
Vol.:(0123456789)

Machine Learning (2023) 112:2821–2843
https://doi.org/10.1007/s10994-023-06346-5

1 3

Differentiable learning of matricized DNFs and its application
to Boolean networks

Taisuke Sato1  · Katsumi Inoue1

Received: 6 June 2022 / Revised: 4 April 2023 / Accepted: 8 May 2023 /
Published online: 21 June 2023
© The Author(s) 2023

Abstract
Boolean networks (BNs) are well-studied models of genomic regulation in biology where
nodes are genes and their state transition is controlled by Boolean functions. We propose
to learn Boolean functions as Boolean formulas in disjunctive normal form (DNFs) by an
explainable neural network Mat_DNF and apply it to learning BNs. Directly expressing
DNFs as a pair of binary matrices, we learn them using a single layer NN by minimizing
a logically inspired non-negative cost function to zero. As a result, every parameter in the
network has a clear meaning of representing a conjunction or literal in the learned DNF.
Also we can prove that learning DNFs by the proposed approach is equivalent to infer-
ring interpolants in logic between the positive and negative data. We applied our approach
to learning three literature-curated BNs and confirmed its effectiveness. We also examine
how generalization occurs when learning data is scarce. In doing so, we introduce two new
operations that can improve accuracy, or equivalently generalizability for scarce data. The
first one is to append a noise vector to the input learning vector. The second one is to con-
tinue learning even after learning error becomes zero. The first one is explainable by the
second one. These two operations help us choose a learnable DNF, i.e., a root of the cost
function, to achieve high generalizability.

Keywords  Boolean function · DNF · Boolean network · Neural network · Generalization

Editors: Alireza Tamaddoni-Nezhad, Alan Bundy, Luc De Raedt, Artur d’Avila Garcez, Sebastijan
Dumančić, Cèsar Ferri, Pascal Hitzler, Nikos Katzouris, Denis Mareschal, Stephen Muggleton, Ute
Schmid.

 *	 Taisuke Sato
	 taisukest@gmail.com

	 Katsumi Inoue
	 inoue@nii.ac.jp

1	 National Institute of Informatics, 2‑1‑2 Hitotsubashi, Chiyoda‑ku, Tokyo 101‑8430, Japan

http://orcid.org/0000-0001-9062-0729
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-023-06346-5&domain=pdf

2822	 Machine Learning (2023) 112:2821–2843

1 3

1  Introduction

Boolean networks (BNs) are a simple yet effective model of gene regulatory networks
where nodes are genes and their state transition is controlled by Boolean functions (Kauff-
man, 1969). They have been studied mathematically (Cheng and Qi, 2010; Kobayashi and
Hiraishi, 2014), logically in AI (Inoue et al., 2014; Tourret et al., 2017; Chevalier et al.,
2019; Gao et al., 2022) and from the viewpoint of deep learning (Zhang et al., 2019). Their
learning is reduced to learning Boolean functions from a set of input–output pairs and can
be carried out for example by the REVEAL algorithm (Liang et al., 1998) or by the BestFit
extension algorithm (Lähdesmäki et al., 2003).

In this paper, we propose a new approach to learning Boolean functions. We introduce a
simple ReLU neural network (NN) called Mat_DNF that learns Boolean functions and out-
puts Boolean formulas in disjunctive normal form (DNFs). We represent a DNF by a pair
(C,D) of binary matrices where C stands for conjunctions and D a disjunction respectively.
Mat_DNF learns a matricized DNF (C,D) as network parameters from the learning data by
minimizing a non-negative cost function J(C,D) to zero. As a result, every network param-
eter in Mat_DNF has a clear meaning of (potentially) denoting a literal or a conjunction
(disjunct1) in the learned DNF.

Although there exist several ways to represent Boolean functions such as decision trees
(Oliveira and Sangiovanni-Vincentelli, 1993), polynomial threshold functions (Hansen and
Podolskii, 2015), Boolean circuits (Malach and Shalev-Shwartz, 2019) and support vector
machines (Mixon and Peterson, 2015), we choose DNFs for two reasons: one is explain-
ability and the other is to relate the learning process to logical inference. Explainability is
guaranteed as our network parameters directly represent a matricized DNF. Moreover since
the learned output is a DNF, exploring the logical relationship between the learning data
and the learned DNF becomes possible and we find that the learned DNF is what is called
an interpolant in logic (Craig, 1957) interpolating between the positive and negative input
data, which uncovers a new connection that connects neural learning to symbolic inference.

Boolean function learning can be either discrete or continuous. One group such as SAT
encoding with integer programming (Kamath et al., 1992) and stochastic local search
(Ruckert and Kramer, 2003) works in discrete spaces. The other group uses NNs in con-
tinuous spaces such as simulating Boolean circuits (Malach and Shalev-Shwartz, 2019),
Neural Logic Networks (Payani and Fekri, 2019) and Net-DNF (Katzir et al., 2021). Our
learning is just between the two. Unlike the former, Mat_DNF is differentiable2. Unlike
the latter, it explicitly operates on matricized DNFs, discrete expressions, which are not
implicitly embedded in the neural network architecture.

In the context of BN learning, Mat_DNF offers a robust yet explainable end-to-end
approach as an alternative to previous ones (Liang et al., 1998; Lähdesmäki et al., 2003;

1  For a disjunction A ∨ B , the subformula A (resp. B) is called a disjunct. If A ∨ B is a DNF, each disjunct is
a conjunction of literals. Disjuncts are sometimes called terms.
2  Mat_DNF uses min1(x) = min (x, 1) in stead of ReLU(x) (note min1(x) = 1 − ReLU(1 − x) holds) for
computing disjucntion, which is originated from real-valued Łukasiewicz logic. min1(x) is non-differentia-
ble at x = 1 . However non-differentiable points form a Lebesgue measure zero set and the probability of hit-
ting a non-differentiable point in learning is zero. So practically the non-differentiability of min1(x) causes
no problem. Theoretically the subgradient method may be usable in a special case. There are other types of
differentiable logic and logical operators applicable to them (van Krieken et al., 2022).

2823Machine Learning (2023) 112:2821–2843	

1 3

Inoue et al., 2014; Tourret et al., 2017; Gao et al., 2022). Compared to the REVEAL algo-
rithm (Liang et al., 1998) and the BestFit extension algorithm (Lähdesmäki et al., 2003),
Mat_DNF imposes no limit on the number of function variables. So if there are 18 genes
(Irons, 2009), DNFs in 18 variables are considered. The LF1T algorithm (Inoue et al.,
2014) symbolically learns a BN represented as a ground normal logic program from state
transitions. Generalization is done by resolution. The NN-LFIT algorithm (Tourret et al.,
2017) adopts a two-stage approach that learns features by a feed-forward NN and extracts
DNFs from the learned parameters. D-LFIT (Gao et al., 2022) takes a further elaborated
approach of combining two neural networks to reduce search space. By comparison, Mat_
DNF is a much simpler single layer NN whose learned parameters directly represent a
DNF and there is no need for post processing.

To improve the accuracy of the DNF learned from insufficient data, we introduce two
operations. The first one is “noise-expansion”. It appends a noise vector to the input learn-
ing vector.3 The second one is “over-iteration” which keeps learning even after learning
error becomes zero. Since adding a noise vector causes extra steps of parameter update
while moving around local minima of the cost function J , the net effect of the first one is
attributable to the second one. The fact that these two operations can considerably improve
accuracy means that the choice of a root of the cost function J(C,D) = 0 , or more generally
the choice of a local minimum significantly affects accuracy and generalizability.

Finally we confirm the effectiveness of our approach through three learning experi-
ments with literature-curated BNs (Fauré et al., 2006; Irons, 2009; Krumsiek et al., 2011).
We applied Mat_DNF to learning data generated from these BNs to see if Mat_DNF can
recover the original DNFs in BNs. For the first two synchronous BNs (Fauré et al., 2006;
Irons, 2009), the recovery rate is high. By detailed analysis of the learning results, it is sug-
gested that this high recovery rate is due to the effect of over-iteration caused by implicit
noise-expansion. However, the third asynchronous BN (Krumsiek et al., 2011; Ribeiro
et al., 2021) presents a much more difficult case and only six DNFs are completely recov-
ered out of 11 original DNFs, though this result is comparable to that of rfBFE (Gao et al.,
2018), one of the state-of-the-art BN learning algorithms.

Thus our contributions are three fold. First a proposal of new approach to the end-to-
end learning of Boolean functions by an explainable single layer NN Mat_DNF together
with its application to BN learning, second the establishment of the equivalence between
neural learning of DNFs by Mat_DNF and symbolic inference of DNFs as interpolants
between the positive and negative data and third the introduction of two new operations,
noise-expansion and over-iteration, that can improve accuracy by shifting the choice of a
local minimum.

In what follows, after a preliminary section, we introduce Mat_DNF in Sect. 3. We
then prove the relationship between the learning by Mat_DNF and the inference of inter-
polants in logic in Sect. 4. Section 5 examines the behavior of Mat_DNF w.r.t. insufficient
learning data and introduces noise-expansion and over-iteration that improve accuracy.
Section 6 reports three BN learning experiments and Sect. 7 discusses related work. Sec-
tion 8 is the conclusion.

3  In this paper, noise does not mean classification noise but irrelevant bits in the learning data that disturb
Boolean function learning.

2824	 Machine Learning (2023) 112:2821–2843

1 3

2 � Preliminaries

Throughout this paper, bold italic capital letters such as A stand for matrices and so do
bold italic lower case letters such as a for vectors. We equate a one-dimensional matrix
with a vector. The i-th element of a is designated by a(i) and the i, j-th element of A by
A(i, j) . Given two m × n matrices A and B , [A;B] represents the 2m × n matrix of A stacked
onto B . ‖a‖1 =

∑
i ∣ a(i) ∣ denotes the 1-norm of a and ‖A‖F the Frobenius norm of A . Let

a and b be n dimensional vectors. Then (a ∙ b) stands for their inner product (dot product)
and a⊙ b their Hadamard product, i.e., (a⊙ b)(i) = a(i)b(i) for i(1 ≤ i ≤ n) . For a scalar
� , (a)≥� denotes a binary vector such that (a)≥�(i) = 1 if a(i) ≥ � and (a)≥�(i) = 0 other-
wise for i(1 ≤ i ≤ n) . Similarly 1 − a denotes the complement of a , i.e. (1 − a)(i) = 1 − a(i)
for i(1 ≤ i ≤ n) . These notations naturally extend to matrices like (A)≥� and 1 − A .
min1(x) = min (x, 1) is a function returning the lesser of 1 and x. min1(A) is the compo-
nent-wise application of min1(x) to A . We implicitly assume that all dimensions of vectors
and matrices in various expressions are compatible. Let d1 ∨⋯ ∨ dh be a DNF in n vari-
ables. If every disjunct di is a conjunction of n distinct literals, it is said to be full. For a set
S, ∣ S ∣ stands for the number of elements in S.

3 � Learning DNFs in vector spaces

3.1 � Evaluating matricized DNFs

Let � = (x1 ∧ x2) ∨ (x1 ∧ ¬x3) be a DNF in three variables. � has two disjuncts (x1 ∧ x2)
and (x1 ∧ ¬x3) . We represent � by a pair (C,D) of binary matrices:

 x1 x2 x3 ¬x1 ¬x2 ¬x3

 C =

[
1 1 0 0 0 0

1 0 0 0 0 1

]
 D = [1 1]

As can be seen, each row of C represents a disjunct (conjunction of literals) of
� . For example, the first row of C represents the first disjunct (x1 ∧ x2) by setting
C(1, 1) = C(1, 2) = 1 . D on the other hands represents the choice of a conjunction as a dis-
junct; in the current case, both disjuncts in C are chosen as disjunct of � as designated by
D = [1 1] . If D = [1 0] , � will contain only the first disjunct (x1 ∧ x2) in C . Generally a
DNF � in n variables with at most h disjuncts is represented by an h × 2n binary matrix C
and a 1 × h binary matrix D . By default, we consider a DNF � and its matrix representation
(C,D) exchangeable and call (C,D) matricized DNF �.

Now we describe how � is evaluated as a Boolean function �(x) over its domain
I0 = {1, 0}n of bit sequences. Each x ∈ I0 is equated with a binary column vector called
“interpretation vector” representing an interpretation (assignment) such that a variable xj
( 1 ≤ j ≤ n ) is mapped to x(j) ∈ {1, 0} . Henceforth for convenience we treat I0 as an n × 2n
binary matrix packed with such 2n possible interpretation vectors and specifically call it the
domain matrix for n variables.

Let x be an interpretation vector in I0 . A matricized DNF � = (C(h × 2n),D(1 × h)) is
evaluated by x as follows. First compute a column vector N = C[(1 − x);x] . N(j) ( 1 ≤ j ≤ h )

2825Machine Learning (2023) 112:2821–2843	

1 3

denotes the number of literals contained in the j-th conjunction of C and falsified by x , and
hence min1(N)(j) = 0 holds if-and-only-if the j-th conjunction is false in x . Next compute
a column vector M = 1 − min1(N) which is the bit inversion of min1(N) and M(j) gives
the truth value ∈ {0, 1} of the j-th conjunction in C . Finally compute a scalar V = DM . It
denotes the number of disjuncts in � satisfied by x . Hence (V)≥1 ∈ {0, 1} gives the truth
value of � evaluated by x . Write x ⊧ 𝜑 when � is true in x , i.e. x satisfies � . In fact we have
x ⊧ 𝜑 if-and-only-if (V)≥1 = 1.

Write C = [CP
C

N] where CP(h × n) (resp. CN(h × n) ) is a submatrix representing posi-
tive (resp. negative) occurrences of variables in � . Then the whole evaluation process is
described by one line (1):

where �(x) denotes the truth value ∈ {0, 1} of � as a Boolean function evaluated by x .
This notation is naturally extended to a set of interpretation vectors like �(I0) . 1h and 1n are
all-one vectors of length h and n respectively. We rewrite (1) to (2). What the latter tells
us is that our evaluation process is exactly a forward pass of a single layer ReLU network
consisting of a linear output layer and a hidden layer with a weight matrix CP − C

N and a
bias vector 1h − C

P
1n . We name this ReLU network Mat_DNF. It is a simple NN special-

ized for DNFs derived from the evaluation process of a DNF where the disjunction x ∨ y is
replaced by min1(x + y) as in Łukasiewicz’s many valued logic.

3.2 � Learning DNFs by Mat_DNF

By adding a backward pass to the equation (1), Mat_DNF can learn Boolean functions.
Here we describe how Mat_DNF learns them. Let f be a target Boolean function in n vari-
ables and I0 = [x1 ⋯ x2n] the domain matrix for n variables. In learning, we are given a
submatrix I1(n × l) = [xi1 ⋯ xil

] (l ≤ 2n) of I0 . I1 is mapped by f to a 1 × l row vector
I2 = f (I1) = [f (xi1)⋯ f (xil)] . (I1, I2) = (I1, f (I1)) is called an input–output pair for f and
I1 its input domain. Learning a DNF � here thus means a learner receives an input–out-
put pair (I1, I2) = (I1, f (I1)) for a target Boolean function f and returns a DNF � such that
�(I1) = I2 . Mat_DNF receives (I1, I2) and returns a matricized DNF � such that �(I1) = I2
when it stops with learning error = 0.

Let C̃ and D̃ be real matrices. They are relaxation versions of C and D . Intro-
duce max0(x) = max(x, 0) (ReLU), Ñ = C̃[(1 − I1);I1] , M̃ = 1 − min1(Ñ) , Ṽ = D̃M̃ ,
Y = ‖�C⊙ (1 − �C)‖2

F
 and Z = ‖�D⊙ (1 − �D)‖2

F
 . Then define a non-negative cost function

J(C̃, D̃) by

(1)�(x) =(D(1h − min1(C[(1n − x);x])))≥1

(2)

=(D(1h − min1((C
N − C

P)x + C
P
1n)))≥1

=(D(ReLU((CP − C
N)x + 1h − C

P
1n)))≥1

becauseReLU(x) = max(x, 0) = 1 − min1(1 − x)

2826	 Machine Learning (2023) 112:2821–2843

1 3

The first term (I2 ∙ (1 − min1(Ṽ))) is a non-negative scalar and deals with the case of
f (xij) = I2(ij) = 1 ( 1 ≤ j ≤ l ). Likewise the second term ((1 − I2) ∙ max0(Ṽ)) is non-nega-
tive and takes care of the case of f (xij) = I2(ij) = 0 . Y and Z are penalty terms to make C̃
and D̃ binary respectively.

Proposition 1  J(C̃ , D̃ ) = 0 if-and-only-if C̃ and D̃ are binary matrices representing a DNF
� such that �(I1) = I2.

Proof  We prove only-if part. The converse is obvious. Suppose J = J(C̃,D̃ ) = 0. Every term
in (3) is zero. Y = Z = 0 immediately implies C̃ and D̃ are binary. Let � be a DNF repre-
sented by them. The first term deals with the case of I2(ij) = f (xij) = 1 (1 ≤ j ≤ l) . It is a
sum of non-negative summands of the form (1 − min1(Ṽ(ij))) . Hence J = 0 implies
min1(Ṽ(ij)) = 1 , i.e. � is true in xij ∈ I1 when I2(ij) = 1 . The second term is dual to the first
term, dealing with the case of I2(ij) = 0 . Similarly to the first term, we can prove that � is
false in xij ∈ I1 when I2(ij) = 0 . By combining the two, we conclude that � gives I2 when
evaluated by I1 , i.e., �(I1) = I2 . 	� ◻

Learning by Mat_DNF is carried out based on Proposition 1 by minimizing J until J = 0
using gradient descent. C̃ and D̃ are iteratively updated by their Jacobians, JC̃

a
 for C̃ and JD̃

a
 for

D̃ , for example like C̃ = C̃ − �JC̃a where 𝛼 > 0 is a learning rate. To compute the Jacobians, we
introduce �W = −(�V)≤1 ⊙ I2 + (�V)≥0 ⊙ (1 − I2) . Then JC̃

a
 and JD̃

a
 are computed by (4).

These Jacobians are derived as follows. We first derive JC̃
a
 . Let C̃pq = C̃(p, q) be an arbi-

trary element of C̃ . Put ΔY = (1 − 2�C)⊙ Y . We have

where Ipq is a zero matrix except for the p, q-th element which is 1. We
use (A ∙ B) =

∑
i,j A(i, j)B(i, j) to denote the dot product of A and B . Note

(A ∙ (B⊙ C)) = ((B⊙ A) ∙ C) and (A ∙ (BC)) = ((BT
A) ∙ C) = ((ACT) ∙ B) hold. Then put

�Y = (ΔY ∙ Ipq) and compute the partial derivative of J w.r.t. C̃pq as follows:

(3)J =(I2 ∙ (1 − min1(Ṽ))) + ((1 − I2) ∙ max0(Ṽ)) + (1∕2)Y + (1∕2)Z.

(4)
J
C̃

a
=((−(�N)≤1)⊙ (�D

T
�W))[(1 − I1);I1]

T + (1 − 2�C)⊙ Y

J
D̃

a
=�W �M

T
+ (1 − 2�D)⊙ Z

𝜕 �M∕𝜕�Cpq = − 𝜕 min1(
�N)∕𝜕�Cpq

= − (�N)≤1 ⊙ (Ipq(1 − [I1;(1 − I1)]))

2827Machine Learning (2023) 112:2821–2843	

1 3

Since p, q are arbitrary, we have

Next we derive JD̃
a
= 𝜕J∕𝜕�D similarly. Put ΔZ = (1 − 2�D)⊙ Z and �Z = (ΔZ ∙ Ipq) . Then

for arbitrary p,q, we see

So we reach JD̃
a
= 𝜕J∕𝜕�D = �W �M

T
+ ΔZ . In actual learning, we use an adaptive gradient

method Adam (Kingma and Ba, 2015) instead of gradient descent with a constant learning
rate.

3.3 � Learning algorithm

Given an input–output pair (I1, I2) such that f (I1) = I2 for the target Boolean function f,
Mat_DNF returns a matricized DNF � = (C,D) giving �(I1) = I2 , basically by running
Algorithm 1 until J = 0.

𝜕J∕𝜕�Cpq

= (I2 ∙ (−(
�V)≤1 ⊙ (𝜕�V∕𝜕�Cpq))) + ((1 − I2) ∙ ((

�V)≥0 ⊙ (𝜕�V∕𝜕�Cpq))) + 𝛿Y

= ((−(�V)≤1 ⊙ I2) ∙ (𝜕
�V∕𝜕�Cpq)) + (((�V)≥0 ⊙ (1 − I2)) ∙ (𝜕

�V∕𝜕�Cpq)) + 𝛿Y

= ((−(�V)≤1 ⊙ I2 + (�V)≥0 ⊙ (1 − I2)) ∙ (
�D(𝜕 �M∕𝜕�Cpq))) + 𝛿Y

= ((−(�N)≤1 ⊙ (�D
T
(−(�V)≤1 ⊙ I2 + (�V)≥0 ⊙ (1 − I2))))(1 − [I1;(1 − I1)])

T ∙ Ipq)

+ (ΔY ∙ Ipq)

= (((−(�N)≤1 ⊙ (�D
T
�W))(1 − [I1;(1 − I1)])

T + ΔY) ∙ Ipq)

J
C̃

a
=𝜕J∕𝜕�C

=(−(�N)≤1 ⊙ (�D
T
�W))(1 − [I1;(1 − I1)])

T + ΔY

where �W = −(�V)≤1 ⊙ I2 + (�V)≥0 ⊙ (1 − I2).

𝜕J∕𝜕�Dpq =(I2 ∙ −𝜕 min1(
�V)∕𝜕�Dpq) + (1 − I2 ∙ 𝜕 max0(

�V)∕𝜕�Dpq) + 𝛿Z

=((−(�V)≤1 ⊙ I2) + (�V)≥0 ⊙ (1 − I2) ∙ 𝜕
�V∕𝜕�Dpq) + 𝛿Z

=(((−(�V)≤1 ⊙ I2) + (�V)≥0 ⊙ (1 − I2))
�M

T
∙ Ipq) + 𝛿Z

=(�W �M
T
∙ Ipq) + (ΔZ ∙ Ipq)

=((�W �M
T
+ ΔZ) ∙ Ipq).

2828	 Machine Learning (2023) 112:2821–2843

1 3

We however take a practical approach of thresholding (C̃, D̃) to binary (C , D) even
before J = 0 is reached assuming J is small and C̃, D̃ are close to binary matrices. In more
detail, the inner q-loop in Algorithm 1 below iteratively updates (C̃, D̃) at most max_itr
times while thresholding them optimally to binary (C,D) (line 6,7,8)4 and computing
learning_error using them. If � = (C,D) achieves learning_error = 0 , it exits from the
q-loop and p-loop and returns � . If learning_error > 0 happens even after max_itr itera-
tions, it restarts the next q-loop with (C̃, D̃) perturbated by (5) where Δa and Δb are matri-
ces of the same size as C̃ and D̃ respectively. They are comprised of elements sampled
from the standard normal distribution N(0, 1) . The perturbated C̃ and D̃ are used as initial
parameters in the next loop (line 16). This perturbation is intended to escape from a local
minimum.

(5)
C̃0 =

√
2∕(h ⋅ 2n)Δa + 0.5, C̃ = 0.5 ⋅ (C̃ + C̃0)

D̃0 =
√
2∕hΔb + 0.5, D̃ = 0.5 ⋅ (D̃ + D̃0)

4  For example, C̃ is thresholded into (C̃)≥� where � is between the maximum and minimum elements of C̃ .
We choose the best � by trying 10 different � ’s that gives the least learning_error.

2829Machine Learning (2023) 112:2821–2843	

1 3

Restart is allowed at most max_try times. Note that Mat_DNF possibly fails to achieve
learning_error = 0 within given h, max_itr and max_try,5 but when Mat_DNF returns a
matricized DNF � = (C,D) with learning_error = 0, it is guaranteed that J(C,D ) = 0 and
�(I1) = I2 hold.

4 � Learning as logical interpolation: a logical perspective

Here we characterize the learning of DNF � by Mat_DNF from a logical perspective. Write
⊧ 𝜙1 ⇒ 𝜙2 if �1 ⇒ �2 is a tautology. If we also have ⊧ 𝜙2 ⇒ 𝜙3 , �2 is called an interpolant
between �1 and �3 . Roughly, Craig’s interpolation theorem (Craig, 1957) in first order logic
states the existence of such interpolant. We prove that our learning of � from an input–out-
put pair (I1, I2) such that �(I1) = I2 is logically viewed as an inference of an interpolant �.6

Suppose (I1, I2) is an input–output pair for some n-variable Boolean function f and
f (I1) = I2 holds. We divide the input binary matrix I1(n × l) into two submatrices IP

1
(n × lP)

and IN
1
(n × lN) where lP + lN = l . IP

1
 represents the positive (resp. negative) data and if

x ∈ I
P

1
 (resp. x ∈ I

N

1
 ), f (x) = 1 (resp. f (x) = 0 ) holds.

We consider IP1 as full DNF, DNF(IP
1
) in notation, in the following way. Let x be an inter-

pretation vector in I1 . Introduce conj(x) denoting a conjunction l1 ∧⋯ ∧ ln of literals such
that lj = xj if x(j) = 1 , else lj = ¬xj (1 ≤ j ≤ n) . For example if x = [1 0 1]T ,
conj(x) = x1 ∧ ¬x2 ∧ x3 . Put DNF(IP

1
) =

⋁
x∈IP

1
conj(x) and call it the positive DNF for

(I1, I2) . Likewise we define DNF(IN
1
) =

⋁
x∈IN

1
conj(x) and call it the negative DNF for

(I1, I2) . For simplicity, we equate DNF(IP
1
) and DNF(IN

1
) respectively with the positive data

I
P

1
 and negative data IN

1
.

Proposition 2  Let (I1, I2) be an input–output pair for a Boolean function f such that
f (I1) = I2 . Also let DNF(IP

1
) and DNF(IN

1
) respectively be the positive and negative DNF

for (I1, I2) . For a DNF � , �(I1) = I2 if-and-only-if � is an interpolant between DNF(IP
1
)

and ¬ DNF (IN
1
).

Proof  We first prove the only-if part. Suppose �(I1) = I2 . Let i be an interpretation vector
over n variables satisfying DNF(IP

1
) . It satisfies some disjunct conj(x ) in DNF(IP

1
) . Since

conj(x ) is a conjunction of n distinct literals, the fact that i satisfies conj(x ) implies i = x as
vector. On the other hand, we have �(I1) = I2 = f (I1) by assumption and hence �(x) = f (x)
as x ∈ I

P

1
⊆ I1 . We also have f (x) = 1 as x ∈ I

P

1
 . Putting the two together, we conclude

�(i) = �(x) = f (x) = 1 . Since i is arbitrary and satisfies � , ⊧ DNF(IP
1
) ⇒ 𝜑 is proved.

⊧ 𝜑 ⇒ ¬DNF(IN
1
) is proved similarly by proving ⊧ DNF(IN

1
) ⇒ ¬𝜑.

To prove the if-part, recall that an interpolant � satisfies ⊧ DNF(IP
1
) ⇒ 𝜑 and

⊧ DNF(IN
1
) ⇒ ¬𝜑 . So if x ∈ I

P

1
 (resp. x ∈ I

N

1
 ), then DNF(IP

1
)(x) = 1 and hence �(x) = 1

holds (resp. then DNF(IN
1
)(x) = 1 and hence �(x) = 0 holds). In other words, if x ∈ I

P

1
 ,

�(x) = 1 = f (x) and if x ∈ I
N

1
 , �(x) = 0 = f (x) . So we reach �(I1) = f (I1) = I2 . 	� ◻

5  This happens, for example, when learning data is inconsistent and there is no Boolean function satisfying
the learning data. It also can happen when the target function is difficult to learn as the case of the n-parity
function with large n.
6  Craig’s interpolation theorem is the one for first-order logic but its propositional version has long been
practically applied to model checking (Vizel et al., 2015; McMillan et al., 2018)

2830	 Machine Learning (2023) 112:2821–2843

1 3

By Proposition 2, we can say that � returned by Mat_DNF with learning_error = 0 is
an interpolant between DNF(IP

1
) and ¬DNF(IN

1
) . We can also say by combining Proposi-

tion 1 and 2 that finding a root of J(C,D) = 0 defined by (3), learning a DNF � satisfying
�(I1) = I2 and inferring an interpolant � between DNF(IP

1
) and ¬DNF(IN

1
) are one and the

same thing, they are all equivalent.
The recognition of this equivalence has some interesting consequences. The first one

is that from the viewpoint of classification, learning by Mat_DNF consists of learning the
feature space of conjunctions C̃ and its linear separation by a hyperplane specified by a
continuous disjunction D̃ as shown in the equation (2). Hence it seems possible to modify
Mat_DNF so that it can search for a “max-margin interpolant” corresponding to the max-
merging hyperplane, which is expected to generalize well. Sharma et. al already proposed
to use SVM to infer interpolants (Sharma et al., 2012) where SVM is applied to the pre-
defined feature space. In our “max-margin interpolant” inference, if realized, the feature
space itself will be learned by Mat_DNF.

The second one is the possibility of a neural end-to-end refutation prover. Let S be a set
of ground clauses. Also let S = S1 ∪ S2 be any split of S such that atom(S1) ∩ atom(S2) ≠ �
where atom(Si) denotes the set of atoms in Si ( i = 1, 2 ). It can be proved that S is unsatisfi-
able if-and-only-if there is an interpolant � between S1 and ¬S2 (proof omitted as it is out of
the scope of this paper (Vizel et al., 2015; McMillan et al., 2018)). We can apply Mat_DNF
to infer this � assuming that S1 is positive data ( � is true over S1 ) and S2 is negative data ( �
is false over S2 ) respectively.

The third one concerns the generalizability of the DNF � learned by Mat_DNF.
It is observed that � tends to overgeneralize positive data IP

1
 in the input data. That is,

⊧ DNF(IP
1
) → 𝜑 holds but sometimes the degree of generalization by logical implication

measured by the distance between DNF(IP
1
) and � is too high, which adversely affects the

accuracy of � . Later in Sect. 5.5, we propose a way of controlling the distance between
DNF(IP

1
) and � and show that the accuracy of � is actually improved.

5 � Learning random DNFs

5.1 � Performance measures and generalization

First we define some performance measures concerning Mat_DNF to clarify the meaning
of generalization. Let f be a target Boolean function in n variables, I0 the domain matrix for
n variables and (I1, f (I1)) ( I1 ⊆ I0 ) an input–output pair for f supplied as learning data for
Mat_DNF. We introduce “domain ratio” dr = ∣I1∣

∣I0∣
 ( 0 ≤ dr ≤ 1 ) where ∣ I ∣ denotes the num-

ber of interpretation vectors in I . Domain ratio dr is the relative size of learning data to the
whole domain data. In what follows, purely for convenience, we use dr even when dr ⋅ ∣ I0 ∣
is not an integer. In such case, it means I1 contains the ⌊dr⋅ ∣ I0 ∣⌋ number of interpretation
vectors of I0.

Suppose we have obtained a DNF � = (C,D) with learning_error = 0 by run-
ning Mat_DNF on (I1, f (I1)) . Compute �(I0) = (D(1 − min1(C[(1 − I0);I0])≥1
(see (1)) and exact_error = ‖f (I0) − �(I0)‖1 which is the number of different bits
between f (I0) and �(I0) . Introduce acc_DNF, the “exact accuracy” of � , by defining
acc_DNF = 1 − exact_error∕2n . Since learning_error is zero, � perfectly reproduces
f (I1) and hence it follows that acc_DNF = dr + (1 − dr) ⋅ acc_pred where acc_pred
is the prediction accuracy of � over the unseen domain data I0⧵I1 not used for learning.

2831Machine Learning (2023) 112:2821–2843	

1 3

Consequently we have acc_pred = (acc_DNF − dr)∕(1 − dr) . Thus prediction accuracy
and exact accuracy are mutually convertible. Finally we define generalization. Introduce
acc_dr = dr + 0.5 ⋅ (1 − dr) = 0.5 ⋅ (1 + dr) which is the expected accuracy of a base line
learner learning data with domain ratio dr that completely memorizes learning data (dr)
and makes a random guess on unseen data ( 0.5 ⋅ (1 − dr) ). We say generalization occurs
when acc_DNF > acc_dr = 0.5 ⋅ (1 + dr) , or equivalently acc_pred > 0.5 holds (because
acc_DNF − acc_dr = (1 − dr) ⋅ (acc_pred − 0.5)).

5.2 � Measuring accuracy for random DNFs

We conduct a learning experiment with small random DNFs to examine the learning
behavior of Mat_DNF w.r.t. data scarcity controlled by domain ratio dr and see how gen-
eralization occurs7.8 We first randomly generate a DNF �0 in n = 5 variables that consists
of three disjuncts, each containing at most 5 lals a half of which is negative on average. We
also generate a domain matrix I0(n × 2n) for n = 5 variables. Next suppose a domain ratio
dr is given. For this dr, we generate a binary matrix I1(n × l) consisting of l = 2n ⋅ dr inter-
pretation vectors randomly sampled without replacement from I0 . Then we run Mat_DNF
on the learning data (I1,�0(I1))

9 and obtain a DNF �1 that perfectly classifies the learning
data, i.e. �1(I1) = �0(I1) and compute the exact accuracy acc_DNF of �1 . We repeat this
process 100 times and obtain the average acc_DNF of �1 against dr.

By varying dr ∈ {0.1,… , 1.0} , we obtain a curve of exact accuracy w.r.t. dr denoted
as acc_DNF in Fig. 1. There acc_dr denotes the expected accuracy of the base line learner
performing only memorization and random guess. Other two curves, acc_DNF_noise and
acc_over, are explained next. We observe that acc_DNF is always (and slightly) above acc_
dr for all dr’s. So this experiment confirms that generalization in our sense actually occurs
and the learned DNF does more than just pure memorization and random guess by detect-
ing some logical pattern.

5.3 � Noise‑expansion and over‑iteration

The acc_DNF_noise and acc_DNF_over curves in Fig. 1 demonstrate that generalization occurs
with a greater degree than acc_DNF, i.e. acc_DNF_noise ≈ acc_DNF_over > acc_DNF
holds at most dr’s. They are obtained by two different operations, acc_DNF_noise by “noise-
expansion” and acc_DNF_over by “over-iteration”, respectively.

The first operation, noise-expansion, means the expansion of an input vector in the
learning data I1 by a random bit vector. For example, a 5 bit input vector x = [0 1 0 1 0]T
in I1 is expanded into a 10 dimensional vector xnoise = [x;n] = [0 1 0 1 0 1 0 0 1 1]T by
appending a random bit vector n = [1 0 0 1 1]T to x . In learning, each x in I1 is expanded

7  All programs used in this paper are written in GNU Octave 4.2.2 and run on a PC with Intel(R)
Core(TM) i7-10700@2.90GHz CPU with 26GB memory. Due to the naive nature of our implementation of
Mat_DNF, the experiment scale is small.
8  We also implemented Mat_DNF by PyTorch and conducted a learning experiment for the 7-parity func-
tion from complete data. We chose the parity function because it is known to be hard to learn. As average
over 5 trials, the PyTorch version took 42.9 s(10.5) on Google Colaboratory (GPU) while the octave version
(CPU) took only 9.6 s(11.5). Although the difference may be due to our naive use of PyTorch, it seems
likely that our matrix-based implementation is suitable for Octave.
9  The learning parameters are set to � = 0.1, max_try = 20, max_itr = 500 and h = 1000.

2832	 Machine Learning (2023) 112:2821–2843

1 3

into xnoise and then used for learning. Although each input vector in I1 gets longer
(length doubled) by noise-expansion, the number of input vectors remains the same.
It simply means Mat_DNF has an additional task of identifying those variables in an
input vector xnoise that are relevant to the output, hereby causing additional update steps
in Algorithm 1. So from the viewpoint of minimizing J to zero, the net effect of noise-
expansion is to force Mat_DNF to find another root of J even when J = 0 is reached in
the original learning task. This point is made clear by comparing with “over-iteration”
explained below.

The second operation, over-iteration, forces Mat_DNF to skip a root of J = 0 found first
and keep learning. Only after some prespecified extra steps (for example extra_update =
20 in the case of acc_DNF_itr in Fig. 1) have been made, Mat_DNF is allowed to return
when a root of J is found again. Intuitively, this operation have the effect of avoiding a root
near the initializing point that often overfits the learning data and exploring a root in the
relatively flat landscape of J . In other words, over-iteration searcher for a root of J closer to
a global minimum such as the target DNF.

Observe that as the acc_DNF_noise and acc_DNF_over curves in Fig. 1 show, not only
both noise-expansion and over-iteration improve exact accuracy, or equivalently prediction
accuracy, but with a similar degree of improvement. Hence it seems reasonable to hypoth-
esize that noise-expansion causes over-iteration and over-iteration causes the improvement
of exact accuracy.

The result of this experiment also indicates the importance of an intentional choice of a
local minimum (choosing a root in our case) which is independently suggested by “flood-
ing” (Ishida et al., 2020) and “grokking” (Power et al., 2021). In flooding, learning is con-
trolled by gradient descent and ascent to keep training error small but non-zero. In grok-
king, learning is continued even after learning accuracy is saturated, and then test accuracy

0 0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

1

domain ratio dr

ac
c

acc_dr
acc_DNF
acc_DNF_noise
acc_DNF_over

Fig. 1   “exact accuracy” of DNF learned with noise-expansion and over-iteration

2833Machine Learning (2023) 112:2821–2843	

1 3

suddenly rises to a high level. Our over-iteration has a similar effect of moving around
local minima in a flat loss landscape, leading to better generalization.

5.4 � The logical relations and over‑iteration

When a learning target is a DNF �0 , we naturally ask a logical question of whether the
consequence relation and equivalence relation between �0 and a learned DNF � hold or
not. We also interested in the distance between them10 because we expect � to be logi-
cally related to �0 when � is close to �0 . So we estimate the probability p_conseq (resp.
p_equiv) of � being a logical consequence of �0 , i.e., ⊧ 𝜑0 ⇒ 𝜑 in notation (resp. � being
logically equivalent to �0 , i.e., ⊧ 𝜑0 ⇔ 𝜑 ) for a 5-variable DNF �0 generated as in the pre-
vious section, together with the average distance between �0 and � by running Mat_DNF
100 times11 and counting the number of runs that make these logical relations hold and
computing the average distance. We obtain Table 1.

In Table 1, distance_itr is the same as distance between the target DNF �0 and a learned
DNF � but obtained by over-iteration with extra_update = 60. The same applies for p_
equiv_itr and p_equiv.

First we can recognize in the table that larger data gives us a more exact solution. That
is, the distance between the target DNF �0 and a learned DNF � monotonically decreases
as dr gets closer to 1. Furthermore the effect of over-iteration is clearly visible. It gets the
learned DNF much closer to the target DNF, from 7.5 to 4.2 at dr = 0.5 for example. In
other words, it chooses a root of the cost function J near the target �0.

Concerning logical relations, observe that p_conseq and p_equiv in Table 1 more or less
monotonically increase as dr increases. So again, larger data gives a bigger chance of the
logical relationship. Second observe that p_conseq, the probability of ⊧ 𝜑0 ⇒ 𝜑 , is rather
high through all dr’s but lowered considerably by over-iteration. Third over-iteration has
the opposite effect on p_equiv, the probability of ⊧ 𝜑0 ⇔ 𝜑 however. It greatly improves
the chance of ⊧ 𝜑0 ⇔ 𝜑 after dr > 0.5 . For example, p_equiv suddenly jumps up from 0.02
to 0.19 at dr = 0.7 and from 0.20 to 0.55 at dr = 0.9 (see bold figures in Table 1). This
positive effect of over-iteration on p_equiv becomes critical when applying Mat_DNF to
Boolean network learning. This is because the primary purpose of our Boolean network

10  The distance between �0 and � in n variables is defined to be the number of interpretation vectors x in
the domain matrix for n variables such that �0(x) ≠ �(x).
11  Learning parameters are � = 0.1, max_try = 20, max_itr = 500 and h = 1000.

Table 1   Domain ratio dr,
distance and the probability
of logical consequence and
equivalence

dr 0.1 0.3 0.5 0.7 0.9 1.0

distance 13.6 11.8 7.5 4.2 1.4 0.0
distance_itr 10.9 6.7 4.2 2.1 0.7 0.0
p_conseq 0.54 0.88 0.94 0.89 0.92 1.0
p_conseq_itr 0.24 0.16 0.30 0.58 0.84 1.0
p_equiv 0.01 0.00 0.03 0.02 0.20 1.0
p_equiv_itr 0.00 0.01 0.06 0.19 0.55 1.0

2834	 Machine Learning (2023) 112:2821–2843

1 3

learning is to recover the original DNFs in the target Boolean network and over-iteration in
this section enhances the chance of discovering such DNFs.

5.5 � Controlling logical generalization

Over-iteration wanders in the search space for a better local minimum. Here we introduce
another more proactive approach for the same purpose based on Proposition 2 in Sect. 4.
This approach has the sense of search direction, away from negative data and toward posi-
tive data, thus making it possible to control the degree of generalization of the learned
DNF.

Let �0 be a target DNF, I0 the domain of �0 , (I1, I2) an input–output pair for learning
where I1 ⊆ I0 and I2 = �0(I1) . Also let DNF(IP

1
) and DNF(IN

1
) respectively be the positive

and negative DNF for (I1, I2) introduced in Sect. 4 associated with the positive data IP
1
 and

negative data IN
1

 in I1.
Our idea is based on the empirical observation that when learning random DNFs form

insufficient data by Mat_DNF, despite the fact that the target DNF �0 and the learned DNF
� are both interpolants between the DNF(IP

1
) and ¬DNF(IN

1
) according to Proposition 2,

their distance to DNF(IP
1
) and DNF(IN

1
) often differs greatly. Since learning data is ran-

domly generated using the target DNF �0 , usually �0 is located (almost) in the middle
between DNF(IP

1
) and DNF(IN

1
) distance-wise. However, it is observed that the learned �

is very close to the negative data DNF(IN
1
) . In other words, due to the learning bias of

Mat_DNF, � tends to overgeneralize positive data by yielding disjuncts outside the original
positive data DNF(IP

1
).

To combat this overgeneralization of positive data by Mat_DNF, we add a special term
Jint to the cost function J to suppress the generation of disjuncts in � . Concretely Jint is com-
puted as follows.

Here IP
0
 is the set of interpretation vectors which, when considered as conjunctions, can be

added to DNF(IP
1
) as disjuncts in the learned � . M̃

P is the truth values of continuous con-
junctions represented by C̃ . D̃M̃

P is the truth values of the continuous DNF (C̃, D̃) evalu-
ated by the interpretation vectors IP

0
 . Minimizing Jint causes minimizing positive elements

in D̃M̃
P sifted out by max0(⋅) to zero, in which case, as M̃

P is non-negative, pushing posi-
tive elements in D̃ to zero, leading to a small number of disjuncts in the thresholded dis-
junction D in � , i.e. a small number of disjuncts in �.

We conduct a learning experiment of the 5-ary random DNF with this penalty term Jint
added to the cost function J in the form of � ⋅ Jint ( � ≥ 0 ) while varying � from 0 to 5.12 We
choose dr = 0.5 and randomly generate a target DNF �0 and the learning data (I1,�0(I1))

I
P

0
=I0 ⧵ I

P

1

Ñ
P
=C̃[(1 − I

P

0
);IP

0
]

M̃
P
=1 − min1(Ñ

p
)

Jint =
∑

max0(D̃M̃
P
)

12  The experimental parameters for one trial are � = 0.1, max_try = 20, max_itr = 500, h = 1000. No over-
iteration is used.

2835Machine Learning (2023) 112:2821–2843	

1 3

as in Sect. 5.2. So half of the complete data necessary for identifying the target �0 is sup-
plied to the learner.

We run Mat_DNF on the learning data until learning error becomes zero and measure
the exact accuracy of the learned DNF � in each learning trial. Table 2 contains figures
averaged over 100 trials13.

Clearly as � gets larger (while ⊧ DNF(IP
1
) → 𝜑 is the same), the distance between the

positive learning data DNF(IP
1
) and the learned DNF � monotonically decreases, which

verifies the effectiveness of the penalty term Jint to manipulate the degree of logical
implication.

On the other hand, the distance between the target �0 and the learned � draws a convex
curve w.r.t. � and � achieves the maximum exact accuracy 0.824 when dist(�0,� ) is the
least 5.6. In other words, we can change the distance between the target DNF and learned
DNF by a parameter � in vector spaces for better generalization.

6 � Learning Boolean networks

We apply Mat_DNF to learning Boolean networks (BNs) introduced by Kauffman (Kauff-
man, 1969) which have been used to model gene regulatory networks in biology. A BN is
biological network where nodes are genes with {0, 1} states and a state transition (activa-
tion of gene expression) of a gene occurs according to a Boolean formula associated with
it. The learning task is to infer Boolean formulas associated with nodes from state tran-
sition data. Due to the general hardness results of learning Boolean formulas (Feldman,
2007), BN learning on a large scale is difficult. We select three BNs of moderate size from
literature for learning, one for mammalian cell cycle from Fauré et al. (2006), one for bud-
ding yeast cell cycle from Irons (2009) and one for myeloid differentiation from Krumsiek
et al. (2011). Learning performance is evaluated in terms of the recovery rate of the origi-
nal DNFs associated with a BN.

6.1 � Learning a mammalian cell cycle BN

In the first learning experiment, we use a synchronous BN for mammalian cell cycle
having 10 nodes (genes) (Fauré et al., 2006) where state transition occurs simulta-
neously for all genes. A state of the BN is represented by a state vector x ∈ {0, 1}10
and a state of each gene_i is described by a Boolean variable xi ( 1 ≤ i ≤ 10 ) and its

Table 2   The effect of J
int

 on the
learned �

Bold numbers indicate the best results in this experiment

� 0.0 0.01 0.05 0.1 0.4 1.0 5.0

dist(DNF(IP
1
) , �) 14.3 12.9 9.6 8.7 3.5 2.5 2.2

dist(�
0
 , �) 7.6 6.5 5.6 5.9 6.3 6.3 5.9

exact accuracy 0.736 0.777 0.824 0.807 0.794 0.802 0.815

13  Recall that for Boolean formulas A, B in n variables, the distance between A and B is given by dist(A,B)
= ∣ {x ∈ I0 ∣ x ⊧ (A ∧ ¬B) ∨ (¬A ∧ B)} ∣ where I0 is the set of 2n interpretation vectors.

2836	 Machine Learning (2023) 112:2821–2843

1 3

state by x(i) ∈ {1, 0} . A state transition of gene_i is controlled by a DNF �i associ-
ated with it, i.e. the next state of gene_i= 1 if �i(x) = 1 , otherwise gene_i= 0 . We
obtain from Fauré et al. (2006) 10 DNFs associated with 10 genes. For example
�6 = (¬x1 ∧ ¬x4 ∧ ¬x5 ∧ ¬x10) ∨ (¬x1 ∧ ¬x4 ∧ x6 ∧ ¬x10) ∨ (¬x1 ∧ ¬x5 ∧ x6 ∧ ¬x10) is asso-
ciated with gene_6.

To see to what degree Mat_DNF can recover the original 10 DNFs, following (Inoue
et al., 2014), we consider �i ( 1 ≤ i ≤ 10 ) as a 10-variable Boolean function and prepare as
learning data a complete input–output pair (I10

0
,�i(I

(10)

0
)) for �i where I(10)

0
 is the domain

matrix for 10 variables containing 1024 interpretation vectors. Then we let Mat_DNF learn
a DNF � from (I(10)

0
,�i(I

(10)

0
))14 and check if � is identical to the original �i . The result is

encouraging. Nine DNFs out of the original 10 DNFs are successfully recovered (modulo
renaming) and the remaining one is logically equivalent to the original DNF.

To understand the origin of this high recovery rate, we pick up a DNF �6 associated
with gene_6 and examine noise-expansion effect on it. We consider �6 as a 5-variable
Boolean function over the domain matrix I(5)

0
 and measure acc_DNF w.r.t. dr. To meas-

ure acc_DNF_noise , we append a 5 dimensional random bit vector to each interpretation
vector in I(5)

0
 . The learning result is shown in Fig. 2 where figures are the average over

100 trials. There we see the acc_DNF curve shows a large improvement in acc_DNF by
noise-expansion compared to the case of Fig. 1. For example it achieves acc_DNF = 0.817
at dr = 0.1, which means on average, given only 3 input–output pairs, Mat_DNF learns by
noise-expansion a DNF that correctly predicts 26 input–output pairs in (I(5)

0
,�6(I

(5)

0
)) out of

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

domain ratio dr

ac
c

acc_dr
acc_DNF
acc_DNF_noise

Fig. 2   “exact accuracy” of DNF learned from �
6
 with noise-expansion

14  Learning parameters are set to � = 0.1, max_itr = 500, max_try = 50 and h = 1000.

2837Machine Learning (2023) 112:2821–2843	

1 3

32 possible tests. Such high accuracies plotted in Fig. 2 strongly suggests that noise-expan-
sion helps Mat_DNF find a DNF with high generalizability, or the original DNF. Also we
can point out that the big difference in the effect of noise-expansion between Fig. 1 and
Fig. 2 might be attributed to the nature of the learning target �6 which is not randomly gen-
erated but comes from biological literature.

Then look at the learning experiment of mammalian cell cycle BN again. Note that
although �6 is a function of 5 variables {x1, x4, x5, x6, x10} , it is treated as a function of
10 variables {x1,… , x10} in the experiment. So the remaining 5 variables {x2, x3, x,x8, x9}
behave as noise bits in learning just like noise-expansion. This implicit noise-expansion
happens to the learning of all DNFs {�1,… ,�10} because they contain only at most 6 var-
iables. Moreover, since they are not random DNFs, noise-expansion can be particularly
effective as shown in Fig. 2, and hence it is not unreasonable to assume that Mat_DNF is
likely to able to learn the original DNFs, which explains the high recovery rate of the origi-
nal DNFs.

We conclude this section by looking at DNFs learned from insufficient data to develop
an insight into the syntactic aspect of learned DNFs and their logical relationship to the
target DNF. Table 3 lists some DNFs learned from an input-out pair for �6 obtained by
applying �6 as a 10-variable function to the interpretation vectors of size 210 × dr sampled
without replacement from the domain matrix I(10)

0
.15

In Table 3, for dr ∈ {1.0, 0.8, 0.5} , every data used for learning contains 32 different
input–output pairs, i.e. contains complete information about �6 . That is why all learned
DNFs are logically equivalent to �6 . At dr = 0.3, learning data still contains all information
on �6 . Nonetheless the learned DNF have extraneous variables not appearing in the origi-
nal �6(x1, x4, x5, x6, x10) which destroy the logical equivalence to �6 though it still continues
to be a logical consequence. When dr is further lowered to dr = 0.1 , constraint by learning
data is more loosened. So more conjunctions and extraneous variables are introduced to the
learned DNF and they stop the learned DNF from being either a logical consequence of or
logically equivalent to �6.

15  Learning parameters are � = 0.1, max_try = 20, max_itr = 500 and h = 1000.

Table 3   Examples of learned DNFs learned from �
6

dr Learned DNF Relation to �
6

1.0 (¬x
1
∧ ¬x

4
∧ ¬x

5
∧ ¬x

10
) ∨ (¬x

1
∧ ¬x

4
∧ x

6
∧ ¬x

10
) Identical

∨(¬x
1
∧ ¬x

5
∧ x

6
∧ ¬x

10
)

0.8 (¬x
1
∧ ¬x

4
∧ ¬x

5
∧ ¬x

10
) ∨ (¬x

1
∧ ¬x

5
∧ x

6
∧ ¬x

10
) Equivalent

∨(¬x
1
∧ ¬x

4
∧ x

5
∧ x

6
∧ ¬x

10
)

0.5 (¬x
1
∧ ¬x

4
∧ ¬x

5
∧ x

6
∧ ¬x

10
) ∨ (¬x

1
∧ ¬x

5
∧ x

6
∧ ¬x

10
) Equivalent

∨(¬x
1
∧ ¬x

4
∧ x

6
∧ ¬x

10
)

0.3 (¬x
1
∧ ¬x

4
∧ ¬x

5
∧ ¬x

10
) ∨ (¬x

1
∧ ¬x

5
∧ x

6
∧ ¬x

10
) Consequence

∨(¬x
1
∧ ¬x

4
∧ x

5
∧ x

6
∧ ¬x

10
) ∨ (¬x

1
∧ x

3
∧ ¬x

4
∧ x

8
∧ x

9
∧ ¬x

10
)

0.1 (¬x
1
∧ ¬x

2
∧ ¬x

4
∧ ¬x

5
∧ ¬x

6
∧ ¬x

10
) Independent

∨(¬x
1
∧ x

3
∧ ¬x

4
∧ ¬x

8
∧ ¬x

9
∧ ¬x

10
)

∨(¬x
1
∧ ¬x

5
∧ x

6
∧ ¬x

10
) ∨ (¬x

1
∧ x

2
∧ ¬x

5
∧ ¬x

10
)

2838	 Machine Learning (2023) 112:2821–2843

1 3

6.2 � Learning a budding yeast cell cycle BN

We conduct the second experiment with a synchronous BN for budding yeast cell cycle
taken from Irons (2009). Since it contains 18 genes (DNFs) and preparing gene expression
data is very time-consuming, it is unrealistic to assume the whole domain matrix I(18)

0
 con-

taining 218 = 262, 144 data points as learning data to learn a Boolean formula �i for gene_i
in the BN (Irons, 2009) ( 1 ≤ i ≤ 18).

We instead randomly generate a set of state vectors Irand
1

 of size 1, 000 and use
(Irand

1
,�i(I

rand
1

)) ( 1 ≤ i ≤ 18 ) as learning data to learn a DNF for �i.16

In this experiment, 17 DNFs out the 18 original DNFs are successfully recovered in at
most three trials and the remaining DNF is logically equivalent to the original one. Consid-
ering the severe data scarcity such that only 0.38% ( 1000∕218 ) of the whole data is supplied
as learning data, this success rate is somewhat surprising, but again can be explained as the
effect of implicit noise-expansion as in the mammalian cell cycle case because the set of
variables relevant to a target gene is surely a proper subset of 18 variables and the remain-
ing irrelevant ones would behave as noise.

6.3 � Learning a myeloid differentiation BN

The last example is learning an asynchronous BN with 11 genes for myeloid differentiation
process (Krumsiek et al., 2011). In this “biologically more feasible” BN (Gao et al., 2018),
state transition occurs asynchronously where a gene is nondeterministically chosen and the
Boolean function (DNF) associated with the gene is applied to the current state to decide
the next state of the BN.

Table 4   Recovered Boolean formulas for the asynchronous myeloid differentiation BN

Target gene Fact rfBFE Mat_DNF

GATA-2 GATA-2 ∧ ¬(GATA-1 ∧ FOG-1) ∧ ¬FOG-1 ∧ ¬PU.1 ¬FOG-1 ∧ ¬PU.1
¬ PU.1

GATA-1 (GATA-1 ∨ GATA-2 ∨ Fli-1) ∧ ¬PU.1 ¬PU.1
¬PU.1

FOG-1 GATA-1 GATA-1 GATA-1
EKLF GATA-1 ∧ ¬Fli-1 GATA-1 ∧ ¬Fli-1 GATA-1 ∧ ¬Fli-1
Fli-1 GATA-1 ∧ ¬EKLF GATA-1 ∧ ¬EKLF GATA-1 ∧ ¬EKLF
SCL GATA-1 ∧ ¬PU.1 GATA-1 GATA-1
C/EBPa C/EBPa ∧ ¬FOG-1 ∨ ¬SCL ¬FOG-1 ∨ ¬SCL

¬(GATA-1 ∧ FOG-1 ∧ SCL)
PU.1 (C/EBPa ∨ PU.1) ∧ ¬GATA-2 ∧ PU.1 ¬GATA-2 ∧ ¬GATA-1

¬(GATA-1 ∨ GATA-2) ∧ PU.1
cJun PU.1 ∧ ¬Gfi-1 PU.1 ∧ ¬Gfi-1 PU.1 ∧ ¬Gfi-1
EgrNab (PU.1 ∧ cJun) ∧ ¬Gfi-1 PU.1 ∧ cJun ∧ ¬Gfi-1 PU.1 ∧ cJun ∧ ¬Gfi-1
Gfi-1 C/EBPa ∧ ¬EgrNab C/EBPa ∧ ¬EgrNab C/EBPa ∧ ¬EgrNab

16  Learning parameters are � = 0.1, max_try = 20, max_itr = 500 and h = 2000.

2839Machine Learning (2023) 112:2821–2843	

1 3

Following (Gao et al., 2018), we generate learning data for asynchronous BN by simu-
lating all possible asynchronous sate transitions starting from an “early, unstable undif-
ferentiated state, where only GATA-2, C/EBPa, and PU.1 are active” (Krumsiek et al.,
2011). This simulation generates 160 distinct hierarchically layered states containing four
point attractors that correspond to four mature blood cells. For each gene, we generate state
transition data of size 160 from these states and let Mat_DNF learn it with over-iteration
(extra_update = 100). Since a learned DNF varies with initialization, we repeat this asyn-
chronous BN data learning ten times and consider the majority of ten learned DNFs as the
learned DNF for the target gene.

Out of 11 DNFs to be recovered, Mat_DNF correctly recovered the original DNFs for 6
genes (Table 4). They are all pure conjunctions. DNFs for the remaining 5 genes are recov-
ered partially in such a way that they lost at most three variables from the original ones. We
performed other measurements.

We now compare our results with those by rfBFE (Gao et al., 2018) in more detail.
rfBFE is one of the state-of-the-art BN learning algorithms which is a refinement of Best-
Fit extension algorithm (Lähdesmäki et al., 2003)17. Since the purpose of BN learning is to
infer Boolean formulas governing the state transitions process, the recovery rate of target
Boolean formulas is the most important criterion. From this viewpoint, it is to be noted
that when applied to complete data generated by synchronous BN, both rfBFE and Mat_
DNF recover all original 11 DNFs. However there is a big difference in execution time.
While rfBFE only takes 1.24 s to process 11 complete datasets ( 211 data points) for 11
genes according to Gao et al. (2018), Mat_DNF takes 483.1 s, which suggests the need for
improving implementation of Mat_DNF for example by parallel technologies.

Also we observe differences in terms of “score” which the number of genes whose
domain (regulators) is correctly inferred when the learning data is not complete. We ran-
domly sample m states and their state transitions and measure scores for m = 80, 160 by
running Mat_DNF on sampled transitions.18 We repeat this trial five times and take the
average. The results are score = 8.8 for m = 80 and score = 10.6 for m = 160, which are
lower than those by rfBFE reported in Gao et al. (2018) where score = 10.8 for m = 80 and
score = 10.9 for m = 160 respectively. This may be due to the lack of a special mechanism
in Mat_DNF to identify regulators (domain).

In the case of asynchronous learning data described above, Mat_DNF and rfBFE return
Boolean formulas listed in Table 4.19 Table 4 shows that Mat_DNF and rfBFE return
exactly the same Boolean formulas except for gene PU.1 and both successfully recover six
original Boolean formulas. Concerning PU.1 however, while Mat_DNF successfully recov-
ers one of the two original disjuncts, rfBFE recovers no original disjunct or recovers only
one of the four original conjuncts (assuming the original one is in CNF). So, as far as the
target asynchronous BN (Krumsiek et al., 2011) is concerned, Mat_DNF seems qualita-
tively competitive with rfBFE, though learning is considerably slow.

17  rfBFE is a combination of two algorithms, random forest for feature selection and the BestFit extension
algorithm (Lähdesmäki et al., 2003) for Boolean formula discovery.
18  Parameters are set to max_try = 10, max_itr = 1000, h = 10000 and over-iteration with extra_update =
20.
19  The table format and Boolean formulas learned by rfBFE are borrowed from Gao et al. (2018). Fact
denotes the original Boolean formulas. We run Mat_DNF with � = 0.005, max_try = 10, max_itr = 1000, h
= 4000 and over-iteration (extra_itr = 100).

2840	 Machine Learning (2023) 112:2821–2843

1 3

7 � Related work

From a logical point of view, Mat_DNF infers a matricized DNF as an interpolant by
numerical optimization and there is no previous work of the same kind as far as we
know. As Sect. 4 reveals, any interpolant represented by a matricized DNF � = (C,D)
between the positive and negative data is translated to a single layer ReLU network
described by (2) with network parameters (C,D) and vice versa. This mutual translation
is expected to contribute to cross-fertilization of NNs and logic. For example logical
characterization of interpolants with good generalizability can contribute to designing
NNs with high generalizability.

On the optimization side, our approach is categorized as continuous and uncon-
strained global optimization applied to DNFs instead of CNFs (Gu et al., 1996). What
differs from traditional approaches surveyed in Gu et al. (1996) is the Mat_DNF’s cost
function, which for instance encodes a conjunction as a sum of piecewise multivariate
linear terms unlike those in Gu et al. (1996) that encode a conjunction by a product of
some functions in one form or another.

Representing Boolean formulas by matrix is an established idea. Theoretically we
can represent any Boolean formula in n variables in terms of 2n × 2n or 2n × 2n matrix
(Cheng and Qi, 2010; Kobayashi and Hiraishi, 2014). Our matricized DNF represen-
tation also requires a matrix C of similar size, for example 2n−1 × 2n to represent the
n-parity function. The technique of learning and outputting Boolean formulas repre-
sented by matrix has already been applied to learning AND/OR BNs in Sato and Kojima
(2021), but with different purposes. Sato and Kojima (2021) aims at finding useful logi-
cal patterns in the biological data whereas DNFs in this paper are learned to verify or
suggest BNs.

Mat_DNF is a simple neuro-symbolic system that explicitly represents DNFs. From
this neuro-symbolic viewpoint, we notice several NNs have been proposed that can
learn DNFs (Towell and Shavlik, 1994; Payani and Fekri, 2019; Katzir et al., 2021).
However, they all implicitly embed DNFs in their NN architecture. In KBANN-net
(Towell and Shavlik, 1994), for example, a conjunction containing k literals is encoded
as a neuron represented by a tree with k leaves, each having a link weight � such as 4 for
positive literal and −� for negative one, and the neuron is activated when k ⋅ � exceeds
bias = (k − 1∕2) ⋅ � . In Neural Logic Networks (Payani and Fekri, 2019), conjunctions
are represented by a product of linear functions of the form 1 − m(1 − x) where 0 < m < 1
and embedded in a neural network isomorphically to a DNF. In Net-DNF (Katzir et al.,
2021), a trainable AND function is used: AND(x) = tanh((c ∙ L(x)T) − ‖c‖1 + 1.5) where
L(x) = tanh(xTW + b) to encode conjunctions. As a result, they need an extra process to
reconstruct a DNF from the learned parameters.

There are logical approaches to BN learning (Inoue et al., 2014; Tourret et al., 2017;
Chevalier et al., 2019; Gao et al., 2022). Logically our work can be considered as a
matricized version of “learning from interpretation transition” in logic programming in
which a BN is represented by a propositional normal logic program (Inoue et al., 2014;
Gao et al., 2022). The most related work is NN-LFIT proposed by Tourret et al. (2017)
which performs two-stage DNF learning. First a single layer feed-forward NN is trained
by state transition data. Then learned parameters irrelevant to the output are filtered out
and DNFs are extracted from the remaining parameters. However since their perfor-
mance evaluation is based on error rate of learned rules, not recovery rate of the learned
DNFs like ours, direct comparison is difficult.

2841Machine Learning (2023) 112:2821–2843	

1 3

8 � Conclusion

We proposed a simple feed-forward neural network Mat_DNF for the end-to-end learn-
ing of Boolean functions. It learns a Boolean function and outputs a matricized DNF
realizing the target function. It searches for a DNF as a root of a non-negative cost func-
tion by minimizing the cost function to zero. We also established a new connection
between neural learning and logical inference. We proved the equivalence between DNF
learning by Mat_DNF and the inference of interpolants in logic between the positive
and negative input data. We applied Mat_DNF to learning two synchronous BNs and
one asynchronous BN from biological literature and empirically confirmed the effec-
tiveness of our approach.

While doing so, we introduced “domain ratio” dr as an indicator of data scarcity and
defined generalization w.r.t. dr. By examining the generalizability of DNFs learned from
scarce data while varying dr, we discovered two operations, noise-expansion (expanding
input vectors with noise vectors) and over-iteration (continuing learning after learning
error reaches zero), can considerably improve generalizability by shifting the choice of a
learned DNF. These two operations explain high recovery rate of original DNFs in our BN
learning experiments.

Future work includes a reimplementation of Mat_DNF by GPUs, the refinement of
noise-expansion and over-iteration and pursuing the idea of binary classifier as logical
interpolant.

Author’s contributions  TS is a major contributor in writing the manuscript. KI assists in preparing the man-
uscript and financial support. All authors read and approved the final manuscript.

Funding  This work is supported by JSPS KAKENHI Grant Number JP21H04905 and JST CREST Grant
Number JPMJCR22D3.

Availability of data and material  Not Applicable.

Code availability  Mat_DNF is available upon request as an octave program.

Declarations 

Conflict of interest  The authors have no relevant financial or non-financial interests to disclose.

 Ethics approval  Not Applicable.

 Consent to participate  Not Applicable.

Consent for publication  Not Applicable.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

http://creativecommons.org/licenses/by/4.0/

2842	 Machine Learning (2023) 112:2821–2843

1 3

References

Cheng, D., & Qi, H. (2010). A linear representation of dynamics of Boolean networks. IEEE Transactions
on Automatic Control, 55(10), 2251–2258. https://​doi.​org/​10.​1109/​TAC.​2010.​20432​94

Chevalier, S., Froidevaux, C., Paulevé, L., & Zinovyev, A. (2019). Synthesis of boolean networks from
biological dynamical constraints using answer-set programming. In: 31st International Conference on
Tools with Artificial Intelligence. ICTAI

Craig, W. (1957). Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory.
The Journal of Symbolic Logic, 22(3), 269–285.

Fauré, A., Naldi, A., Chaouiya, C., & Thieffry, D. (2006). Dynamical analysis of a generic Boolean
model for the control of the mammalian cell cycle. Bioinformatics, 22(14), 124–131. https://​doi.​
org/​10.​1093/​bioin​forma​tics/​btl210

Feldman, V. (2007). Efficiency and computational limitations of learning algorithms. PhD thesis, USA.
AAI3251269

Gao, S., Xiang, C., Sun, C., Qin, K., & Lee, T.H. (2018). Efficient Boolean Modeling of Gene Regula-
tory Networks via Random Forest Based Feature Selection and Best-Fit Extension. In: 2018 IEEE
14th International Conference on Control and Automation (ICCA), pp. 1076–1081 (2018). https://​
doi.​org/​10.​1109/​ICCA.​2018.​84442​21

Gao, K., Wang, H., Cao, Y., & Inoue, K. (2022). Learning from interpretation transition using differenti-
able logic programming semantics. Machine Learning, 111(1), 123–145. https://​doi.​org/​10.​1007/​
s10994-​021-​06058-8

Gu, J., Purdom, P.W., Franco, J., & Wah, B.W. (1996). Algorithms for the satisfiability (sat) problem:
A survey. In: DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pp.
19–152

Hansen, K. A., & Podolskii, V. V. (2015). Polynomial threshold functions and boolean threshold circuits.
Information and Computation, 240, 56–73. https://​doi.​org/​10.​1016/j.​ic.​2014.​09.​008

Inoue, K., Ribeiro, T., & Sakama, C. (2014). Learning from Interpretation Transition. Machine Learn-
ing, 94(1), 51–79.

D.J.Irons: (2009). Logical analysis of the budding yeast cell cycle. Journal of theoretical biology 257(4)
Ishida, T., Yamane, I., Sakai, T., Niu, G., & Sugiyama, M. (2020). Do we need zero training loss after

achieving zero training error? CoRR, ICML2020 poster
Kamath, A. P., Karmarkar, N., Ramakrishnan, K. G., & Resende, M. G. C. (1992). A continuous

approach to inductive inference. Mathematical Programming, 57, 215–238.
Katzir, L., Elidan, G., & El-Yaniv, R. (2021). Net-dnf: Effective deep modeling of tabular data. In: Pro-

ceedings of the 9th International Conference on Learning Representations (ICLR 2021)
Kauffman, S. (1969). Homeostasis and differentiation in random genetic control networks. Nature, 51,

177–178. https://​doi.​org/​10.​1038/​22417​7a0
Kingma, D.P., & Ba, J. (2015). Adam: A method for stochastic optimization. In: 3rd International Con-

ference on Learning Representations, (ICLR 2015) Conference Track Proceedings
Kobayashi, K., & Hiraishi, K. (2014). Ilp/smt-based method for design of Boolean networks based on single-

ton attractors. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 11, 1253–1259.
Krumsiek, J., Marr, C., Schroeder, T., & Theis, F. (2011). Hierarchical differentiation of myeloid pro-

genitors is encoded in the transcription factor network. PloS One, 6, 22649. https://​doi.​org/​10.​1371/​
journ​al.​pone.​00226​49

Lähdesmäki, H., Shmulevich, I., & Yli-Harja, O. (2003). On learning gene regulatory networks under
the boolean network model. Machine Learning, 52(1–2), 147–167. https://​doi.​org/​10.​1023/A:​10239​
05711​304

Liang, S., Fuhrman, S., & Somogyi, R. (1998). REVEAL, A General Reverse Engineering Algorithm for
Inference of Genetic Network Architectures. In: Pacific Symposium on Biocomputing, vol. 3, pp.
18–29 (1998)

Malach, E., & Shalev-Shwartz, S. (2019). Learning boolean circuits with neural networks. CoRR
McMillan, K.L., In: Clarke, E.M., Henzinger, T.A., Veith, H., & Bloem, R. (2018). (eds.) Interpolation

and Model Checking, pp. 421–446. Springer, Cham
Mixon, D.G., & Peterson, J. (2015). Learning Boolean functions with concentrated spectra. In: Papada-

kis, M., Goyal, V.K., Ville, D.V.D. (eds.) Wavelets and Sparsity XVI, vol. 9597, pp. 88–95. SPIE,
??? (2015). International Society for Optics and Photonics. https://​doi.​org/​10.​1117/​12.​21891​12

Oliveira, A.L., & Sangiovanni-Vincentelli, A. (1993). Learning complex boolean functions: Algorithms
and applications. In: Proceedings of the 6th International Conference on Neural Information Pro-
cessing Systems (NIPS’93), pp. 911–918 (1993)

https://doi.org/10.1109/TAC.2010.2043294
https://doi.org/10.1093/bioinformatics/btl210
https://doi.org/10.1093/bioinformatics/btl210
https://doi.org/10.1109/ICCA.2018.8444221
https://doi.org/10.1109/ICCA.2018.8444221
https://doi.org/10.1007/s10994-021-06058-8
https://doi.org/10.1007/s10994-021-06058-8
https://doi.org/10.1016/j.ic.2014.09.008
https://doi.org/10.1038/224177a0
https://doi.org/10.1371/journal.pone.0022649
https://doi.org/10.1371/journal.pone.0022649
https://doi.org/10.1023/A:1023905711304
https://doi.org/10.1023/A:1023905711304
https://doi.org/10.1117/12.2189112

2843Machine Learning (2023) 112:2821–2843	

1 3

Payani, A., & Fekri, F. (2019). Learning algorithms via neural logic networks. CoRR abs/1904.01554
(2019)

Power, A., Burda, Y., Edwards, H., Babuschkin, I., & Misra, V. (2021). Grokking: Generalization beyond
overfitting on small algorithmic datasets. 1st Mathematical Reasoning in General Artificial Intelli-
gence Workshop

Ribeiro, T., Folschette, M., Magnin, M., & Inoue, K. (2021). Learning any memory-less discrete seman-
tics for dynamical systems represented by logic programs. Machine Learning. https://​doi.​org/​10.​
1007/​s10994-​021-​06105-4

Rückert, U., & Kramer, S. (2003). Stochastic local search in k-term DNF learning. In: Proceedings of the
Twentieth International Conference on Machine Learning (ICML 2003), pp. 648–655 (2003)

Sato, T., & Kojima, R. (2021). Boolean network learning in vector spaces for genome-wide network analy-
sis. In: Proceedings of the 18th International Conference on Principles of Knowledge Representation
and Reasoning (KR2021), pp. 560–569 (2021). https://​doi.​org/​10.​24963/​kr.​2021/​53

Sharma, R., Nori, A.V., & Aiken, A. (2012). Interpolants as classifiers. In: Computer Aided Verification, pp.
71–87. Springer, Berlin

Tourret, S., Gentet, E., & Inoue, K. (2017). Learning human-understandable description of dynamical sys-
tems from feed-forward neural networks. In: Advances in Neural Networks—14th International Sym-
posium, Proceedings, Part I, LNCS 10261, pp. 483–492

Towell, G. G., & Shavlik, J. W. (1994). Knowledge-based artificial neural networks. Artificial Intelligence,
70(1), 119–165. https://​doi.​org/​10.​1016/​0004-​3702(94)​90105-8

van Krieken, E., Acar, E., & van Harmelen, F. (2022). Analyzing differentiable fuzzy logic operators. Artifi-
cial Intelligence, 302, 103602. https://​doi.​org/​10.​1016/j.​artint.​2021.​103602

Vizel, Y., Weissenbacher, G., & Malik, S. (2015). Boolean satisfiability solvers and their applications in
model checking. Proceedings of the IEEE, 103(11), 2021–2035.

Zhang, Z., Zhao, Y., Liu, J., Wang, S., Tao, R., Xin, R., & Zhang, J. (2019). A general deep learning frame-
work for network reconstruction and dynamics learning. Applied Network Science 4(110)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1007/s10994-021-06105-4
https://doi.org/10.1007/s10994-021-06105-4
https://doi.org/10.24963/kr.2021/53
https://doi.org/10.1016/0004-3702(94)90105-8
https://doi.org/10.1016/j.artint.2021.103602

	Differentiable learning of matricized DNFs and its application to Boolean networks
	Abstract
	1 Introduction
	2 Preliminaries
	3 Learning DNFs in vector spaces
	3.1 Evaluating matricized DNFs
	3.2 Learning DNFs by Mat_DNF
	3.3 Learning algorithm

	4 Learning as logical interpolation: a logical perspective
	5 Learning random DNFs
	5.1 Performance measures and generalization
	5.2 Measuring accuracy for random DNFs
	5.3 Noise-expansion and over-iteration
	5.4 The logical relations and over-iteration
	5.5 Controlling logical generalization

	6 Learning Boolean networks
	6.1 Learning a mammalian cell cycle BN
	6.2 Learning a budding yeast cell cycle BN
	6.3 Learning a myeloid differentiation BN

	7 Related work
	8 Conclusion
	References

