (C̃, D̃) evalu-
ated by the interpretation vectors IP

0
 . Minimizing Jint causes minimizing positive elements 

in D̃M̃
P sifted out by max0(⋅) to zero, in which case, as M̃

P is non-negative, pushing posi-
tive elements in D̃ to zero, leading to a small number of disjuncts in the thresholded dis-
junction D in � , i.e. a small number of disjuncts in �.

We conduct a learning experiment of the 5-ary random DNF with this penalty term Jint 
added to the cost function J in the form of � ⋅ Jint ( � ≥ 0 ) while varying � from 0 to 5.12 We 
choose dr = 0.5 and randomly generate a target DNF �0 and the learning data (I1,�0(I1)) 

I
P

0
=I0 ⧵ I

P

1

Ñ
P
=C̃[(1 − I

P

0
);IP

0
]

M̃
P
=1 − min1(Ñ

p
)

Jint =
∑

max0(D̃M̃
P
)

12  The experimental parameters for one trial are � = 0.1, max_try = 20, max_itr = 500, h = 1000. No over-
iteration is used.
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as in Sect. 5.2. So half of the complete data necessary for identifying the target �0 is sup-
plied to the learner.

We run Mat_DNF on the learning data until learning error becomes zero and measure 
the exact accuracy of the learned DNF � in each learning trial. Table 2 contains figures 
averaged over 100 trials13.

Clearly as � gets larger (while ⊧ DNF(IP
1
) → 𝜑 is the same), the distance between the 

positive learning data DNF(IP
1
) and the learned DNF � monotonically decreases, which 

verifies the effectiveness of the penalty term Jint to manipulate the degree of logical 
implication.

On the other hand, the distance between the target �0 and the learned � draws a convex 
curve w.r.t. � and � achieves the maximum exact accuracy 0.824 when dist(�0,� ) is the 
least 5.6. In other words, we can change the distance between the target DNF and learned 
DNF by a parameter � in vector spaces for better generalization.

6 � Learning Boolean networks

We apply Mat_DNF to learning Boolean networks (BNs) introduced by Kauffman (Kauff-
man, 1969) which have been used to model gene regulatory networks in biology. A BN is 
biological network where nodes are genes with {0, 1} states and a state transition (activa-
tion of gene expression) of a gene occurs according to a Boolean formula associated with 
it. The learning task is to infer Boolean formulas associated with nodes from state tran-
sition data. Due to the general hardness results of learning Boolean formulas (Feldman, 
2007), BN learning on a large scale is difficult. We select three BNs of moderate size from 
literature for learning, one for mammalian cell cycle from Fauré et al. (2006), one for bud-
ding yeast cell cycle from Irons (2009) and one for myeloid differentiation from Krumsiek 
et al. (2011). Learning performance is evaluated in terms of the recovery rate of the origi-
nal DNFs associated with a BN.

6.1 � Learning a mammalian cell cycle BN

In the first learning experiment, we use a synchronous BN for mammalian cell cycle 
having 10 nodes (genes) (Fauré et  al., 2006) where state transition occurs simulta-
neously for all genes. A state of the BN is represented by a state vector x ∈ {0, 1}10 
and a state of each gene_i is described by a Boolean variable xi ( 1 ≤ i ≤ 10 ) and its 

Table 2   The effect of J
int

 on the 
learned �

Bold numbers indicate the best results in this experiment

� 0.0 0.01 0.05 0.1 0.4 1.0 5.0

dist(DNF(IP
1
) , �) 14.3 12.9 9.6 8.7 3.5 2.5 2.2

dist(�
0
 , �) 7.6 6.5 5.6 5.9 6.3 6.3 5.9

exact accuracy 0.736 0.777 0.824 0.807 0.794 0.802 0.815

13  Recall that for Boolean formulas A, B in n variables, the distance between A and B is given by dist(A,B) 
= ∣ {x ∈ I0 ∣ x ⊧ (A ∧ ¬B) ∨ (¬A ∧ B)} ∣ where I0 is the set of 2n interpretation vectors.
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state by x(i) ∈ {1, 0} . A state transition of gene_i is controlled by a DNF �i associ-
ated with it, i.e. the next state of gene_i= 1 if �i(x) = 1 , otherwise gene_i= 0 . We 
obtain from Fauré et  al. (2006) 10 DNFs associated with 10 genes. For example 
�6 = (¬x1 ∧ ¬x4 ∧ ¬x5 ∧ ¬x10) ∨ (¬x1 ∧ ¬x4 ∧ x6 ∧ ¬x10) ∨ (¬x1 ∧ ¬x5 ∧ x6 ∧ ¬x10) is asso-
ciated with gene_6.

To see to what degree Mat_DNF can recover the original 10 DNFs, following (Inoue 
et al., 2014), we consider �i ( 1 ≤ i ≤ 10 ) as a 10-variable Boolean function and prepare as 
learning data a complete input–output pair (I10

0
,�i(I

(10)

0
)) for �i where I(10)

0
 is the domain 

matrix for 10 variables containing 1024 interpretation vectors. Then we let Mat_DNF learn 
a DNF � from (I(10)

0
,�i(I

(10)

0
))14 and check if � is identical to the original �i . The result is 

encouraging. Nine DNFs out of the original 10 DNFs are successfully recovered (modulo 
renaming) and the remaining one is logically equivalent to the original DNF.

To understand the origin of this high recovery rate, we pick up a DNF �6 associated 
with gene_6 and examine noise-expansion effect on it. We consider �6 as a 5-variable 
Boolean function over the domain matrix I(5)

0
 and measure acc_DNF w.r.t. dr. To meas-

ure acc_DNF_noise , we append a 5 dimensional random bit vector to each interpretation 
vector in I(5)

0
 . The learning result is shown in Fig.  2 where figures are the average over 

100 trials. There we see the acc_DNF curve shows a large improvement in acc_DNF by 
noise-expansion compared to the case of Fig. 1. For example it achieves acc_DNF = 0.817 
at dr = 0.1, which means on average, given only 3 input–output pairs, Mat_DNF learns by 
noise-expansion a DNF that correctly predicts 26 input–output pairs in (I(5)

0
,�6(I

(5)

0
)) out of 
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Fig. 2   “exact accuracy” of DNF learned from �
6
 with noise-expansion

14  Learning parameters are set to � = 0.1, max_itr = 500, max_try = 50 and h = 1000.
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32 possible tests. Such high accuracies plotted in Fig. 2 strongly suggests that noise-expan-
sion helps Mat_DNF find a DNF with high generalizability, or the original DNF. Also we 
can point out that the big difference in the effect of noise-expansion between Fig. 1 and 
Fig. 2 might be attributed to the nature of the learning target �6 which is not randomly gen-
erated but comes from biological literature.

Then look at the learning experiment of mammalian cell cycle BN again. Note that 
although �6 is a function of 5 variables {x1, x4, x5, x6, x10} , it is treated as a function of 
10 variables {x1,… , x10} in the experiment. So the remaining 5 variables {x2, x3, x,x8, x9} 
behave as noise bits in learning just like noise-expansion. This implicit noise-expansion 
happens to the learning of all DNFs {�1,… ,�10} because they contain only at most 6 var-
iables. Moreover, since they are not random DNFs, noise-expansion can be particularly 
effective as shown in Fig. 2, and hence it is not unreasonable to assume that Mat_DNF is 
likely to able to learn the original DNFs, which explains the high recovery rate of the origi-
nal DNFs.

We conclude this section by looking at DNFs learned from insufficient data to develop 
an insight into the syntactic aspect of learned DNFs and their logical relationship to the 
target DNF. Table 3 lists some DNFs learned from an input-out pair for �6 obtained by 
applying �6 as a 10-variable function to the interpretation vectors of size 210 × dr sampled 
without replacement from the domain matrix I(10)

0
.15

In Table  3, for dr ∈ {1.0, 0.8, 0.5} , every data used for learning contains 32 different 
input–output pairs, i.e. contains complete information about �6 . That is why all learned 
DNFs are logically equivalent to �6 . At dr = 0.3, learning data still contains all information 
on �6 . Nonetheless the learned DNF have extraneous variables not appearing in the origi-
nal �6(x1, x4, x5, x6, x10) which destroy the logical equivalence to �6 though it still continues 
to be a logical consequence. When dr is further lowered to dr = 0.1 , constraint by learning 
data is more loosened. So more conjunctions and extraneous variables are introduced to the 
learned DNF and they stop the learned DNF from being either a logical consequence of or 
logically equivalent to �6.

15  Learning parameters are � = 0.1, max_try = 20, max_itr = 500 and h = 1000.

Table 3   Examples of learned DNFs learned from �
6

dr Learned DNF Relation to �
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)
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6.2 � Learning a budding yeast cell cycle BN

We conduct the second experiment with a synchronous BN for budding yeast cell cycle 
taken from Irons (2009). Since it contains 18 genes (DNFs) and preparing gene expression 
data is very time-consuming, it is unrealistic to assume the whole domain matrix I(18)

0
 con-

taining 218 = 262, 144 data points as learning data to learn a Boolean formula �i for gene_i 
in the BN (Irons, 2009) ( 1 ≤ i ≤ 18).

We instead randomly generate a set of state vectors Irand
1

 of size 1,  000 and use 
(Irand

1
,�i(I

rand
1

)) ( 1 ≤ i ≤ 18 ) as learning data to learn a DNF for �i.16

In this experiment, 17 DNFs out the 18 original DNFs are successfully recovered in at 
most three trials and the remaining DNF is logically equivalent to the original one. Consid-
ering the severe data scarcity such that only 0.38% ( 1000∕218 ) of the whole data is supplied 
as learning data, this success rate is somewhat surprising, but again can be explained as the 
effect of implicit noise-expansion as in the mammalian cell cycle case because the set of 
variables relevant to a target gene is surely a proper subset of 18 variables and the remain-
ing irrelevant ones would behave as noise.

6.3 � Learning a myeloid differentiation BN

The last example is learning an asynchronous BN with 11 genes for myeloid differentiation 
process (Krumsiek et al., 2011). In this “biologically more feasible” BN (Gao et al., 2018), 
state transition occurs asynchronously where a gene is nondeterministically chosen and the 
Boolean function (DNF) associated with the gene is applied to the current state to decide 
the next state of the BN.

Table 4   Recovered Boolean formulas for the asynchronous myeloid differentiation BN

Target gene Fact rfBFE Mat_DNF

GATA-2 GATA-2 ∧ ¬(GATA-1 ∧ FOG-1) ∧ ¬FOG-1 ∧ ¬PU.1 ¬FOG-1 ∧ ¬PU.1
¬ PU.1

GATA-1 (GATA-1 ∨ GATA-2 ∨ Fli-1) ∧ ¬PU.1 ¬PU.1
¬PU.1

FOG-1 GATA-1 GATA-1 GATA-1
EKLF GATA-1 ∧ ¬Fli-1 GATA-1 ∧ ¬Fli-1 GATA-1 ∧ ¬Fli-1
Fli-1 GATA-1 ∧ ¬EKLF GATA-1 ∧ ¬EKLF GATA-1 ∧ ¬EKLF
SCL GATA-1 ∧ ¬PU.1 GATA-1 GATA-1
C/EBPa C/EBPa ∧ ¬FOG-1 ∨ ¬SCL ¬FOG-1 ∨ ¬SCL

¬(GATA-1 ∧ FOG-1 ∧ SCL)
PU.1 (C/EBPa ∨ PU.1) ∧ ¬GATA-2 ∧ PU.1 ¬GATA-2 ∧ ¬GATA-1

¬(GATA-1 ∨ GATA-2) ∧ PU.1
cJun PU.1 ∧ ¬Gfi-1 PU.1 ∧ ¬Gfi-1 PU.1 ∧ ¬Gfi-1
EgrNab (PU.1 ∧ cJun) ∧ ¬Gfi-1 PU.1 ∧ cJun ∧ ¬Gfi-1 PU.1 ∧ cJun ∧ ¬Gfi-1
Gfi-1 C/EBPa ∧ ¬EgrNab C/EBPa ∧ ¬EgrNab C/EBPa ∧ ¬EgrNab

16  Learning parameters are � = 0.1, max_try = 20, max_itr = 500 and h = 2000.
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Following (Gao et al., 2018), we generate learning data for asynchronous BN by simu-
lating all possible asynchronous sate transitions starting from an “early, unstable undif-
ferentiated state, where only GATA-2, C/EBPa, and PU.1 are active” (Krumsiek et  al., 
2011). This simulation generates 160 distinct hierarchically layered states containing four 
point attractors that correspond to four mature blood cells. For each gene, we generate state 
transition data of size 160 from these states and let Mat_DNF learn it with over-iteration 
(extra_update = 100). Since a learned DNF varies with initialization, we repeat this asyn-
chronous BN data learning ten times and consider the majority of ten learned DNFs as the 
learned DNF for the target gene.

Out of 11 DNFs to be recovered, Mat_DNF correctly recovered the original DNFs for 6 
genes (Table 4). They are all pure conjunctions. DNFs for the remaining 5 genes are recov-
ered partially in such a way that they lost at most three variables from the original ones. We 
performed other measurements.

We now compare our results with those by rfBFE (Gao et  al., 2018) in more detail. 
rfBFE is one of the state-of-the-art BN learning algorithms which is a refinement of Best-
Fit extension algorithm (Lähdesmäki et al., 2003)17. Since the purpose of BN learning is to 
infer Boolean formulas governing the state transitions process, the recovery rate of target 
Boolean formulas is the most important criterion. From this viewpoint, it is to be noted 
that when applied to complete data generated by synchronous BN, both rfBFE and Mat_
DNF recover all original 11 DNFs. However there is a big difference in execution time. 
While rfBFE only takes 1.24  s to process 11 complete datasets ( 211 data points) for 11 
genes according to Gao et al. (2018), Mat_DNF takes 483.1 s, which suggests the need for 
improving implementation of Mat_DNF for example by parallel technologies.

Also we observe differences in terms of “score” which the number of genes whose 
domain (regulators) is correctly inferred when the learning data is not complete. We ran-
domly sample m states and their state transitions and measure scores for m = 80, 160 by 
running Mat_DNF on sampled transitions.18 We repeat this trial five times and take the 
average. The results are score = 8.8 for m = 80 and score = 10.6 for m = 160, which are 
lower than those by rfBFE reported in Gao et al. (2018) where score = 10.8 for m = 80 and 
score = 10.9 for m = 160 respectively. This may be due to the lack of a special mechanism 
in Mat_DNF to identify regulators (domain).

In the case of asynchronous learning data described above, Mat_DNF and rfBFE return 
Boolean formulas listed in Table  4.19 Table  4 shows that Mat_DNF and rfBFE return 
exactly the same Boolean formulas except for gene PU.1 and both successfully recover six 
original Boolean formulas. Concerning PU.1 however, while Mat_DNF successfully recov-
ers one of the two original disjuncts, rfBFE recovers no original disjunct or recovers only 
one of the four original conjuncts (assuming the original one is in CNF). So, as far as the 
target asynchronous BN (Krumsiek et  al., 2011) is concerned, Mat_DNF seems qualita-
tively competitive with rfBFE, though learning is considerably slow.

17  rfBFE is a combination of two algorithms, random forest for feature selection and the BestFit extension 
algorithm (Lähdesmäki et al., 2003) for Boolean formula discovery.
18  Parameters are set to max_try = 10, max_itr = 1000, h = 10000 and over-iteration with extra_update = 
20.
19  The table format and Boolean formulas learned by rfBFE are borrowed from Gao et  al. (2018). Fact 
denotes the original Boolean formulas. We run Mat_DNF with � = 0.005, max_try = 10, max_itr = 1000, h 
= 4000 and over-iteration (extra_itr = 100).
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7 � Related work

From a logical point of view, Mat_DNF infers a matricized DNF as an interpolant by 
numerical optimization and there is no previous work of the same kind as far as we 
know. As Sect. 4 reveals, any interpolant represented by a matricized DNF � = (C,D) 
between the positive and negative data is translated to a single layer ReLU network 
described by (2) with network parameters (C,D) and vice versa. This mutual translation 
is expected to contribute to cross-fertilization of NNs and logic. For example logical 
characterization of interpolants with good generalizability can contribute to designing 
NNs with high generalizability.

On the optimization side, our approach is categorized as continuous and uncon-
strained global optimization applied to DNFs instead of CNFs (Gu et al., 1996). What 
differs from traditional approaches surveyed in Gu et al. (1996) is the Mat_DNF’s cost 
function, which for instance encodes a conjunction as a sum of piecewise multivariate 
linear terms unlike those in Gu et al. (1996) that encode a conjunction by a product of 
some functions in one form or another.

Representing Boolean formulas by matrix is an established idea. Theoretically we 
can represent any Boolean formula in n variables in terms of 2n × 2n or 2n × 2n matrix 
(Cheng and Qi, 2010; Kobayashi and Hiraishi, 2014). Our matricized DNF represen-
tation also requires a matrix C of similar size, for example 2n−1 × 2n to represent the 
n-parity function. The technique of learning and outputting Boolean formulas repre-
sented by matrix has already been applied to learning AND/OR BNs in Sato and Kojima 
(2021), but with different purposes. Sato and Kojima (2021) aims at finding useful logi-
cal patterns in the biological data whereas DNFs in this paper are learned to verify or 
suggest BNs.

Mat_DNF is a simple neuro-symbolic system that explicitly represents DNFs. From 
this neuro-symbolic viewpoint, we notice several NNs have been proposed that can 
learn DNFs (Towell and Shavlik, 1994; Payani and Fekri, 2019; Katzir et  al., 2021). 
However, they all implicitly embed DNFs in their NN architecture. In KBANN-net 
(Towell and Shavlik, 1994), for example, a conjunction containing k literals is encoded 
as a neuron represented by a tree with k leaves, each having a link weight � such as 4 for 
positive literal and −� for negative one, and the neuron is activated when k ⋅ � exceeds 
bias = (k − 1∕2) ⋅ � . In Neural Logic Networks (Payani and Fekri, 2019), conjunctions 
are represented by a product of linear functions of the form 1 − m(1 − x) where 0 < m < 1 
and embedded in a neural network isomorphically to a DNF. In Net-DNF (Katzir et al., 
2021), a trainable AND function is used: AND(x) = tanh((c ∙ L(x)T ) − ‖c‖1 + 1.5) where 
L(x) = tanh(xTW + b) to encode conjunctions. As a result, they need an extra process to 
reconstruct a DNF from the learned parameters.

There are logical approaches to BN learning (Inoue et al., 2014; Tourret et al., 2017; 
Chevalier et  al., 2019; Gao et  al., 2022). Logically our work can be considered as a 
matricized version of “learning from interpretation transition” in logic programming in 
which a BN is represented by a propositional normal logic program (Inoue et al., 2014; 
Gao et al., 2022). The most related work is NN-LFIT proposed by Tourret et al. (2017) 
which performs two-stage DNF learning. First a single layer feed-forward NN is trained 
by state transition data. Then learned parameters irrelevant to the output are filtered out 
and DNFs are extracted from the remaining parameters. However since their perfor-
mance evaluation is based on error rate of learned rules, not recovery rate of the learned 
DNFs like ours, direct comparison is difficult.
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8 � Conclusion

We proposed a simple feed-forward neural network Mat_DNF for the end-to-end learn-
ing of Boolean functions. It learns a Boolean function and outputs a matricized DNF 
realizing the target function. It searches for a DNF as a root of a non-negative cost func-
tion by minimizing the cost function to zero. We also established a new connection 
between neural learning and logical inference. We proved the equivalence between DNF 
learning by Mat_DNF and the inference of interpolants in logic between the positive 
and negative input data. We applied Mat_DNF to learning two synchronous BNs and 
one asynchronous BN from biological literature and empirically confirmed the effec-
tiveness of our approach.

While doing so, we introduced “domain ratio” dr as an indicator of data scarcity and 
defined generalization w.r.t. dr. By examining the generalizability of DNFs learned from 
scarce data while varying dr, we discovered two operations, noise-expansion (expanding 
input vectors with noise vectors) and over-iteration (continuing learning after learning 
error reaches zero), can considerably improve generalizability by shifting the choice of a 
learned DNF. These two operations explain high recovery rate of original DNFs in our BN 
learning experiments.

Future work includes a reimplementation of Mat_DNF by GPUs, the refinement of 
noise-expansion and over-iteration and pursuing the idea of binary classifier as logical 
interpolant.
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