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Abstract
A novel explainable AI method called CLEAR Image is introduced in this paper. CLEAR 
Image is based on the view that a satisfactory explanation should be contrastive, counter-
factual and measurable. CLEAR Image seeks to explain an image’s classification probabil-
ity by contrasting the image with a representative contrast image, such as an auto-generated 
image obtained via adversarial learning. This produces a salient segmentation and a way 
of using image perturbations to calculate each segment’s importance. CLEAR Image then 
uses regression to determine a causal equation describing a classifier’s local input–out-
put behaviour. Counterfactuals are also identified that are supported by the causal equa-
tion. Finally, CLEAR Image measures the fidelity of its explanation against the classifier. 
CLEAR Image was successfully applied to a medical imaging case study where it outper-
formed methods such as Grad-CAM and LIME by an average of 27% using a novel point-
ing game metric. CLEAR Image also identifies cases of causal overdetermination, where 
there are multiple segments in an image that are sufficient individually to cause the classifi-
cation probability to be close to one.
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1  Introduction

Data-driven AI for Computer Vision can achieve high levels of predictive accuracy, yet the 
rationale behind these predictions is often opaque. This paper proposes a novel explainable 
AI (XAI) method called CLEAR Image that seeks to reveal the causal structure implicitly 
modelled by an AI system, where the causes are an image’s segments and the effect is 
the AI system’s classification probability. The explanations are for single predictions and 
describe the local input–output behaviour of the classifier. CLEAR Image is based on the 
philosopher James Woodward’s seminal analysis of causal explanation (Woodward, 2003), 
which develops Judea Pearl’s manipulationist account of causation (Pearl, 2000). Together 
they constitute the dominant accounts of explanation in the philosophy of science. We 
argue that a successful explanation for an AI system should be contrastive, counterfactual 
and measurable.

According to Woodward, to explain an event E is “to provide information about the 
factors on which it depends and exhibit how it depends on those factors”. This requires a 
causal equation to describe the causal structure responsible for generating the event. The 
causal equation must support a set of counterfactuals; a counterfactual specifies a possible 
world where, contrary to the facts, a desired outcome occurs. The counterfactuals serve 
to illustrate the causal structure and to answer a set of ‘what-if-things-had-been-different’ 
questions. In XAI, counterfactuals usually state minimal changes needed to achieve a 
desired alternative outcome.

A contrastive explanation answers the question ‘Why E rather than F?’. In the philoso-
phy literature, F is referred to as E’s foil. F comes from a contrast class of events that are 
alternatives to E, but which did not happen (Van Fraassen, 1980). The reason why expla-
nations should be contrastive is captured by Hilton: “The key insight is to recognise that 
one does not explain events per se, but that one explains why the puzzling event occurred 
in the target cases but not in some counterfactual contrast case” (Hilton, 1990). When a 
person asks for an explanation, the relevant contrast class is often not explicitly conveyed 
but instead is implicit in the explanatory question. For example, when a priest asked Wil-
lie Sutton why he robbed banks, Sutton’s reply ‘Well that’s where the money is’ was not a 
satisfactory explanation because the priest’s implicit contrast was ‘not robbing’ but Sutton 
took it to be ‘robbing something else’ (Garfinkel, 1982). An explanation identifies the sali-
ent causes that led to E occurring rather than F.

For Woodward, all causal claims are counterfactual and contrastive: ‘to causally explain 
an outcome is always to explain why it, rather than some alternative, occurred’. Wood-
ward’s analysis is consistent with Miller’s review of over 250 papers on explanation from 
philosophy, psychology and cognitive science (Miller, 2018). Miller states that perhaps his 
most important finding is that “Explanations are contrastive — they are sought in response 
to particular counterfactual cases... This has important social and computational conse-
quences for explainable AI.”

Woodward’s theory of explanation stands in opposition to the multiple XAI methods 
that claim to provide counterfactual explanations (Verma et al., 2020), but which only pro-
vide statements of single or multiple counterfactuals. As this paper will illustrate, counter-
factuals without a supporting causal equation will only provide incomplete explanations. 
Woodward’s theory also stands in opposition to XAI methods such as LIME that only pro-
vide an equation, but do not provide counterfactuals.

CLEAR Image identifies cases of ‘causal overdetermination’. The causal overdeter-
mination of an event occurs when two or more sufficient causes of that event occur. An 
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example from the philosophy literature is of two vandals who each throw a rock that 
simultaneously shatters a window, with each rock being sufficient to shatter the window. 
The shattering of the window is causally overdetermined (Schaffer, 2003). This causal 
structure may well be ubiquitous in learning systems. For example, there may be multi-
ple patches in a medical image, any of which being sufficient by itself to cause a classifi-
cation probability close to one. To the best of our knowledge, CLEAR Image is the first 
XAI method capable of identifying causal overdetermination.

CLEAR Image explains an image’s classification probability by comparing the image 
with a corresponding contrast image. In this work, the contrast image is a synthetic 
image created by a generative adversarial network (GAN) (Goodfellow et  al., 2014). 
The contrast between the two images can be reflected in the pixel differences and a dif-
ference mask is created by subtracting the original image from its corresponding GAN-
generated image. For example, difference masks have been previously used to visual-
ise the difference in synthetic image generation for face forgery detection (Cao et  al., 
2022) and for anomaly detection in medical images (Wolleb et al., 2020). These pixel 
differences are good segments to start a contrastive explanation with. However, as we 
will illustrate, segments identified from difference masks alone can vary significantly 
in their relevance to a classification; furthermore, other segments critical to the clas-
sification can often be absent from the mask. Therefore, CLEAR Image uses a novel 
segmentation method that combines information from the difference mask, the original 
image and the classifier’s behaviour. After completing its segmentation, CLEAR Image 
identifies counterfactuals and then follows a process of perturbation, whereby segments 
of the original image are changed, and the change in outcome is observed to produce a 
regression equation. The regression equation is used to determine the contribution that 
each segment makes to the classification probability. The regression equation is a causal 
equation with each independent variable referring to whether a particular segment is a 
direct cause of the classification probability. As will be shown, the explanations pro-
vided by leading XAI methods LIME and Grad-CAM may not be reliable. CLEAR 
Image, therefore, measures the fidelity of its explanations, where fidelity refers to how 
closely an XAI method is able to mimic a classifier’s behaviour. In summary, a CLEAR 
Image explanation specifies: segmentation importance scores, counterfactuals, a regres-
sion equation, segments leading to overdetermination and fidelity errors.

By providing both a statement of counterfactuals and a supporting causal equation, 
CLEAR Image seeks to satisfy Woodward’s specification for an explanation.

CLEAR Image was evaluated in two case studies, both involving overdetermination. 
The first uses a multifaceted synthetic dataset, and the second uses chest X-rays. CLEAR 
Image outperformed XAI methods such as LIME and Grad-CAM by an average of 31% on 
the synthetic dataset and 27% on the X-ray dataset (see Sect. 4.4) based on a pointing game 
metric defined in this paper for the case of multiple targets.

The contribution of this paper is four-fold. We introduce an XAI method that:

•	 Generates contrastive, counterfactual and measurable explanations outperforming 
established XAI methods in a challenging image domain;

•	 Uses a GAN-generated contrast image determining a causal equation, segment impor-
tance scores and counterfactuals.

•	 Offers novel segmentation and pointing game algorithms for the evaluation of image 
explanations.

•	 Is capable of identifying causal overdetermination, i.e. the multiple sufficient causes for 
an image classification.
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CLEAR Image is a substantial development of an earlier XAI method, (Counterfac-
tual Local Explanations viA Regression), which only applies to tabular data (White and 
Garcez, 2020). New functionalities include: (i) the segmentation algorithm, (ii) generating 
perturbed images by infilling from the corresponding GAN image, (iii) a novel pointing 
game suitable for images with multiple targets, (iv) identification of sufficient causes and 
overdetermination, (v) measurement of fidelity errors for counterfactuals involving cate-
gorical features.

The remainder of the paper is organised as follows: Sect.  2 provides a summary of 
related work. Section 3 introduces the CLEAR Image method and algorithms. Section 4 
details the experimental setup and discusses the results. Section 5 concludes the paper and 
indicates directions for future work.

2 � Related work

This paper adopts the following notation: Let m be a machine learning system mapping 
each input instance x to a class label l with probability y. Each input instance x is an image 
that can be partitioned into S segments (regions) {s1,… , sn} . We use x′ to denote a GAN-
generated image derived from x such that m(x�) = l with probability y′.

The XAI methods most relevant to this paper can be broadly grouped into four types: 

	 (i)	 Counterfactual methods Wachter et al. (2017) first proposed using counterfactuals 
as explanations of single machine learning predictions. Many XAI methods have 
attempted to generate ‘optimal’ counterfactuals; for example, Karimi et al. (2020) 
review sixty counterfactual methods. The algorithms differ in their constraints and 
the attributes referenced in their loss functions (Verma et al., 2020). Desiderata 
often include that a counterfactual is: (1) actionable – e.g. actions do not get recom-
mended if they are physically infeasible, such as reducing a person’s age, (2) near to 
the original observation - common measures include Manhattan distance, L1 norm 
and L2 norm, (3) sparse – only changing the values of a small number of features, 
(4) plausible - e.g. the counterfactual must correspond to a high-density part of the 
training data, (5) efficient to compute. Karimi et al. (2021) argue that these meth-
ods are likely to identify counterfactuals that are either suboptimal or infeasible in 
terms of their actionability. This is because they do not take into account the causal 
structure that determines the consequences of the person’s actions. The underlying 
problem is that unless all of the person’s features are causally independent of each 
other, then when the person acts to change the value of one feature, other down-
stream dependents may also change. In Sect. 5 we will explain why this criticism 
does not apply to CLEAR Image. In this paper, we provide a different criticism of 
counterfactual methods: that they fail to provide satisfactory explanations because 
they do not provide a causal equation describing the local behaviour of the classifier 
they are meant to explain. Without this, they cannot identify: the relative importance 
of different features, how the features are taken to interact with each other, or the 
functional forms that the classifier is, in effect, applying to each feature. They will 
also fail to identify cases of overdetermination.

	 (ii)	 Gradient-based methods These provide saliency maps by backpropagating an error 
signal from a neural network’s output to either the input image or an intermediate 
layer. Simonyan et al. (2014) use the derivative of a class score for the image to 
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assign an importance score to each pixel. Kumar et al. (2017)’s CLass-Enhanced 
Attention Response uses backpropagation to visualise the most dominant classes; 
this should not be confused with our method. A second approach modifies the back-
propagation algorithm to produce sharper saliency maps, e.g. by suppressing the 
negative flow of gradients. Prominent examples of this approach (Springenberg 
et al., 2014; Zeiler and Fergus, 2014) have been found to be invariant to network 
re-parameterisation or the class predicted (Adebayo et al., 2018; Nie et al., 2018). A 
third approach (Selvaraju et al., 2017; Chattopadhay et al., 2018) uses the product of 
gradients and activations starting from a late layer. In Grad-CAM (Selvaraju et al., 
2017), the product is clamped to only highlight positive influences on class scores.

	 (iii)	 Perturbation based methods Methods such as Occlusion (Zhou et al., 2016), Extre-
mal Perturbation (Fong et al., 2019), FIDO (Chang et al., 2018b), LIME (Ribeiro 
et al., 2016) and Kernel SHAP (Lundberg and Lee, 2017) use perturbation to evaluate 
which segments of an image x are most responsible for x’s classification probability 
y. The underlying idea is that the contribution that a segment si makes to y can be 
determined by substituting it with an uninformative segment s′

i
 , where s′

i
 may be 

either grey, black or blurred (Zhou et al., 2016; Fong et al., 2019; Ribeiro et al., 2016) 
or in-painted without regard to any contrast class (Chang et al., 2018b). LIME and 
Kernel SHAP generate a dataset of perturbed images, which feeds into a regression 
model, which then calculates segment importance scores (LIME) or Shapley Values 
(Kernel SHAP). Extremal Perturbation uses gradient descent to determine an optimal 
perturbed version of an image that, for a fixed area, has the maximal effect on a net-
work’s output whilst guaranteeing that the selected segments are smooth. FIDO uses 
a variational Bernoulli drop to find a minimal set of segments that would change an 
image’s class. In contrast to LIME, Kernel SHAP and Extremal Perturbation, FIDO 
uses a GAN to in-paint segments with ‘plausible alternative values’; however, these 
values are not generated to belong to a chosen contrast class. Furthermore, segment 
importance scores are not produced.

		    There are three key problems with using perturbed images to explain a classifica-
tion:

1.	 A satisfactory explanation must be contrastive; it must answer ‘Why E rather than 
F?’ None of the above methods does this. Their contrasts are instead images of 
uninformative segments.

2.	 The substitution may fail to identify the contribution that si makes to y. For example, 
replacing si with black pixels can take the entire image beyond the classifier’s train-
ing distribution. By contrast, blurring or uninformative in-painting might result in 
s′
i
 being too similar to si resulting in the contribution of si being underestimated.

3.	 A segmentation needs to be relevant to its explanatory question. Current XAI per-
turbation approaches produce radically different segmentations. FIDO and Extremal 
Perturbation identify ‘optimal’ segments that, when substituted by an uninformative 
segment, maximally affect the classification probability; by contrast, LIME uses a 
texture/intensity/colour algorithm (e.g. Quickshift (Vedaldi and Soatto, 2008)).

	 (iv)	 Contrastive methods using GAN image synthesis Generative adversarial network 
(GAN) (Goodfellow et al., 2014) has been widely applied for synthetic image gen-
eration. Image-to-image translation GANs enable a conditional transformation of 
an input image to a specified target. For example, CycleGAN (Zhu et al., 2017) and 
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StarGAN (Choi et al., 2018) translate images between different domain classes. 
StarGAN-V2 (Choi et al., 2020) improved the conditional image translation by 
incorporating a style vector instead resulting in a more scaleable and high-quality 
synthetic image generation across a variety of target conditions. Fixed-point GAN 
penalised any deviation of image for intra-domain translation with identity loss. 
DeScarGAN (Wolleb et al., 2020) incorporates this loss function in its own GAN 
architecture and has outperformed Fixed-point GAN in its case study for identifying 
and localising pathology from chest X-rays. The availability of synthetic images can 
alleviate the constraint of data scarcity typically found in specialised domains (e.g. 
medical imaging). Singh and Raza (2021), Osuala et al. (2022) has presented GAN’s 
applicability in the medical domain.

While the adversarial training needed by GAN is known to be challenging for (i) main-
taining training stability, (ii) reaching convergence and (iii) avoiding mode collapse (Arora 
et al., 2022; Mescheder et al., 2018; Salimans et al., 2016; Osuala et al., 2022), many exam-
ples of properly trained GAN have been achieved (Osuala et al., 2022). Kazeminia et al. 
(2020) provided numerous examples of employing GAN in medical image analysis. Chang 
et al. (2018a) introduced the fill-in the dropout region (FIDO) methods, wherein generative 
methods were applied for in-filling. This method however requires the generative model to 
recreate the missing regions based on the remaining unmasked features. Shih et al. (2020) 
emphasised the improvement in contrastive comparison using a GAN-generated contrast 
image in over earlier work using a uniform-value reference or a blurred input image. They 
modified the training of StarGAN model (Choi et  al., 2018) and demonstrated that their 
GAN-generated images allowed more appropriate identification of attributing features and 
minimise errors that can be induced from other non GAN-generated alternatives. In situa-
tions where data is scarce, it is anticipated that the benefits of GAN-based synthetic image 
generation would outweigh the time and effort required to attain proper training in a GAN.

In Sect. 5 we will explain how CLEAR Image builds on the strengths of the above 
XAI methods but also addresses key shortcomings.

3 � The CLEAR Image method

CLEAR Image is a model-agnostic XAI method that explains the classification of an image 
made by any classifier (see Fig.  1). It requires both an image x and a contrast image x′ 
generated by a GAN. CLEAR Image segments x into {s1,… , sn} ∈ S and then applies the 
same segmentation to x′ creating {s�

1
,… , s�

n
} ∈ S� . It then determines the contributions that 

different subsets of S make to y by substituting with the corresponding segments of S′ . 
CLEAR Image is GAN agnostic, allowing the user to choose the GAN architecture most 
suitable to their project. A set of ‘image-counterfactuals’ {c1 … ck} is also identified. Fig-
ures 1, 2, 3, 4 and 5 provide a running example of the CLEAR Image pipeline, using the 
same X-ray taken from the CheXpert dataset.

3.1 � GAN‑based image generation

To generate contrastive images, StarGAN-V2 (Choi et  al., 2020) and DeScarGAN 
(Wolleb et  al., 2020) have been found to be capable of generating the high-quality 
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images needed to identify the segments of pixel differences. These GANS are therefore 
deployed as the network architectures for our two case studies, the first using CheXpert, 
and the second using a synthetic dataset respectively. These established GAN networks 

Fig. 1   The CLEAR Image pipeline. The GAN produces a contrast image. CLEAR Image explains the clas-
sification probability by comparing the input image with its contrast image. It produces a regression equa-
tion that measures segment scores, reports fidelity and identifies cases of overdetermination. In this exam-
ple, class l is ’pleural effusion’ and its contrast class l′ is ’healthy’. Using our Densenet model, the X-ray 
shown in this figure had a probability of belonging to l equal to 1, and its contrast image had a probability 
of belonging to l equal to 0

Fig. 2   The process of generating a contrast image. An original diseased image is first used to generate a 
healthy contrast image with a trained GAN model. In this example, StarGAN v2 is used as the architecture. 
The generated healthy lung airspace is then segmented using a U-Net segmentation model blended onto the 
original diseased image to produce the final image by applying Gaussian blur to minimise any edging effect 
around the segments

Fig. 3   The GAN-Augmented segmentation algorithm. There are three stages. First, segments are identified 
from the high-intensity differences between the original image x and its contrast image x′ (a). Second, addi-
tional segments are identified from the regions of x corresponding to low-intensity differences between x 
and x′ (b) Third, the segments from the two steps are combined (c)
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demonstrate how the generated contrastive images can aid the overall CLEAR Image 
pipeline in our cases where contrast images are not available. Default training hyper-
parameters were applied unless otherwise stated. Details of model training and hyper-
parameters can be found in Appendix B. The source image was used as input for the 
Style Encoder instead of a specific reference image for StarGAN-V2. This ensures the 
generated style mimics that of the input source images. StarGAN-V2 is also not locally 
constrained (i.e. the network will modify all pixels in an image related to the targeted 
class, which will include irrelevant spurious regions of the image). A post-generation 
lung space segmentation step using a pre-trained U-Net model (Ronneberger et  al., 
2015) was therefore implemented. The original diseased lung space was replaced with 

Fig. 4   Determining image-counterfactuals. In this example segments, s
4
 and s

11
 are evaluated both sepa-

rately and in combination. Substituting s
11

 with its corresponding contrast segment s′
11

 creates a perturbed 
image (b) with the same classification probability as the original image (a). The same applies with segment 
s
4
 (c). However, substituting both segments s

4
 and s

11
 results in a perturbed image (d) which has a classifi-

cation probability of 0.43. Given a decision boundary at the probability of 0.5, d would be classified as a 
’healthy’ X-ray and would therefore be an image-counterfactual

Fig. 5   Extracts from a CLEAR Image report. The report identifies that substituting both segments 4 and 
11 with the corresponding segments from its contrast image flips the classification probability to ’healthy’ 
According to the logistic regression equation these substitutions would change the probability of the X-ray 
being classified as ’pleural effusion’ to 0.44. However, when these segments are actually substituted and 
passed through the classifier, the probability changes to 0.43, hence the fidelity error is 0.01. CLEAR Image 
also identifies that substituting segments 3 and 11 also creates an image-counterfactual. Note that unlike 
methods such as GradCAM, CLEAR Image is able to identify segments that have a negative impact on a 
classification probability
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the generated image, with a Gaussian Blur process to fuse the edge effect (see Fig. 2). 
This confines the feature identification space used by CLEAR Image to the lung space. 
It is an advantage of the CLEAR Image pipeline that it is possible to use pre-processing 
to focus the explanation on the relevant parts of x.

3.2 � Generating contrastive counterfactual explanations

Definition 1  An image-counterfactual cj from l to l′ is an image resulting from a change 
in the values of one or more segments S of x to their corresponding values in S′ such that 
class(m(x)) = l , class(m(cj)) = l� and l ≠ l′ . The change is minimal in that if any of the 
changed segments had remained at its original value, then class(m(x)) = class(m(cj)).

CLEAR Image uses a regression equation to quantify the contribution that the individual 
segments make to y. It then measures the fidelity of its regression by comparing the clas-
sification probability resulting from each cj with an estimate obtained from the regression 
equation.

Definition 2  Counterfactual-regression fidelity error Let reg(cj) denote the application 
of the CLEAR Image regression equation given image-counterfactual cj.

The following steps generate an explanation of prediction y for image x: 

1.	 GAN-Augmented segmentation algorithm. This algorithm is based on our findings (in 
Section 5.4) that the segments ( Sh ) determined by analysing high-intensity differences 
between an image x and its corresponding GAN-generated image x′ will often miss 
regions of x that are important to explaining x’s classification. It is, therefore, necessary 
to supplement segments Sh with a second set of segments Sl confined to those regions 
of x corresponding to low-intensity differences between x and x′ . Sl is created based on 
similar textures/intensities/colours solely within x.

	   The pseudocode for our algorithm is shown in Algorithm 1. First, high and low thresh-
olds ( Th and Tl ) are determined by comparing the differences between x and x′ using 
multi-Otsu; alternatively, the thresholds can be user-specified. Th is then used to generate 
a set of segments, Sh . The supplementary segments Sl , are determined by applying the 
low threshold, Tl , to the low-intensity regions and then applying a sequence of connected 
component labelling, erosion and Felzenszwalb (Felzenszwalb and Huttenlocher, 2004). 
The combined set of segments, Sh and Sl , is checked to see if any individual segment 
is an image-counterfactual. If none is found, an iterative process is applied to gradu-
ally increase the minimum segment size parameter. The final set of segments (S, S’) is 
subsequently created using the combined set ( Sh , Sl ) as shown in Fig. 3.

2.	 Determine x’s image-counterfactuals. A dataset of perturbed images is created by selec-
tively replacing segments of x with the corresponding segments of x′ (see Fig. 4). A 
separate image is created for every combination in which either 1, 2, 3, or 4 segments 
are replaced. Each perturbed image is then passed through m to determine its classifica-
tion probability. All image-counterfactuals involving changes in up to four segments 
are then identified. (The maximum number of perturbed segments in a counterfactual 

Counterfactual-regression fidelity error = |reg(cj) − ycj |.
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is a user parameter; the decision to set it to 4 in our experiments was made as we found 
counterfactuals involving 5+ segments to have little additional explanatory value.)

3.	 Perform a stepwise logistic regression. A tabular dataset is created by using a {0,1} rep-
resentation of the segments in each perturbed image from step 2. Consider a perturbed 
image xper . This will be composed of a combination of segments si from the original 
image x and segments s′

i
 from the GAN contrast image x′ . In order to represent xper in 

tabular form, each segment of xper that is from x is represented as a 1 and each seg-
ment of xper that is from x′ is represented as a 0. For example, if xper consisted solely of 
{s�

1
, s2, s3, s4} , and had a classification probability from m equal to 0.75 of being ’pleural 

effusion’, then this would be represented in tabular form as {0, 1, 1, 1, 0.75} . The table 
of representation vectors is the input to a weighted logistic regression in which those 
perturbed images that are image-counterfactuals are given a high weighting and act as 
soft constraints. The {0,1} representation of the segments are the independent variables 
and the classification probability is the dependent variable. Figures (5 and 6) provide 
examples of the resulting logistic equation and the calculation of classification prob-
ability.

4.	 Calculate segment importance scores. These are the regression coefficients for each 
segment from step 3.

5.	 Identify cases of causal overdetermination (see below).
6.	 Measure the fidelity of the regression by calculating fidelity errors (see Fig. 5) and 

goodness of fit statistics.
7.	 Iterate to the best explanation. In XAI there is often a trade-off between the interpret-

ability of an explanation and its fidelity. For example, a regression equation that has 
two independent variables and no interaction terms is likely to be easier to interpret 
than a regression equation with more independent variables and several interaction 
terms. Because of its increased complexity, the latter regression equation might better 
mimic the local input–output behaviour of the AI system to be explained (i.e. it will 
have greater fidelity). CLEAR Image allows the user to adjust parameters such as (i) 
whether to include interaction terms (ii) the maximum number of independent variables 
in a regression. It then reports the fidelity of the resulting explanation. In this way, the 
user can iterate to the explanation that they judge provides the best trade-off between 
interpretability and fidelity.

Fig. 6   Overdetermination. The report identifies segments 9 and 11 as each sufficient to have caused the 
original X-ray to be classified as ‘pleural effusion’ with a probability greater than 0.99. Hence this is a case 
of causal overdetermination. The corresponding GAN-generated image x′ has a classification probability 
≈ 0 for pleural effusion. If a perturbed image xper was created by substituting all the segments of the origi-
nal image x with the corresponding segments of x′ except for segment 9, then xper would still have a clas-
sification probability for pleural effusion greater than 0.99. The same would apply if only segment 11 was 
substituted
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For CLEAR Image an explanation is a tuple < G;C;r;O, e > , where G are segment 
importance scores, C are image-counterfactuals, r is a regression equation, O are the causes 
resulting in overdetermination, and e are fidelity errors. The regression equation is a causal 
equation with each independent variable (each referring to whether a particular segment is 
from x or x′ ) being a direct cause of the classification probability. Figure 5 shows an extract 
from a CLEAR report. Pseudocode summarising how CLEAR Image generates an expla-
nations is provided in Algorithm 2.
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The causal overdetermination of an effect occurs when multiple sufficient causes of that 
effect occur. By default, CLEAR Image only reports sufficient causes which each consist of 
a single segment belonging to S. Substituting a sufficient cause for its corresponding mem-
ber in S′ guarantees the effect. In the philosophy of science, it is generally taken that for an 
effect to be classified as overdetermined, it should be narrowly defined, such that all the 
sufficient causes have the same, or very nearly the same impact (Paul, 2009). Hence for the 
case studies, the effect is defined as p(x ∈ diseased) > 0.99 , though the user may choose a 
different probability threshold. A sufficient cause changes a GAN-generated healthy image 
to a diseased image. This is in the opposite direction to CLEAR Image’s counterfactuals 
whose perturbed segments flip the classification to ’healthy’. Sufficient causes can be read 
off from CLEAR Image’s regression equation. Using the example in Fig. 6 with the logistic 
formula, a classification probability of > 0.99 requires wT

x > 4.6 . The GAN healthy image 
corresponds to all the binary segment variables being equal to 0. Hence, wT

x is equal to 
the intercept value of −4.9, giving a probability of (1 + exp4.9)−1 ≈ 0.01 . If a segment s′

i
 

is now replaced by si , the corresponding binary variable changes to 1. Hence if segment 9 
is infilled, then Seg09 = 1 and wT

x = 6.8 (i.e.11.7 − 4.9) . Similarly, infilling just segment 
11 will make wT

x > 4.6 . Either substitution is sufficient to guarantee wT
x > 4.6 , irrespec-

tive of any other changes that could be made to the values of the other segment variables. 
Hence segments 9 and 11 are each a sufficient cause leading to overdetermination.

By contrast, XAI methods such as LIME and Kernel SHAP cannot identify cases of 
overdetermination. This is because they use simple linear regression instead of logis-
tic regression. For example, suppose that an image has three segments: s1, s2, s3 . In the 
regression dataset, each segment infilled from x has a value of 1 and each segment infilled 
from x′ has a value of 0. LIME/Kernel SHAP’s regression equation will have the form: 
y = k1s1 + k2s2 + k3s3 . In the case of LIME, y is meant to be the classification probability 
and the regression coefficients ( k1, k2, k3 ) are the feature importance scores. Let us suppose 
there is overdetermination, with segments s1 and s2 each being a sufficient cause for x to be 
in a given class (e.g. ’pleural effusion’) with more than 0.99 probability. Hence, the regres-
sion equation should set y to a value greater than 0.99 not only when s1 = s2 = 1, but also 
when either s1 = 1 or s2 = 1 . This is clearly impossible with the above linear form (and the 
constraint that y ≤ 1 ). Mutatis mutanda, the same argument applies for Kernel SHAP.

4 � Experimental investigation

There are two case studies, the first using a synthetic dataset, the second analysing pleural 
effusion X-rays taken from the CheXpert dataset (Irvin et al., 2019). Transfer learning was 
used to train both a VGG-16 with batch normalisation and a DenseNet-121 classifier for 
each dataset. CLEAR Image was evaluated against Grad-CAM, Extremal Perturbations and 
LIME. The evaluation consisted of both a qualitative comparison of saliency maps and a 
comparison of pointing game and intersection over union (IoU) scores. CLEAR Image’s 
fidelity errors were also analysed (none of the other XAI methods measures fidelity).

4.1 � Datasets

The synthetic dataset’s images share some key characteristics found in medical imaging 
including: (i) different combinations of features leading to the same classification and (ii) 
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irrelevant features. All images (healthy and diseased) contain a set of concentric circles, a 
large and a small ellipse. An image is ‘diseased’ if either: (1) the small ellipse is thin-lined, 
and the large ellipse contains a square or (2) there is a triangle, and the large ellipse con-
tains a square. The dataset is an adaptation of Wolleb et al. (2020).

CheXpert is a dataset of chest X-rays with automated pathological label extraction 
through radiology reports, consisting of 224,316 radiographs of 65,240 patients in total. 
Images were extracted just for the classes ‘pleural effusion’ and ‘no finding’. Mis-clas-
sified images and images significantly obstructed by supporting devices were manually 
filtered. A random frontal X-ray image per patient was collected. In total, a dataset of 
2,440 images was used in this work for model training, validation and testing. Appendix 
A.2 details the data preparation process. A hospital doctor provided the ground truth 
annotation to the X-ray images with pleural effusion for our case study.

4.2 � Evaluation metrics

This paper uses two complementary metrics to evaluate XAI methods. Both require 
annotated images identifying ‘target’ regions that should be critical to their classifica-
tion. A pointing game produces the first metric, which measures how successfully a sali-
ency map ‘hits’ an image’s targets. Previously pointing games have been designed for 
cases where (i) images have single targets (ii) the saliency maps have a maximum inten-
sity point (Fong et al., 2019; Zhang et al., 2018). By contrast, this paper’s case studies 
have multiple targets, and the pixels within each CLEAR Image segment have the same 
value. We, therefore, formulated a novel pointing game. The pointing game partitions a 
‘diseased’ image into 49 square segments, P = {p1 … p49} and identifies which squares 
contain each of the targets. The corresponding saliency map is also partitioned, and 
each square is allocated a score equal to the average intensity of that square’s pixels 
Q = {q1 … q49} . The pointing game then starts with the qi of highest intensity and deter-
mines if the corresponding pi contains a relevant feature. A successful match is a ‘hit’ 
and an unsuccessful match is a ‘miss’. This process continues until every target has at 
least one hit. The score for an image is the number of hits over the number of hits plus 
misses. Pseudocode is provided in Algorithm 3.

The second metric is IoU. It is assumed that each pixel in a saliency map is classified 
as ‘salient’ if it is above 70th percent of the maximum intensities in that map. IoU then 
measures the overlap between the ‘salient’ pixels pixsalient and the pixels belonging to the 
image’s targets pixtarget : IOU = (pixsalient ∩ pixtarget)∕(pixsalient ∪ pixtarget) . The chosen 
percentile was an empirically identified threshold to maintain a relatively high IoU score 
by balancing high intersection with pixtarget and small union of pixel regions with a large 
enough pixsalient (see Appendix A.1 for details).

Both metrics are useful but have counterexamples. For example, IoU would give too 
high a score to a saliency map that strongly overlapped with a large image target but com-
pletely missed several smaller targets that were also important to a classification. However, 
applied together, the two metrics provide a good indication of an XAI’s performance.
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4.3 � Experimental runs

CLEAR Image was run using logistic regression with the Akaike information criterion; 
full testing and parameter values can be found in Appendix B.3. The test datasets consisted 
of 95 annotated X-rays and 100 synthetic images. The average running time for CLEAR 
Image was 20 s per image for the synthetic dataset and 38 s per image for the CheXpert 
dataset, running on a Windows i7-8700 RTX 2070 PC. Default parameter values were used 
for the other XAI methods, except for the following beneficial changes: Extremal Perturba-
tions was run with ‘fade to black’ perturbation type, and using areas {0.025,0.05,0.1,0.2} 
with the masks summed and a Gaussian filter applied. LIME was run using Quickshift seg-
mentation with kernel sizes 4 and 20 for the CheXpert and synthetic datasets respectively.

4.4 � Experimental results

CLEAR Image outperforms the other XAI methods on both datasets (Fig.  7a). Further-
more, its fidelity errors are low, indicating that the regression coefficients are accurate for 
the counterfactually important segments (Fig. 7b). Figure 7c illustrates some of the benefits 
of using the ‘Best Configuration’, which uses GAN-augmented segmentation and infills 
using x′ . This is compared with (i) segmenting with Felzenszwalb and infilling with x′ (ii) 
segmenting with GAN-augmented but infilling with black patches (iii) segmenting with 
Felzenszwalb, infilling with black patches. Figure 8 illustrates how CLEAR Image’s use 
of GAN-augmented leads to a better explanation than just using a difference mask (e.g. 
CLEAR Image’s performance was similar for VGG-16 and DenseNet; therefore, only the 
DenseNet results are presented unless otherwise stated.

CLEAR Image’s regression equation was able to capture the relatively complex causal 
structure that generated the synthetic dataset. Figure 9 shows an example. A square (SQ) 
is a necessary but insufficient cause for being diseased. An image is labelled as diseased if 
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Fig. 7   Evaluation metrics. a Compares the performances of different XAI methods with the DenseNet mod-
els. b Shows the fidelity errors for the DenseNet models. c Compares the performances of different configu-
rations of CLEAR Image. The bars show 95% confidence intervals

Fig. 8   GAN-Augmented Segmentation versus GAN difference mask. The difference mask identifies four 
segments but when CLEAR Image perturbs these, the two nearest to the top were found to be irrelevant. Of 
the other two segments, CLEAR Image identifies the segment it colors green to be far more important to the 
classification probability

Fig. 9   Extracts from a CLEAR Image report for a synthetic image. The regression equation shows that 
Seg05 is a necessary but insufficient cause of the X-ray being diseased
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there is also either a triangle (TR) or the small ellipse is thin-lined (TE). When SQ, TR and 
TE are all present in a single image, there is a type of overdetermination in which TR and 
TE are each a sufficient cause relative to the ‘image with SQ already present’. As before, a 
diseased image corresponds to the binary segment variables equalling one and a classifica-
tion probability of being diseased > 0.99 requires wT

x > 4.6 . This can only be achieved by 
Seg 5 (corresponding to SQ) plus at least one of Seg 2 or Seg 7 (TE, TR) being set to 1 (i.e. 
being present). Figure 10 compares the saliency maps for synthetic data.

For the CheXpert dataset, Fig.  11 illustrates how CLEAR Image allows for a greater 
appreciation of the pathology compared to ‘broad-brush’ methods such as Grad-CAM 
(please see Appendix A1 for further saliency maps). Nevertheless, the IoU scores highlight 
that the segmentation can be further improved. For CheXpert’s counterfactuals, only 5% of 
images did not have a counterfactual with four or fewer s′ segments. Most images required 
several s segments to be infilled before its classification flipped to ‘healthy’, 17% required 
one segment, 30% with two segments, 24% with three segments and 24% with four seg-
ments. 17% of the X-rays’ were found to be causally overdetermined.

5 � Discussion, conclusion and future work

With AI systems for images being increasingly adopted in society, understanding their 
implicit causal structures becomes paramount. Yet, the explanations provided by XAI 
methods cannot always be trusted, as the differences in the saliency maps of Fig. 11 exem-
plify. It is therefore important that XAI methods should measure their fidelity. By ‘know-
ing when it does not know’, it can alert the user when its explanations are unfaithful.

CLEAR Image recognises that a difference mask is only the starting point for an expla-
nation. In the experiments reported in this paper, CLEAR Image uses a GAN-generated 
image both for infilling and as input to its own segmentation algorithm. As discussed 

Fig. 10   Comparison of XAI methods on synthetic data. The pointing game scores are shown in green and 
the IoU scores are in purple. The maps illustrate how CLEAR Image and LIME are able to tightly focus on 
salient regions of an image compared to broadbrush methods such as Grad-CAM and Extremal. The signifi-
cance of a patch is indicated by its red intensity
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below, other approaches are possible when the segmentation can be defined in advance 
with the use of prior knowledge as in the case of brain scans. This is under investigation.

We have shown that CLEAR Image can illuminate cases of causal overdetermination. Many 
other types of causal structures may also be ubiquitous in AI. For example, causal preemption 
and causal clustering are well documented within the philosophy of science (Baumgartner, 
2009; Schaffer, 2004). The relevance of these to XAI creates an area of future work.

The examples in this paper help illustrate our claim that XAI counterfactual methods will 
often fail to provide satisfactory explanations of a classifier’s local input–output behaviour. 
This is because a satisfactory explanation requires both counterfactuals and a supporting 
causal equation. It is only because CLEAR Image produces a causal equation that it is able to 
identify (a) segment importance scores, including identifying segments with negative scores 
(Fig. 5), (b) segments that are necessary but insufficient causes (Fig. 9), (c) cases of overde-
termination (Fig. 6). Providing only counterfactuals is insufficient; imagine another science, 
say physics, treating a statement of counterfactuals as being an explanation, rather than seek-
ing to discover the governing equation. Perhaps the primary benefit of XAI counterfactual 
methods is in suggesting sets of actions. But as we noted in Sect. 2 and argued in Karimi 

Fig. 11   Comparison of XAI methods on X-ray. The pointing game scores are shown in green and the IoU 
scores are in purple. The significance of a patch is indicated by the intensity of red against the blue-outlined 
annotated ground truth
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et al. (2021), such methods may identify counterfactuals that are suboptimal or infeasible in 
terms of their actionability. This criticism does not apply to CLEAR Image because CLEAR 
Image’s purpose is to explain the local input–output behaviour of a classifier, and the role of 
its counterfactuals is (i) to illustrate the classifier’s causal structure (at the level of how much 
each segment can cause the classification probability to change) and (ii) answer contrastive 
questions. Hence, if the explanatory question is “why is this image classified as showing a 
zebra and not a horse?”, CLEAR Image might highlight the stripes on the animal as being a 
cause of the classification. Whilst this might be a satisfactory explanation of the classification, 
it is, of course, not actionable.

Methods such as LIME and Kernel SHAP bear some similarity to CLEAR Image as they 
also use a dataset of perturbed images to feed a regression. However, these methods do not use 
a GAN-generated image and do not report fidelity. Also, these methods assume that a classifi-
cation probability is a simple linear addition of its causes. This is incorrect for cases of causal 
overdetermination and CLEAR Image, therefore, uses a sigmoid function.

A key limitation for CLEAR Image is its reliance on using a contrast image, for both infill-
ing and for guiding segmentation. The contrast image needs to be aligned with the target 
image so that the perturbed images are correctly infilled. In this paper’s experiments, CLEAR 
Image uses a GAN-generated contrast image. But there is a data availability constraint for cus-
tom training of a GAN especially in specialized domains. Training stability and convergence, 
as well as mode collapse are also common concerns during GAN training. Nevertheless, it 
may still be possible to obtain contrast images through other means. For example in human 
neuroimaging, AI systems are often trained using registered and normalised MRI scans (Pöl-
sterl et al., 2021). In such cases, a contrast image can be simply selected from images belong-
ing to the required contrast class. In cases where a contrast image cannot be obtained then 
CLEAR can use the same infilling (black/blurred) and external segmentation methods used 
by LIME. CLEAR Image will then be expected to have similar fidelity as LIME but, critically, 
unlike LIME it will report its fidelity, so the user will know if the explanation corresponds to 
the underlying model.

Another possible limitation could be the understandability of CLEAR Image to non-techni-
cal users. A user study should now be carried out. These are time and resource consuming and 
need to be devised carefully by experts within specific application domains to produce sound 
and reliable results. Instead, we have focused on objective measures and evaluations of fidel-
ity which in our view should precede any user study. Future work will also include adapting 
CLEAR Image to the multimodal neural networks now being used in human neuroimaging, 
where contrast images can be readily obtained without using a GAN. There are brain atlases 
for these registered images (e.g. https://​atlas.​brain​netome.​org) which provide neurologically 
meaningful segments. Another area of work will be to extend our analysis of overdetermina-
tion to other types of causal structures.

Appendix A: Supplemental results for CheXpert dataset and associated 
data pre‑processing

Supplementary qualitative results

Additional qualitative results for the CheXpert dataset are presented in this section 
(Figs.  12 and 13) where the most important segments (regions) identified by each XAI 
method is matched against the annotated ground truth. These are the pixels of saliency 

https://atlas.brainnetome.org
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maps that are above 70 percent of the maximum intensity (i.e. the segments used to cal-
culate the IoU scores). This threshold was determined empirically to yield high IoU score 
across all the XAI methods evaluated (see Fig. 14).

Figure 12 shows the additional results for the DenseNet model while Fig. 13 presents 
the results for the VGG16 model. These results have demonstrated higher precision using 
CLEAR Image in identifying significant segment matching against the annotated ground 
truth in comparison to other explanation methods. These two figures provide a qualitative 

Fig. 12   Representative comparative examples of the identified important segments of a DenseNet-based 
image classification model (Val Acc: 98.8%) for pleural effusion using (i) CLEAR Image, (ii) Grad-CAM, 
(iii) Extremal Perturbation and (iv) LIME
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comparison to supplement the results presented in Fig.  7 where CLEAR Image outper-
forms other XAI methods.

Data pre‑processing

CheXpert has a total of 14 pathological classes including ‘No Finding’, and these are 
labelled through an automated rule-based labeller from text radiology reports. For each 

Fig. 13   Representative comparative examples of the identified important segments of a VGG16-based 
image classification model (Val Acc: 97.5%) for pleural effusion using (i) CLEAR Image, (ii) Grad-CAM, 
(iii) Extremal Perturbation and (iv) LIME
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Fig. 14   Comparison of IoU score against four XAI methods, (1) CLEAR Image, (2) GradCAM, (3) Extre-
mal and (4) LIME to determine the threshold of intensity at 10% intervals. CLEAR Image outperforms the 
other XAI methods for each of the 4 intensity thresholds



3518	 Machine Learning (2023) 112:3497–3525

1 3

observation, the Stanford team has classified each radiograph as either negative (0), uncer-
tain (-1) or positive (1). Other metadata includes gender, age, X-ray image projection and 
presence of supporting devices.

In this study, this dataset (v1.0) was applied for the model development of a binary clas-
sification task to demonstrate the capability of CLEAR Image as an XAI framework. An 
initial filtering process of the metadata was applied for the two classes used in the study 
- (1) Diseased with Pleural Effusion and (2) Healthy (this was assumed to be X-ray images 
with no findings and no positive observations in any of the pathological conditions). To 
minimise potential complications with other pathological conditions, X-ray images with 
only positive in pleural effusion were used with the other pathological categories either as 
negative/blank.

A review of the filtered images also identified that the dataset was curated with some 
images having significant artefacts that can hamper model training performance. Figure 15 
presents some of these images in both diseased and healthy categories. Many of these 
consisted of artefacts from image capturing and processing (e.g. image distortion, orienta-
tion, low resolutions or miscalibration). Some images were also significantly obstructed by 
limbs or support devices. Some healthy images were also wrongly labelled according to a 
hospital doctor, who assisted in our project. A secondary manual filtering was conducted to 
remove any identified images with artefacts.

The 2440 selected images were split approximately 80/10/10 for the training/validation/
testing. The images were also resized to 256 x 256 as the input into the classification model 
and generative adversarial network (GAN) as described in Sect. 5. Figure 16 presents some 
typical images in the final dataset for both diseased and healthy categories.

Fig. 15   Representative examples of poorly curated images including image distortion, mis-orientation, 
obstruction by limbs and support devices as well as significant spine deformation
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Appendix B: Model parameters

DeScarGAN and parameters

The DeScarGAN architecture was adopted for the synthetic dataset in Section 5.1. 80% of the 
dataset (4000 images) was used for GAN training and 20% of the dataset (1000 images) was 
used for validation. A total of 2,500 epochs was run and the best epoch was selected on visual 
quality. Additional 100 images were generated as an out-of-sample test dataset. Adam opti-
mizer was used with �1 = 0.5, �2=0.999. An initial learning rate of 10−4 was used and stepped 
down to a final learning rate of 10−6 . Default hyperparameters for loss functions were used to 
mimic a similar investigation from the original author as shown below in Table 1:

Fig. 16   Representative examples of final images for a diseased with identifiable regions of pathology and b 
healthy images with clear air space. All images have minimal obstructions from support devices

Table 1   Default loss function 
hyperparameters used in 
DeScarGAN

Loss term Weight value

Adversarial loss �adv,g = 1 (generator)
�adv,d = 20 (discriminator)

Gradient penalty loss �gp = 10
Identity loss �id = 50
Reconstruction loss �rec = 50
Classification loss �cls,g = 1 (generator)

�cls,d = 5 (Discriminator)



3520	 Machine Learning (2023) 112:3497–3525

1 3

StarGAN‑V2 and parameters

StarGAN-V2 (Choi et al., 2020) has been adopted in this work as a state-of-art GAN network 
for image translation. The GAN provided the necessary contrastive images for the CheXpert 
dataset. Default hyperparameters were maintained while notable loss weights are highlighted 
in Table 2. Adam optimizer was used with �1 = 0, �2=0.99. A total of 50,000 epochs were 
run for the CheXpert dataset. The style encoding was referenced to the input image for the 
translation to the targeted class. This aided in maintaining the general features of the images 
compared to the original. As StarGAN-V2 (Choi et al., 2020) did not constrain its generation 
to a localised region (e.g. lungs), post-processing of segmentation and blending was imple-
mented for the CheXpert dataset. Segmentation of the lung region was based on a pre-trained 
model with a U-Net architecture. The segmentation mask was subsequently used to guide the 
replacement of pixels within the lung region from the GAN generated healthy image onto 
the original diseased image. Gaussian Blur was applied to minimise the edge effect during 
the blending process. This post-processing step aided in restricting the feature identification 
space within the lungs and reducing the computational cost for locating the counterfactuals.

An evaluation of similarity to real healthy images was performed using the Fréchet 
inception distance (FID) (Heusel et  al., 2017) benchmarking against the set of healthy 
images in the model training dataset. Four image sets were compared: (1) real healthy 
images in the validation set, set of images with pleural effusion processed as described in 
Fig. 2 with replacement of lung segments using (2) corresponding GAN-generated healthy 
images, (3) Gaussian blurred version of the original images and (4) constant value of zero 
(i.e. black). This FID score indicated how close each of the four compared image sets to 
the benchmark images in the training set. A low score indicated similarity between the two 
datasets.

As observed in Fig. 17, the processed images with replacement using GAN generated 
healthy lung segments resemble more similar to actual healthy images than blurred or 
black segments. As such, GAN generated processed images as described in Fig. 2 were 
selected as the choice of synthetic healthy images for this work.

Table 2   Default Loss Function 
Hyperparameters used in 
StarGANv2 (Choi et al., 2020)

Loss term Weight value

Style reconstruction loss �sty = 1
Style diversification loss �ds = 1
Cyclic loss �cyc = 1
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Fig. 17   Comparison of Fréchet inception distance (FID) against the training healthy image dataset with (1) 
a set of real healthy images in the validation set, set of images with pleural effusion processed as described 
in Fig. 2 with replacement of lung segments using (2) corresponding GAN-generated healthy images, (3) 
Gaussian blurred version of the original images and (4) constant value of zero (i.e. black)

Clear Image parameters

The default parameters used for the Chest X-ray experiments were:
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For the CLEAR Image configuration experiments the parameter ‘image_infill’ had values 
[‘GAN’, ‘black’] and the parameter image_segment_type had values [‘Augmented_GAN’, 
‘Felzenszwalb’]

The same parameter values were used for the synthetic case study except:
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