
Vol.:(0123456789)

Machine Learning (2023) 112:1465–1497
https://doi.org/10.1007/s10994-023-06320-1

1 3

˛ILP: thinking visual scenes as differentiable logic programs

Hikaru Shindo1 · Viktor Pfanschilling1 · Devendra Singh Dhami1,2 ·
Kristian Kersting1,2,3

Received: 7 June 2022 / Revised: 29 November 2022 / Accepted: 15 February 2023 /
Published online: 14 March 2023
© The Author(s) 2023

Abstract
Deep neural learning has shown remarkable performance at learning representations for
visual object categorization. However, deep neural networks such as CNNs do not explic-
itly encode objects and relations among them. This limits their success on tasks that require
a deep logical understanding of visual scenes, such as Kandinsky patterns and Bongard
problems. To overcome these limitations, we introduce �ILP , a novel differentiable induc-
tive logic programming framework that learns to represent scenes as logic programs—intu-
itively, logical atoms correspond to objects, attributes, and relations, and clauses encode
high-level scene information. �ILP has an end-to-end reasoning architecture from visual
inputs. Using it, �ILP performs differentiable inductive logic programming on complex
visual scenes, i.e., the logical rules are learned by gradient descent. Our extensive experi-
ments on Kandinsky patterns and CLEVR-Hans benchmarks demonstrate the accuracy and
efficiency of �ILP in learning complex visual-logical concepts.

Keywords  Differentiable reasoning · Inductive logic programming · Object-centric
learning · Neuro-symbolic AI

Editors: Alireza Tamaddoni-Nezhad, Alan Bundy, Luc De Raedt, Artur d’Avila Garcez, Sebastijan
Dumančić, Cèsar Ferri, Pascal Hitzler, Nikos Katzouris, Denis Mareschal, Stephen Muggleton, Ute
Schmid.

 *	 Hikaru Shindo
	 hikaru.shindo@cs.tu-darmstadt.de

	 Viktor Pfanschilling
	 viktor.pfanschilling@cs.tu-darmstadt.de

	 Devendra Singh Dhami
	 devendra.dhami@cs.tu-darmstadt.de

	 Kristian Kersting
	 kersting@cs.tu-darmstadt.de

1	 TU Darmstadt, Darmstadt, Germany
2	 Hessian Center for AI (hessian.AI), Darmstadt, Germany
3	 Centre for Cognitive Science, TU Darmstadt, Darmstadt, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-023-06320-1&domain=pdf

1466	 Machine Learning (2023) 112:1465–1497

1 3

1  Introduction

Understanding visual scenes is a fundamental problem in building an intelligent agent.
Deep Neural Networks such as Convolutional Neural Networks (CNNs) have succeeded
in many visual-perception benchmarks but produce poor performance in complex visual
scenes, where several objects appear in an image, and the agent needs to reason and learn
about the attributes and relations. CNN-based models do not explicitly encode objects and
relations, and thus often fail to capture the patterns defined in complex visual scenes.

Kandinsky patterns (Holzinger et al., 2019; Müller & Holzinger, 2021; Holzinger et al.,
2021) have been proposed to assess the ability of intelligent systems to explain complex
visual scenes. In a similar vein, CLEVR-Hans (Stammer et al., 2021) has been proposed to
assess the ability of a model to understand confounded visual scenes. CNN-based models
cannot produce proper explanations in such cases and can also suffer from the problem of
confounding factors. Moreover, they are data-hungry and struggle to learn abstract visual
relations (Kim et al., 2018). A natural question thus arises: How can we build an intelligent
system avoiding these pitfalls?

To build a system overcoming the shortages of CNN-based models, Neuro-Symbolic
approaches (Besold et al., 2017; d’Avila Garcez & Lamb, 2020; Tsamoura et al., 2021)
have emerged, where symbolic computations are integrated with neural networks. As
logic-based neuro-symbolic systems, many frameworks have been proposed, e.g., Deep-
Problog (Manhaeve et al., 2018, 2021), NeurASP (Yang et al., 2020), and �ILP (Evans &
Grefenstette, 2018). However, previous studies are not capable of complete structure learn-
ing from visual input (Manhaeve et al., 2018, 2021; Yang et al., 2020) or not capable of
handling complex rules and visual scenes (Evans & Grefenstette, 2018). Therefore, struc-
ture learning on complex scenes such as Kandinsky patterns (Holzinger et al., 2019; Mül-
ler & Holzinger, 2021; Holzinger et al., 2021) and CLEVR-Hans (Stammer et al., 2021)
problems is difficult, if not impossible, using these frameworks.

To mitigate this issue, we propose �ILP,1 a novel differentiable Inductive Logic Pro-
gramming (ILP) framework that combines object-centric perception with ILP (Muggleton,
1991, 1995; Nienhuys-Cheng et al., 1997; Cropper et al., 2022), establishing one of the
first in the 4th type of neuro-symbolic system, i.e., Neuro:Symbolic→Neuro, as proposed
by Kautz (2022). �ILP maps output of neural networks (Neuro) to symbolic representations
(Symbolic), then gradient-based learning is performed on top of it (Neuro). �ILP performs
structure learning, i.e., learns discrete logic programs from complex visual scenes. To this
end, our system is an extension of Neuro-Symbolic systems such as DeepProblog (Man-
haeve et al., 2018, 2021) and �ILP (Evans & Grefenstette, 2018).

�ILP has an end-to-end reasoning architecture from visual input, which consists of three
main components: (i) visual perception module, (ii) facts converter, and (iii) differentiable
reasoning module. The facts converter converts the output of the visual perception module
into the form of probabilistic facts, which can be fed into the reasoning module. Then,
the reasoning module performs differentiable forward-chaining inference from a given set
of facts. It computes the set of facts that can be deduced from the given set of facts and
weighted logical rules (Evans & Grefenstette, 2018; Shindo et al., 2021). The final pre-
diction can be made based on the result of the forward-chaining inference. �ILP learns

1  The name �ILP is inspired by “the eyes of Argus” from Greek mythology since we primarily deal with
visual scenes.

1467Machine Learning (2023) 112:1465–1497	

1 3

logic programs that encode high-level scene information by differentiable ILP techniques
(Shindo et al., 2021). It generates candidates of clauses by top-k beam search and learns the
weights for the clauses by backpropagation.

Overall, we make a number of key contributions: (1) We propose �ILP, a novel frame-
work that performs differentiable ILP from visual scenes. (2) To establish �ILP, we pro-
pose an end-to-end reasoning architecture from visual inputs. It performs differentiable
forward-chaining inference for visual scenes by using perception models and a facts-con-
verting algorithm. (3) We also propose a learning scheme for �ILP to perform differen-
tiable ILP for complex visual scenes. It integrates differentiable ILP techniques with the
visual domain, i.e., generates clauses efficiently and performs gradient-based optimiza-
tion from complex visual scenes. (4) We empirically show the following advantages of �
ILP: (i) �ILP solves ILP problems in visual scenes, i.e., Kandinsky patternss (Holzinger
et al., 2019; Müller & Holzinger, 2021; Holzinger et al., 2021) and CLEVR-Hans (Stam-
mer et al., 2021), with high accuracy outperforming neural baseline models. (ii) �ILP can
generate explanations, i.e., produces a readable solution in the form of logic programs. (iii)
�ILP is robust to confounding, i.e., avoids being over-fitted to confounding factors. (iv) �
ILP is data-efficient, i.e., reports no performance drop even when using 10% of the train-
ing data. (v) �ILP can perform fast inference. It supports efficient parallelized batch com-
putation on GPUs, therefore, it can classify a large number of instances in a large dataset
quickly.

2 � Background and related work

We use bold lowercase letters v,w,… for vectors. We use bold capital letters X,… for ten-
sors. We use calligraphic letters C,A,… for (ordered) sets and typewriter font �(�, �) for
terms and predicates in logical expressions.

2.1 � Preliminaries on logic and ILP

Language L is a tuple (P,F, T,V) , where P is a set of predicates, F is a set of function
symbols, T is a set of constants, and V is a set of variables. A term is a constant, a variable,
or an expression �(��,… , ��) where � is a n-ary function symbol and ��,… , �� are terms.
We denote n-ary predicate � by �∕(n, [���,… , ���]) , where ��� is the datatype of the i-th
argument. An atom is a formula �(��,… , ��) , where � is an n-ary predicate symbol and
��,… , �� are terms. A ground atom or simply a fact is an atom with no variables. A literal
is an atom or its negation. A positive literal is just an atom. A negative literal is the nega-
tion of an atom. A clause is a finite disjunction ( ∨ ) of literals. A definite clause is a clause
with exactly one positive literal. If A,B1,… ,Bn are atoms, then A ∨ ¬B1 ∨⋯ ∨ ¬Bn is a
definite clause. We write definite clauses in the form of A :-B1,… ,Bn . Atom A is called the
head, and the set of negative atoms {B1,… ,Bn} is called the body. We denote the special
constant true as ⊤ and false as ⊥ . An atom is an atomic formula. For formula F and G, ¬F ,
F ∧ G , and F ∨ G are also formulas. Interpretation of language L is a tuple (D, IA, IF, IP) ,
where D is the domain, IA is the assignments of an element in D for each constant � ∈ A ,
IF is the assignments of a function from Dn to D for each n-ary function symbol � ∈ F  ,
and IP is the assignments of a function from Dn to {⊤,⊥} for each n-ary predicate � ∈ P .
For language L and formula F, an interpretation I is a model if the truth value of F w.r.t
I is true. Formula F is a logical consequence or logical entailment of a set of formulas S ,

1468	 Machine Learning (2023) 112:1465–1497

1 3

denoted S ⊧ F , if, I is a model for S implies that I is a model for F for every interpretation
I of L.

An ILP problem Q is a tuple (E+, E−,B,L) , where E+ is a set of positive examples, E− is
a set of negative examples, B is background knowledge, and L is a language. Background
knowledge can be given in the form of the set of facts or clauses. The solution to an ILP
problem is a set of definite clauses H ⊆ L that satisfies the following conditions:

∀A ∈ E+ H ∪ B ⊧ A and ∀A ∈ E− H ∪ B ̸⊧ A.

2.2 � Related work towards visual ILP

Over 50 years ago, M. M. Bongard, a Russian computer scientist, invented a collection of
one hundred human-designed visual recognition tasks (Bongard & Hawkins, 1970), now
named the Bongard Problems (BPs), to demonstrate the gap between high-level human
cognition and computerized pattern recognition. Inspired by BPs, the Bongard-LOGO (Nie
et al., 2020) problem has been proposed as a benchmark for the machine learning com-
munity. Kandinsky patterns (Holzinger et al., 2019; Müller & Holzinger, 2021; Holzinger
et al., 2021) have been proposed to assess the ability of intelligent systems to explain com-
plex visual scenes. In a similar vein, CLEVR-Hans (Stammer et al., 2021) has been pro-
posed to assess the ability of the model to understand the confounded visual scenes. These
benchmarks present a challenge to CNN-based recognition models.

Logic, both propositional and first-order, is an established framework for performing
reasoning on machines (Lloyd, 1984; Kowalski, 1988). A pioneering study of inductive
inference on logic was done in the early 70 s (Plotkin, 1971). The Model Inference Sys-
tem (MIS) (Shapiro, 1983) has been implemented as an efficient search algorithm for logic
programs. Inductive Logic Programming (Muggleton, 1991, 1995; Nienhuys-Cheng et al.,
1997; Cropper et al., 2022) has emerged at the intersection of machine learning and logic
programming. Many ILP frameworks have been developed, e.g., FOIL (Quinlan, 1990),
Progol (Muggleton, 1995), ILASP (Law et al., 2014), Metagol (Cropper & Muggleton,
2016; Cropper et al., 2019), and Popper (Cropper & Morel, 2021). Symbolic ILP systems
are dedicated to symbolic inputs. �ILP deals with visual inputs by having an end-to-end
neuro-symbolic reasoning architecture. �ILP employs similar structure-learning techniques
which have been developed for probabilistic logic programs (Bellodi & Riguzzi, 2015;
Nguembang Fadja & Riguzzi, 2019) and performs learning on complex visual scenes.
Different settings of probabilistic ILP approaches have been introduced in De Raedt et al.
(2008). �ILP is based on the learning from entailment setting, where the logical entailment
is computed from probabilistic inputs. �ILP computes the logical entailment with probabil-
istic values for facts and clauses in a differentiable manner.

The integration of symbolic programs and neural networks, which is called Neuro-Sym-
bolic computation (Besold et al., 2017; d’Avila Garcez & Lamb, 2020; Tsamoura et al.,
2021), has previously been addressed, e.g., DeepProblog (Manhaeve et al., 2018, 2021),
NeurASP (Yang et al., 2020), �ILP (Evans & Grefenstette, 2018; Jiang & Luo, 2019),
NS-CL (Mao et al., 2019), integration with abductive learning (Dai et al., 2019), and dif-
ferentiable theorem provers (Rocktäschel & Riedel, 2017; Minervini et al., 2020). Kan-
dinsky patterns and CLEVR-Hans cannot be solved easily by these frameworks because
they require complete structure learning from complex visual scenes. DeepProblog sup-
ports structure learning but is limited for the sketching setting (Solar-Lezama, 2008;
Bošnjak et al., 2017). �ILP supports object-centric perception models, differentiable for-
ward reasoning, and efficient clause search for solving tasks in complex visual scenes.

1469Machine Learning (2023) 112:1465–1497	

1 3

Some neuro-symbolic models have been developed for Visual Question Answering (VQA)
(Antol et al., 2015; Johnson et al., 2017; Santoro et al., 2018; Mao et al., 2019; Amiza-
deh et al., 2020). In VQA-based models, the symbolic programs are determined by the
natural language sentences that represent questions, but �ILP does not have that assump-
tion. Moreover, �ILP stands in the line of probabilistic logic programming (De Raedt et al.,
2016; Raedt et al., 2020). Therefore, �ILP can employ methods for probabilistic logic pro-
gramming, which have been developed in the community. Similar concepts of some key
components of �ILP have been investigated in previous studies, e.g., Neural Predicates
(Diligenti et al., 2017; Donadello et al., 2017; Badreddine et al., 2022), weighted forward-
chaining reasoning (Sourek et al., 2018; Si et al., 2019), and differentiable structure learn-
ing (Evans & Grefenstette, 2018; Sourek et al., 2017). �ILP is the first that integrates these
concepts for the visual object-centric domain as a consistent framework. Logic Tensor Net-
works (LTNs) (Badreddine et al., 2022) provide a unified differentiable language for first-
order logic. LTNs map each term in first-order logic to numerical representations in place
of interpretation. Then predicates are grounded to functions that take numerical represen-
tations of terms and return a truth value in [0, 1]. �ILP takes a similar approach to connect
the sub-symbolic and symbolic representations.

Object-centric learning is an approach to decomposing an input image into representa-
tions in terms of objects (Dittadi et al., 2022). This problem has been widely addressed in
the computer vision community. Another approach is the unsupervised approach (Burgess
et al., 2019; Engelcke et al., 2020; Locatello et al., 2020), where the models acquire the
ability of object-perception without or with fewer annotations. �ILP uses these object-cen-
tric models as a perception module.

Differentiable solvers for dynammic programming problems have been developed
(Cuturi & Blondel, 2017; Mensch & Blondel, 2018). �ILP adopts some techniques to
achieve differentiable implementations of the discrete operations for first-order logic.
Various types of differentiable logical operations have been also investigated (van Krieken
et al., 2022; Sen et al., 2022).

3 � ILP

We now introduce �ILP in the following steps. First, we give an overview of the problem
setting and the framework. Second, we explain the reasoning architecture of �ILP consist-
ing of (i) the visual-perception module, (ii) facts converter, an algorithm to convert object-
centric representations into probabilistic facts, and (iii) the differentiable forward-reasoning
mechanism. Finally, we describe the learning strategy on �ILP to perform differentiable
ILP on visual scenes.

What is visual ILP? We address the ILP problem in visual scenes, which is called visual
ILP problem, where each example is given as an image containing several objects. The
classification pattern is defined on high-level concepts such as attributes and relations of
objects.

3.1 � Architecture overview

Figure 1 illustrates an overview of �ILP and consists of a Reasoning module and a Learn-
ing module. We now introduce these in detail.

1470	 Machine Learning (2023) 112:1465–1497

1 3

3.1.1 � Reasoning

�ILP has an end-to-end reasoning architecture, which works as follows: (i) The raw
input images are factorized in terms of objects using the visual-perception model. (ii)
The object-centric representation is converted into a set of probabilistic facts. (iii) The
differentiable forward reasoning is performed using weighted clauses. The bottom row
of Fig. 1 illustrates the reasoning architecture in �ILP.

3.1.2 � Learning

�ILP learns logic programs from visual inputs by performing differentiable ILP, i.e.,
we provide positive examples, negative examples, and background knowledge. Each
example is given as a visual scene. The top row of Fig. 1 illustrates the learning pipe-
line in �ILP. Learning with �ILP is as follows: (Step1) A set of candidates of clauses
is generated by top-k beam search. The search is conducted from examples of visual
scenes using the end-to-end reasoning architecture. (Step2) The weights for the gener-
ated clauses are trained to minimize the loss function. By using the end-to-end reason-
ing architecture, �ILP finds a logic program that explains the complex visual scenes by
gradient descent. We now describe our architecture in detail.

Fig. 1   An overview of �ILP. (Reasoning)�ILP has an end-to-end reasoning architecture from visual input
based on differentiable forward reasoning. In the reasoning step, (1) The raw input images are factorized in
terms of objects using the visual-perception model. (2) The object-centric representation is converted into
a set of probabilistic facts. (3) The differentiable forward reasoning is performed using weighted clauses.
(Learning) To solve the classification problem of visual scenes, we provide positive examples, negative
examples, and background knowledge. Each example is given as a visual scene. �ILP performs 2-steps
learning as follows: (Step1) A set of candidates of clauses is generated by top-k beam search. The search is
conducted from examples of visual scenes using the end-to-end reasoning architecture. (Step2) Then, the
weights for the generated clauses are trained to minimize the loss function. By using the end-to-end reason-
ing architecture, �ILP finds a logic program that explains the complex visual scenes by gradient descent

1471Machine Learning (2023) 112:1465–1497	

1 3

3.2 � Visual perception

We make the minimal assumption that the perception network takes an image and
returns a set of object-centric vectors, where each dimension represents an attribute of
the object, e.g., colors, shapes, and positions. Thus, any type of neural network that seg-
ments the input images into the individual objects present in the image can be utilized.
For example, �ILP can employ a slot attention model (Locatello et al., 2020) for 3D
scenes. However, with natural images, �ILP can employ other established object-detec-
tion models such as YOLO (Redmon et al., 2016), Faster-RCNN (Ren et al., 2015), and
Mask-RCNN (He et al., 2017). The visual-perception module is trained on randomly-
generated figures with annotations about each object, i.e., the number of objects and the
attributes of the objects are randomly determined.

3.3 � Facts converter: lifting to symbolic representation

After the object-centric perception, �ILP generates a logical representation, i.e., a set of
probabilistic facts. We propose a new type of predicate that can refer to differentiable
functions to compute the probability. We also present an algorithm to convert the per-
ception result into probabilistic facts.

3.3.1 � Neural predicate

To build a bridge between the sub-symbolic and symbolic representations, we provide a
new type of predicate, which we term as neural predicates. A neural predicate is associ-
ated with a differentiable function, which we call valuation function, that produces the
probability of the grounded facts.

Definition 1  A neural predicate �∕(n, [���,… , ���]) is a n-ary predicate associated with
a valuation function v� ∶ ℝ

d1×⋯×dn → ℝ , where ��� is the datatype of the i-th argument,
di ∈ ℕ is the dimension of the vector representation of the term whose datatype is ���.

Intuitively, we give the first-order logic interpretation for neural predicates and terms
as follows: (i) each neural predicate is assigned to a function in a vector space, (ii) each
term in the arguments of neural predicates is assigned to a vector. The vector can be
an output of neural networks, or an encoding of the term, e.g., one-hot encoding of the
attributes.

3.3.2 � Facts‑converting algorithm

The facts converter produces a set of probabilistic facts from the output of the percep-
tion module. Let G be the set of all facts; then the conversion proceeds as follows: For
each fact �(��,… , ��) ∈ G , if it consists of a neural predicate, then the corresponding
valuation function v� is called to compute the probability of the fact. Otherwise, zero is
given as the probability of the fact. If the fact is in the background knowledge, one is
given as the probability of the fact. The valuation function maps each term ��,… , �� to
vector representations according to the interpretation. The forward reasoning function

1472	 Machine Learning (2023) 112:1465–1497

1 3

requires a vector that maps each fact to a probabilistic value to achieve the differenti-
able computation. Thus, the probabilistic values are computed for all of the facts.

Figure 2 illustrates an example of the implementation of the facts converter. We
assume that the perception model produces the probabilities of the attributes (color,
shape, position) for each object. (1) For neural predicate �����∕(2, [������, �����]) ,
we compute the probability of fact �����(����, ���) by calling the valuation func-
tion v����� . Term ���� is mapped to the output of the perception module, and term
��� is mapped to its one-hot encoding. By using these vector representations of the
terms, v����� computes the probability of the atom, simply performing the tensor mul-
tiplication and summation. (2)For neural predicate �������(2∕[������, ������]) , we
compute the probability of fact �������(����, ����) by calling the valuation function
v������� . Term ���� and ���� are mapped to the corresponding output of the perception
model, respectively. Then the positional information is extracted, and logistic regres-
sion is performed on the distance between two data points. By adapting the weights of
the linear transformation, the facts converter can learn the concept of ������� flexibly.
We note that the valuation functions of neural predicates are defined by the user, and
parameterized valuation functions are trained before performing structure learning.

3.4 � Differentiable forward‑chaining inference

Forward-chaining inference is a type of inference in first-order logic to compute logi-
cal entailment (Russell & Norvig, 2009). For example, let C be a set of clauses and G
be a set of all known facts. Then, forward-chaining inference can compute the set of
facts F such that C ∪ G ⊧ F  . Differentiable forward-chaining inference (Evans & Gre-
fenstette, 2018; Shindo et al., 2021) computes the logical entailment in a differentiable
manner. We briefly summarize the steps: (Step 1) A tensor that holds the relationships
between clauses and facts is computed. (Step 2) Each clause is compiled into a differ-
entiable function that performs forward reasoning using the tensor. (Step 3) A differ-
entiable logic program is composed of the clause functions and their weights. T-time
step inference is computed by amalgamating the inference results recursively.

Fig. 2   An illustration of the facts converter in �ILP. It decomposes the raw-input images into object-centric
representations (left). The valuation functions are called to compute the probability of facts. Each term in
the arguments is mapped to a vector representation (middle). The result is converted into the form of proba-
bilistic facts (right)

1473Machine Learning (2023) 112:1465–1497	

1 3

3.4.1 � Tensor encoding

Following (Shindo et al., 2021), we build a tensor holding relationships between clauses C
and facts G . We assume that C and G are ordered sets, i.e., where every element has its own
index. Let L be the maximum body length in C , S be the maximum number of substitu-
tions for existentially quantified variables in clauses C , C = |C| and G = |G| . Index tensor
I ∈ ℕ

C×G×S×L contains the indices of the facts to compute forward inferences. Intuitively,
Ii,j,k,l is the index of the l-th fact (subgoal) in the body of the i-th clause to derive the j-th
fact with the k-th substitution for existentially quantified variables.

Example
Let R0 = ���(�) :- ��(��, �), �����(��, ���) ∈ C and F2 = ���(���) ∈ G , and we

assume that terms of objects are {����, ����} . To compute the subgoals for fact F2 and
clause R0 , F2 and the head atom can be unified by substitution � = {� = ���} . By apply-
ing � to body atoms, we get clause ���(���) :- ��(��, ���), �����(��, ���). , which has
an existentially quantified variable �� . By considering the possible substitutions for �� ,
namely ��∕���� and ��∕���� , we have grounded clauses, as shown on top of Table 1.
Bottom rows of Table 1 shows elements of tensor I0,∶,0,∶ and I0,∶,1,∶ . Facts G and the indi-
ces are represented on the upper rows in the table. For example, I0,2,0,∶ = [3, 5] because
R0 entails ���(���) with substitution � = {�� = ����} . Then the subgoal atoms are
{��(����, ���), �����(����, ���)} , which have indices [3, 5], respectively. The atoms
which have a different predicate, e.g., �����(����, ������) , will never be entailed by
clause R0 . Therefore, the corresponding values are filled with 0, which represents the index
of the false atom.

3.4.2 � Valuation

The valuation vector v(t) ∈ ℝ
G maps each fact into a continuous value at each time step

t. Each value v(t)
i

 represents the probability of fact Fi ∈ G . The differentiable inference is
performed based on valuation vectors. To compute the T-step forward-chaining inference,
we compute the sequence of valuation vectors v(0),… , v(T) . We denote a batch of valuation
vectors at time step t as V(t) ∈ ℝ

B×G , where B is the batch size. In logical reasoning, the
parallelized batch computation is non-trivial. Thus, we explicitly denote the dimension of
the batch in this section.

3.4.3 � Clause function

Each clause Ri ∈ C is compiled into a clause function. The clause function takes a valuation
vector V(t) , and returns a valuation vector C(t)

i
∈ ℝ

B×G , which is the result of 1-step forward
reasoning using Ri and V(t) . The clause function is computed as follows. Let I ∈ ℕ

C×G×S×L
be an index tensor. First, tensor Ii ∈ ℕ

G×S×L is extended for batches, i.e., ̃Ii ∈ ℕ
B×G×S×L ,

and V(t) ∈ ℝ
B×G is extended to the same shape, i.e., ̃V(t)

∈ ℝ
B×G×S×L . Using these tensors,

the clause function is computed as:

where gather1(X,Y)i,j,k,l = Xi,Yi,j,k,l ,k,l
 , and prod3 returns the product along dimension 3.

softor
�

d
 is a function for taking logical or softly along dimension d:

(1)C
(t)

i
= softor

𝛾

2
(prod3(gather1(

̃V
(t)
, ̃Ii)),

1474	 Machine Learning (2023) 112:1465–1497

1 3

Ta
bl

e 
1  

E
xa

m
pl

e
of

 g
ro

un
de

d
cl

au
se

s (
to

p)
 a

nd
 e

le
m

en
ts

 in
 th

e
in

de
x

te
ns

or
 (b

ot
to

m
)

Ea
ch

 fa
ct

 h
as

 it
s i

nd
ex

, a
nd

 in
de

x
te

ns
or

 c
on

ta
in

s t
he

 in
di

ce
s o

f t
he

 fa
ct

s t
o

co
m

pu
te

 fo
rw

ar
d

in
fe

re
nc

es

(k
=
0
)

�
�
�
(�
�
�
)
:-
�
�
(�
�
�
�
,
�
�
�
),
�
�
�
�
�
(�
�
�
�
,
�
�
�
)

(k
=
1
)

�
�
�
(�
�
�
)
:-
�
�
(�
�
�
�
,
�
�
�
),
�
�
�
�
�
(�
�
�
�
,
�
�
�
)

j
0

1
2

3
4

G
j

⊥
⊤

�
�
�
(�
�
�
)
�
�
(�
�
�
�
,
�
�
�
)

�
�
(�
�
�
�
,
�
�
�
)

I
0
,j
,0
,∶

[0
, 0

]
[1

, 1
]

[3
, 5

]
[0

, 0
]

[0
, 0

]
I
0
,j
,1
,∶

[0
, 0

]
[1

, 1
]

[4
, 6

]
[0

, 0
]

[0
, 0

]

 j
5

6
–

G
j

�
�
�
�
�
(�
�
�
�
,
�
�
�
)

�
�
�
�
�
(�
�
�
�
,
�
�
�
)

–

I
0
,j
,0
,∶

[0
, 0

]
[0

, 0
]

–
I
0
,j
,1
,∶

[0
, 0

]
[0

, 0
]

–

1475Machine Learning (2023) 112:1465–1497	

1 3

where 𝛾 > 0 is a smooth parameter, sumd is the sum function along dimension d, and
S = max(1.0,max

(
� log sumd exp (X∕�)

)
 . Normalization term S ensures that the function

returns the normalized probabilistic values. More details of the function is in Appendix D.
In Eq. 1, applying the softor�

2
 function corresponds to considering all possible substitutions

for existentially quantified variables in the body atoms of the clause and taking logical or
softly over the results of possible substitutions. The results from each clause is stacked
into tensor C(t) ∈ ℝ

C×B×G , i.e., C(t) = stack0(C
(t)

1
,… ,C

(t)

C
) , where stack0 is stack function

for tensors along dimension 0.
Figure 3 illustrates the clause function. A clause function computes the forward-chain-

ing inference for a clause. The perception module and facts converter produce an initial val-
uation vector V(0) . For each grounded clause, the probability for the subgoals is extracted
by the gather function. Then the product for the body atoms is computed, then the logical
or is computed softly to amalgamate the results from different groundings of clauses.

3.4.4 � Soft (logic) program composition

In �ILP, a logic program is represented smoothly as a weighted sum of the clause functions
following (Shindo et al., 2021). Intuitively, �ILP has M distinct weights for each clause, i.e.,
W ∈ ℝ

M×C . By taking softmax of W along dimension 1, M clauses are softly chosen from
C clauses. The weighted sum of clause functions is computed as follows. First, we take the
softmax of the clause weights W ∈ ℝ

M×C : W∗ = softmax1(W) where softmax1 is a softmax
function over dimension 1. The clause weights W∗ ∈ ℝ

M×C and the output of the clause func-
tion C(t) ∈ ℝ

C×B×G are expanded to the same shape ̃W∗
, ̃C

(t)
∈ ℝ

M×C×B×G . Then we compute
tensor H(t) ∈ ℝ

M×B×G : H(t) = sum1(
̃W
∗
⊙

̃C
(t)
), where ⊙ is element-wise multiplication,

(2)softor
�

d
(X) =

1

S
� log

(
sumd exp (X∕�)

)
,

Fig. 3   An illustration of the clause function for clause R0 = ���(�):-��(��, �), �����(��, ���). with a sche-
matic illustration of the forward reasoning (top-right). The perception module and facts converter produce
initial valuation vector V(0) . For each grounded clause, the probability for the subgoals is extracted by the
gather function. Then the product for the body atoms is computed, then the logical or is computed softly
to amalgamate the results from different groundings of clauses. For simplicity, the first dimension for the
batch is removed in the figure (Color figure online)

1476	 Machine Learning (2023) 112:1465–1497

1 3

and sum1 is a summation along dimension 1. Each value H(t)

i,j,k
 represents the result for the

k-th fact using the i-th clause weights for the j-th example in the batch. Finally, we com-
pute tensor R(t) ∈ ℝ

B×G corresponding to the fact that logic program is a set of clauses:
R

(t) = softor
�

0
(H(t)) , taking logical or softly over M-chosen clauses. To compute the multi-step

reasoning, V(t+1) is computed as: V(t+1) = softor
�

1
(stack1(V

(t),R(t))) . The reasoning process is
illustrated in Fig. 4.

3.4.5 � Prediction

We assume that language L has a constant that represents the input image and a predicate to
compose an atom representing that the input is positive, e.g., ���(���) ∈ G . For given visual
input e, �ILP simply extracts the value from the result of the forward reasoning to predict class
label y ∈ {0, 1} as follows:

where C is a set of clauses, B is background knowledge, W is a set of clause weights, Θper
is a set of parameters for the visual-perception model, and Θnp is a set of parameters for
neural predicates, IG(x) a function that returns the index of x in G , and v[i] is the i-th ele-
ment of v , i.e., vi . �ILP accepts background knowledge as a set of facts and clauses.

3.5 � Program induction from visual scenes

�ILP learns differentiable logic programs that describe complex visual scenes. We basically
follow the differentiable ILP setting (Evans & Grefenstette, 2018; Shindo et al., 2021), where
an ILP problem is formulated as an optimization problem that has the following general form:

(3)p(y | e, C,B,W,Θper,Θnp) = v
(T)[IG(���(���))],

(4)min
W

loss(Q, C,W),

Fig. 4   An illustration of differentiable forward-chaining reasoning. Each clause is compiled into a clause
function. Each clause has M distinct weights. The input valuation vector V(t) is fed to the clause function.
By applying tensor operations, the forward-chaining reasoning is computed using weighted clauses. More
details are in the main text. For simplicity, the dimension for the batch is removed in the figure

1477Machine Learning (2023) 112:1465–1497	

1 3

where Q is an ILP problem, C is a set of candidates of clauses, W is a set of weights for
clauses, and loss is a loss function that returns a penalty when training constraints are vio-
lated. We note that we solve visual ILP problems, where each positive and negative exam-
ple is an image containing several objects.

Algorithm 1 describes the learning process of �ILP. (Line 1) The perception model is
trained using perception dataset Dperception , which consists of pattern-free figures. The data-
set is annotated for objects, e.g., class labels. Parameterized neural predicates can also be
trained by visual input with a trained perception module or by scene graphs. (Line 2–4)
Finally, the logic program that describes the visual scene is learned by performing dif-
ferentiable ILP, as illustrated in the top row in Fig. 1. The process mainly consists of two
steps: (i) clause generation by top-k beam search and (ii) learning of clause weights by
backpropagation. We now describe each step in detail.

3.5.1 � Top‑k beam search of clauses

Let Q be a visual ILP problem. �ILP generates promising candidates of clauses using top-
k beam search. Promising candidates of clauses for an ILP problem are those that entail a
majority of positive examples but few negative examples. Figure 5 illustrates the clause
generation steps from visual scenes. We start from given initial clauses and iteratively
refine the top-k clauses based on the following evaluation score:

where E+ ∈ Q is a set of positive examples and 1 is an 1 × 1 identity matrix. If clause R
can entail the majority of positive examples combined with background knowledge, then
clause R gets a high evaluation score. In each step, �ILP evaluates clauses in parallel using
a variant of the reasoning module designed for the evaluation of clauses, i.e., without loops
in terms of clauses. The generation of new clauses is conducted using the downward refine-
ment operator (Nienhuys-Cheng et al., 1997), which is a fundamental clause-generation
tool in ILP. The downward refinement operator weakens the clauses, i.e., the new clauses
that are produced by the operator entail fewer examples with background knowledge than
the original clause (Nienhuys-Cheng et al., 1997). Thus fewer negative examples are
entailed by the newly generated clauses. Therefore we evaluate clauses only by positive

(5)eval(R,Q) =
∑

e∈E+

p(y | e, {R},B, {1},Θper,Θnp),

1478	 Machine Learning (2023) 112:1465–1497

1 3

examples and repeatedly generate clauses by the downward refinement operator to produce
a search space that contains general and specific clauses. During the clause generation, �
ILP adopts mode declarations (Muggleton, 1995; Ray & Inoue, 2007) to manage the search
space, i.e., the clauses that are inconsistent with mode declarations are pruned. The visual-
perception module enables �ILP to evaluate each clause using visual input. �ILP utilizes
symbolic learning techniques while dealing with complex visual scenes.

3.5.2 � Learning weights

�ILP assigns weights for generated clauses. Clause weights are optimized by gradient
descent. Let Q = (E+, E−,B,L) be a visual ILP problem, C be a set of generated clauses, W
be a set of clause weights, Θper be the parameters for the perception model, and Θnp be the
parameters for the neural predicates. We solve visual ILP problem Q by minimizing cross-
entropy loss with respect to W , defined as:

where Y = {(e, 1) | e ∈ E+} ∪ {(e, 0) | e ∈ E−} , which is a set of tuples of an example and
the label indicating positive or negative.

4 � Experimental evaluation

We empirically demonstrate the following desired properties of �ILP on two different
datasets: (i) �ILP solves ILP problems in visual scenes with high accuracy. (ii) �ILP can
explain, i.e., it produces a readable solution in the form of logic programs. (iii) �ILP is
robust to confoundings. (iv) �ILP is data-efficient unlike CNNs. (v) �ILP performs fast
inference.

(6)
loss = −�(e,y)∼Y[y log p(y | e, C,B,W,Θper,Θnp)

+ (1 − y) log(1 − p(y | e, C,B,W,Θper,Θnp))].

Fig. 5   Clause generation by beam search using input images. In each step, clauses that explain a majority of
positive examples are selected (red-dotted rectangles), and refined to generate new clauses. After expanding
them for a certain depth, the set of all of the selected clauses in the process is returned to perform differenti-
able ILP (Color figure online)

1479Machine Learning (2023) 112:1465–1497	

1 3

All experiments were performed in the following environment; CPU: AMD EPYC 7742
64-Core Processor, RAM: 2000 GB, GPU: NVIDIA A100-SXM4-40GB GPU with 40 GB
of RAM.

4.1 � Solving Kandinsky patterns

4.1.1 � Dataset

We adopted Kandinsky pattern datasets (Holzinger et al., 2019; Müller & Holzinger, 2021;
Holzinger et al., 2021), a relatively new benchmark for object-centric reasoning tasks. Kan-
dinsky-20k contains 10k training examples for each positive and negative class, respec-
tively. Each validation and test split contains 5k examples for each positive and negative
class, respectively. In the Kandinsky-2k dataset, we reduced the amount of training data by
randomly sampling from the Kandinsky-20k dataset. The training split contains 1k exam-
ples for each positive and negative class, respectively. Validation and test split are the same
as the Kandinsky-20k dataset.

We use 4 Kandinsky patterns: twopairs, closeby, red-triangle, and online-pair. Figure 6
shows a positive example for each pattern. For the clause generation step, we used 500
examples from the validation split for each dataset.

4.1.2 � Pre‑training

For pre-training of the visual perception module, we generated randomly 15k Kandinsky
figures with annotations about each object, i.e., the number of objects and the attributes of
the objects are randomly determined. We used YOLO (Redmon et al., 2016) as a percep-
tion module. Each object has the class label and the bounding box as an annotation. Neural
predicate ������� and ������ are trained on the 10k Kandinsky figures that represent the
concepts, respectively, e.g., figures that consist of two objects that are close by each other
are generated for the positive examples for �������.

Fig. 6   Positive examples for each dataset in Kandinsky patterns. Each pattern is described as follows:
(twopairs) The Kandinsky figure has two pairs of objects with the same shape. In one pair, the objects
have the same colors in the other pair different colors. Two pairs are always disjunct, i.e., they do not share
objects. (closeby) The Kandinsky figure has a pair of objects that are close to each other. (red-triangle)
The Kandinsky figure has a pair of objects that are close to each other. And the one object of the pair is a
red triangle, and the other object has a different color and different shape. (online-pair) The Kandinsky fig-
ure has five objects that are aligned on a line, and it contains at least one pair of objects that have the same
shape and the same color (Color figure online)

1480	 Machine Learning (2023) 112:1465–1497

1 3

4.1.3 � Baselines

We adopted ResNet (He et al., 2016) as a CNN-based benchmark and also compared it
against YOLO+MLP, where the input figure is fed to the pre-trained YOLO model, and
a simple MLP module predicts the class label from the YOLO outputs. The whole net-
work is jointly trained.

4.1.4 � Results

Table 2 shows the results for the test split in each Kandinsky dataset. The CNN model
overfits while training and thus performs poorly in every Kandinsky pattern. The
YOLO+MLP model performs comparatively better and achieves greater than 90% accu-
racy in twopairs. However, in relatively complex patterns of closeby, red-triangle, and
online-pair, the performance degrades. On the contrary, �ILP outperforms the consid-
ered baselines significantly and achieves perfect classification in all of the patterns.

Table 2   The mean classification
accuracy in the test split in the
Kandinsky patterns dataset over
5 random seeds

�ILP outperforms the considered baselines. CNNs over-fit while train-
ing and perform poorly with testing data

Model Twopairs Closeby Red-triangle Online-pair

Kandinsky-20k
CNN 50.0 52.33 55.0 50.59
YOLO+MLP 99.0 72.93 82.95 80.18
�ILP 100.0 100.0 100.0 100.0
Kandinsky-2k
CNN 50.1 51.8 50.7 50.9
YOLO+MLP 91.7 62.3 78.25 75.7
�ILP 100.0 100.0 100.0 100.0

Fig. 7   The classification rules discovered by �ILP, which are obtained by taking argmax of the rule
weights. The top four lines show the classification rules for the four patterns in Kandinsky patterns dataset,
respectively. The bottom three lines show the classification rules for the three classes in CLEVR-Hans3
dataset, respectively

1481Machine Learning (2023) 112:1465–1497	

1 3

In the smaller dataset, Kandinsky-2k, neural-based benchmarks reduce its performance
because of the lack of training data to be generalized. On the contrary, �ILP still achieves
perfect accuracy. This shows the data efficiency of �ILP.

Figure 7 shows the classification rules discovered by �ILP, which are obtained by tak-
ing argmax of the rule weights. �ILP successfully produced interpretable results in all of
the datasets. After the training step, we observed that the distribution of the weights over
clauses turned to be sharp, i.e., one clause get nearly 1.0 and others get almost 0.0.

Figure 8 shows the accuracy for the test split in the first 600 iterations in Kandinsky-
20k dataset. To have a fair comparison, we used the same learning rate 1e−2 for �ILP and
YOLO+MLP model and 1e−5 for the CNN baseline2 to plot the figure. The line represents
the mean, and the shadow represents the standard deviation of 5 trials, respectively. One
iteration corresponds to one weight update using a batch of training examples. The result
shows �ILP achieves high classification accuracy with fewer iterations compared to neural-
based baselines.

4.2 � Solving CLEVR‑Hans problems

4.2.1 � Dataset

The CLEVR-Hans dataset (Stammer et al., 2021) contains confounded CLEVR (John-
son et al., 2017) images, and each image is associated with a class label. We adopted the
CLEVR-Hans3 dataset, which has three classes, as shown in Fig. 9. Each class has a cor-
responding classification rule. For each class, we create an ILP problem, where positive
examples are the set of images that belongs to a classification rule, and negative examples
are images that belong to other classes. As a result, we have three classification problems:
class1, class2, and class3. CLEVR-Hans problems involve confounding data. For exam-
ple, in the training and validation split of class1, the large cube in the positive examples
always has the color of gray, but in the test split, it has different colors. To achieve good
performance in the test split, the model needs to know the exact classification rule without

Fig. 8   Accuracy for iterations of weight updates in twopairs and online-pair dataset in Kandinsky-20k. The
line represents the mean, and the shadow represents the standard deviation of 5 trials, respectively. One
iteration corresponds to one weight update using a batch of training examples. �ILP achieves high classifi-
cation accuracy with fewer iterations compared to neural-based baselines

2  A large learning rate for the CNN baseline degraded the performance.

1482	 Machine Learning (2023) 112:1465–1497

1 3

overfitting. For the clause generation step, we used 500 examples from the validation split
for each dataset.

4.2.2 � Pre‑training

The slot attention model was pre-trained following Locatello et al. (2020) using the set pre-
diction setting on the CLEVR (Johnson et al., 2017) dataset.

4.2.3 � Baselines

The considered baselines are the ResNet-based CNN model (He et al., 2016), and the
Neuro-Symbolic (NeSy) model (Stammer et al., 2021). The NeSy model has a visual per-
ception module based on slot attention (Locatello et al., 2020) and a reasoning module
based on Set Transformer (Lee et al., 2019). The NeSy model was trained in two different
settings: (1) training using classification rules (NeSy), and (2) the right for the right rea-
sons (Ross et al., 2017) setting, i.e., the model is trained using supervision about confound-
ing factors (NeSy-XIL). NeSy-XIL is the SOTA model in the CLEVR-Hans dataset.

4.2.4 � Results

Table 3 shows the classification accuracy in the CLEVR-Hans dataset. The results of base-
lines have been presented in Stammer et al. (2021). �ILP achieved more than 97% in each

Fig. 9   Examples in CLEVR-Hans3 dataset. The dataset consists of three classes. (class 1) “Each figure con-
tains large a cube and a large cylinder. In the training and validation split, the large cube always has the
color of gray.” (class 2) “Each figure has a small metal cube and a small sphere. In the training and vali-
dation split, the small sphere always has the material of metal.” (class 3) “Each figure contains large blue
sphere and small yellow sphere.” (Color figure online)

Table 3   The mean classification
accuracy for CLEVR-Hans3
dataset compared to baselines
over 5 random seeds

For �ILP we report the mean over the three ILP problems

Model Validation Test

CNN 99.55 ± 0.10 70.34 ± 0.30
NeSy 98.55 ± 0.27 81.71 ± 3.09
NeSy-XIL 100.00 ± 0.00 91.31 ± 3.13
�ILP 97.58 ± 1.16 97.52 ± 0.81

1483Machine Learning (2023) 112:1465–1497	

1 3

split. Note that, NeSy-XIL model exploits the supervision of the confounding factors. On
the contrary, �ILP is unsupervised in terms of confounding factors. This shows that �ILP
is robust to confounding. �ILP can control the complexity of the solution (logic programs)
by controlling the depth of top-k beam search, i.e., �ILP can prevent overfitting by giving a
proper depth of top-k beam search, which can be determined by trying from a small number
on the validation split. Figure 7 shows the classification rules discovered by �ILP, which
are obtained by taking argmax of the rule weights. After the training step, we observed that
the distribution of the weights over clauses turned to be sharp, i.e., one clause gets nearly
1.0, and others get almost 0.0.

4.3 � Ablation study

We analyze the efficiency of �ILP for the clause generation step, the weight learning step,
and the reasoning step, respectively. To this end, we discuss limitations of �ILP.

4.3.1 � Running time and number of clauses in clause generation

We analyze the clause generation step of �ILP in terms of the running time and the number
of clauses to be generated. We used 500 examples from the validation split for each data-
set. The size of the search beam is 20. The depth of the search is [5, 2, 6, 4] for twopairs,
closeby, red-triangle, and online-pair in Kandinsky Patterns, respectively, and [5, 6, 7] for
class1, class2, and class3 in CLEVR-Hans, respectively. Table 4 shows running time of
top-k beam search and number of generated clauses in �ILP. The clause generation step
takes about 58 s in the best case and about 1000 s in the worst case. �ILP searched a space
that contains several thousands of candidates of clauses and then successfully searched
promising clauses from visual scenes. This empirically shows that �ILP performed an

Table 4   Running time of top-k
beam search and number of
generated clauses in �ILP using
500 examples from the validation
split in each dataset

The size of the beam in search is 20. #generated clauses is the total
number of clauses generated by the refinement operator. #selected
clauses is the number of clauses that are chosen as top-k clauses in the
search step. �ILP successfully identified promising clauses from visual
scenes

Clause generation
time (s)

#Generated
clauses

#Selected
clauses

Kandinsky patterns
Twopairs 626.7 2686 26
Closeby 57.97 274 5
Red-triangle 1007 459 84
Online-pair 779 3475 13
CLEVR-Hans
Class1 278.8 1685 26
Class2 316.5 1932 73
Class3 338.3 2027 92

1484	 Machine Learning (2023) 112:1465–1497

1 3

efficient search for clauses, which is necessary to solve the visual ILP tasks of complex
visual scenes.

4.3.2 � Running time of weight learning

We compare the running time of weight learning of �ILP with neural baselines. Table 5
shows the running time of weight learning for one epoch in Kandinsky patterns datasets.
�ILP achieved comparably fast weight-learning iterations for problems with simple rules,
e.g., closeby. For the problems that have a complex search space, e.g., red-triangle, �ILP
takes longer to compute the gradient and update the clause weights. This is because, as
shown in Table 4, �ILP deals with a large number of clauses for difficult problems, which
require a deeper search of clauses. We note that, as shown in Fig. 8, �ILP can achieve high
accuracy with fewer iterations compared to neural-based baselines.

4.3.3 � Running time of reasoning

We show that �ILP can perform fast inference by parallelized GPU-based batch computa-
tion. Figure 10 shows the prediction time with different batch sizes in Kandinsky datasets.
We measured the inference time for all training examples in twopairs, closeby, and online-
pair datasets for Kandinsky patterns, and class1 and class3 datasets for CLEVR-Hans. We
used different batch sizes of [1, 8, 24, 64, 128, 256, 512]. We extracted the learned clause

Table 5   The running time (sec)
of weight learning per epoch in �
ILP and baseline models. �ILP
has a reasoning process in the
forward path, thus it takes longer
than baselines per epoch

Dataset CNN YOLO +MLP �ILP

Twopairs 29.02 28.91 336.4
Closeby 29.46 29.65 51.8
Red-triangle 29.72 29.6 1081
Online-pair 29.59 28.93 312.4

Fig. 10   Prediction time of �ILP on the complete dataset. We report the running time to predict all of the
training examples for each dataset using the learned rules. The bottom labels specify the datasets. For each
dataset, different colors correspond to different batch sizes. We used batch sizes of 1, 8, 24, 64, 128, 256
and 512. Kandinsky patterns have 20k training samples for each pattern, CLEVR-Hans has 9k training sam-
ples for each dataset, respectively. �ILP predicts quickly for large datasets by parallelized batch computation

1485Machine Learning (2023) 112:1465–1497	

1 3

after the training of �ILP, and fed it to the forward-reasoning module, i.e., the reasoning
module handles one clause for each dataset, enabling a large batch size on a single GPU.

For each dataset, �ILP achieved fast prediction with larger batch sizes. In the twopairs
dataset, with a batch size of 1, it takes 2380 s to classify all of the 20k training visual
examples. However, with the batch size of 512, �ILP classified them in 31 s. The empirical
result shows that �ILP can perform fast reasoning using batch computation, which is an
essential function to be tightly coupled with deep neural networks.

4.3.4 � Limitations

We discuss limitations of �ILP. The approach is memory-intensive because the size of the
index tensor is not linear with respect to the number of facts and that of clauses. In con-
trast to backward reasoning, all of the possible solutions are computed in forward-chaining
reasoning. To handle large knowledge bases, a more memory-efficient mechanism is nec-
essary. In the experiments, �ILP assumed that the perception model is pre-trained. It also
assumed that there exists a set of rules that can perfectly classify the examples in the search
space. �ILP requires the language bias to limit the search space, e.g., mode declarations.
The learning algorithm is a hybrid approach of top-k beam-search and gradient descent.
Before performing numerical optimization, the search space, i.e., the set of candidates of
rules, needs to be identified by the top-k beam search.

5 � Conclusion and future work

We proposed �ILP, a novel differentiable ILP framework for visual scenes. �ILP learns
logic programs that explain complex visual scenes from visual inputs based on object-cen-
tric perception and differentiable ILP. In our experiments, �ILP outperformed CNN-based
baselines in Kandinsky patterns and CLEVR-Hans datasets, where the classification rules
are defined on high-level concepts. �ILP provides the following advantages against CNN-
based models. Firstly, �ILP solves complex patterns in visual scenes such as Kandinsky
patterns and CLEVR-Hans datasets, which cannot be solved by CNN-based models. Sec-
ondly, �ILP produces explicit classification rules as a logic program. Thirdly, �ILP is data-
efficient, i.e., it can achieve high performance even from a small training set. Lastly, �ILP
is robust to confounding, i.e., it can be generalized even if some features are confounded in
the training dataset. These advantages highlight that �ILP can overcome some significant
limitations of neural models for complex visual scenes. Moreover, �ILP performs fast dif-
ferentiable inference for a large number of instances of complex visual scenes. This fea-
ture is critical for logical reasoning to be tightly coupled with neural networks. To this
end, �ILP is an extension to the Neuro-Symbolic systems, e.g., DeepProblog (Manhaeve
et al., 2018, 2021) and �ILP (Evans & Grefenstette, 2018), for structure learning in visual
domains.

A common criticism of ILP can be applied to �ILP, e.g., hand-crafted background
knowledge and language bias are crucial. A promising direction of future research is to
develop a neuro-symbolic pipeline to generate proper background knowledge and lan-
guage bias from data by incorporating ILP techniques such as predicate invention (Crop-
per et al., 2022). Solving compositional reasoning tasks (Vedantam et al., 2021) will be
another direction of future research. The algorithmic supervision setting (Petersen et al.,
2021), where neural networks are trained combined with differentiable implementations

1486	 Machine Learning (2023) 112:1465–1497

1 3

of discrete algorithms, is also a promising approach with �ILP, because the reasoning of �
ILP is compatible with neural networks in terms of the running time. Moreover, differenti-
able implementations of the top-k operator (Goyal et al., 2018; Xie et al., 2020; Pietruszka
et al., 2021) could lead �ILP to have an end-to-end learning system.

Appendix A: Experimental setting

In this section, we describe the experimental setting of our main experiments.

A.1 Kandinsky‑20k

CNN We trained ResNet18 for 300 epochs with a batch size of 512. We used the Adam
optimizer (Kingma & Ba, 2015; Ruder, 2016) with a learning rate of 1e−5.

YOLO+MLP We used MLP with two hidden layers. Each hidden layer applies a
linear transformation and a non-linearity. The output of the pre-trained YOLO model is
reshaped and fed into MLP to predict the class label. We trained the whole YOLO+MLP
network jointly for 1000 epochs with a batch size of 512. We used the Adam optimizer
(Kingma & Ba, 2015; Ruder, 2016) with a learning rate of 1e−5.

�ILP. We trained the �ILP model for 100 epochs with a batch size of 64. We used the
RMSProp (Ruder, 2016) optimizer with a learning rate of 1e−2 . We used 500 positive
examples in the validation split to generate clauses by beam search.

Table 6   Mode declarations for Kandinsky patterns

�����(�, ���(−�����))

�����(#���, ��(−������,+�����))

�����(�, �����(+������, #�����))

�����(�, �����(+������, #�����))

�����(�, ����_�����_����(+������,+������))

�����(�, ����_�����_����(+������,+������))

�����(�, ����_�����_����(+������,+������))

�����(�, ����_�����_����(+������,+������))

�����(�, �������(+������,+������))

�����(�, ������(+������,… ,+������))

Table 7   Datatype and constants
in Kandinsky patterns

Datatype Terms

����� ���

������ ���� , ���� , … , ����
����� ��� , ���� , ������
����� ������ , ������ , ��������

1487Machine Learning (2023) 112:1465–1497	

1 3

Mode declarations (Muggleton, 1995; Cropper et al., 2022) we used are shown in
Table 6. Table 7 shows the data types and constants, and Table 8 shows the predicates
for Kandinsky patterns, respectively. Hyperparameters for the clause generation is
shown in Table 9. #obj represents the number of objects to be focused on the classifica-
tion, which can be identified by trying from the smallest number and evaluating by vali-
dation split and increasing if the performance is not enough. We set the initial clause to

Table 8   Predicates in the Kandinsky patterns

Predicate Explanation

���∕(1, [�����]) The image belongs to the Kandinsky pattern
����_�����_����∕(2, [������, ������]) The two objects have the same shape
����_�����_����∕(2, [������, ������]) The two objects have the same color
����_�����_����∕(2, [������, ������]) The two objects have different shapes
����_�����_����∕(2, [������, ������]) The two objects have different colors

 Neural predicate Explanation

��∕(2, [������, �����]) The object is in the image
�����∕(2, [������, �����]) The object has the shape of the second argument
�����∕(2, [������, �����]) The object has the color of the second argument
�������∕(2, [������, ������]) The two objects are located close by each other
������∕(5, [������,… , ������]) The objects are aligned on a line

Table 9   Hyper parameters of �
ILP in Kandinsky patterns

T
beam

 represents the depth of the search, and N
beam

 represents the size
of the beam, i.e., the width of the beam search. #obj is the maximum
number of objects that can appear in a clause

Tbeam Nbeam #obj

Twopairs 5 20 4
Closeby 2 20 2
Red-triangle 6 20 2
Online-pair 4 20 5

Table 10   Background knowledge for Kandinsky patterns

����_�����_����(�, �) ∶ −�����(�, �), �����(�, �)

����_�����_����(�, �) ∶ −�����(�, �), �����(�, �)

����_�����_����(�, �) ∶ −�����(�, �), �����(�, �), ����_�����(�, �)

����_�����_����(�, �) ∶ −�����(�, �), �����(�, �), ����_�����(�, �)

����_�����(���, ����), ����_�����(����, ���)

����_�����(���, ������), ����_�����(������, ���)

����_�����(����, ������), ����_�����(������, ����)

����_�����(������, ������), ����_�����(������, ������)

����_�����(������, ��������), ����_�����(��������, ������)

����_�����(������, ��������), ����_�����(��������, ������)

1488	 Machine Learning (2023) 112:1465–1497

1 3

be the root node in the beam search as: ���(�) :- ��(��, �),… , ��(��, �) , where n is the
number of objects to be focused, i.e., #obj in Table 9. Background knowledge given in
for Kandinsky patterns is shown in Table 10.

For neural predicate ������� , we used the following valuation function:

where Z(i)
center

 represents the center coordinate of the bounding box for the i-th object, and w
is a parameter to be trained.

For neural predicate ������ , we used the following valuation function

where function freg computes the closed-form solution of the linear regression in batch and
returns the error values, and w is a parameter to be trained.

A.2 Kandinsky‑2k

CNN. We trained ResNet18 for 300 epochs with a batch size of 64. We used the Adam
optimizer with a learning rate of 1e − 5.

YOLO+MLP. We used MLP with two hidden layers with a non-linearity. The output
of the pre-trained YOLO model is reshaped and fed into MLP to predict the class label. We
trained the whole YOLO+MLP network jointly for 1000 epochs with a batch size of 64.
We used the Adam optimizer (Kingma & Ba, 2015; Ruder, 2016) with a learning rate of
1e−5.

�ILP. We trained in the same setting as in Kandinsky-20k.

v�������
(
Z
(1),Z(2)

)
= �

(
flinear

(
fnorm

(
Z
(1)
center

− Z
(2)
center

)
;w
))
,

v������
(
Z
(1),… ,Z(5)

)
= �

(
flinear

(
freg

(
Z
(1)
center

,… ,Z(5)
center

)
;w
))
,

Table 11   Mode declarations for CLEVR-Hans

�����(�, ���(−�����))

�����(#���, ��(−������,+�����))

�����(�, �����(+������, #�����))

�����(�, �����(+������, #�����))

�����(�, ��������(+������, #��������))

�����(�, ����(+������, #����))

Table 12   Hyper parameters of �
ILP in CLEVR-Hans

T
beam

 represents the depth of the search, and N
beam

 represents the size
of the beam, i.e., the width of the beam search. #obj is the maximum
number of objects that can appear in a clause

Tbeam Nbeam #obj

class 1 5 20 2
class 2 6 20 2
class 3 7 20 2

1489Machine Learning (2023) 112:1465–1497	

1 3

A.3 CLEVR‑Hans

We trained the �ILP model for 100 epochs with a batch size of 256. We used the RMSProp
optimizer (Ruder, 2016) with a learning rate of 1e−2 . We used 500 positive examples in
the validation split to generate clauses by beam search.

Mode declarations (Muggleton, 1995; Cropper et al., 2022) we used are shown in
Table 11. Hyper parameters for the clause generation is shown in Table 12. Table 13
shows the data types and constants, and Table 14 shows the predicates for CLEVR-
Hans, respectively. We set the initial clause to be the root node in the beam search as:
���(�) :- ��(��, �), ��(��, �) . We did not provide any background knowledge for CLEVR-
Hans tasks.

Appendix B: Perception models in experiments

We describe the experimental setting of the pre-training of the perception models in our
experiments.

Table 13   Datatype and constants
in CLEVR-Hans

Datatype Terms

����� ���

������ ���� , ���� , … , ����
����� ���� , ���� , ������ ,

������ , ��� , ����� ,
���� , �����

����� ������ , ���� , ��������
���� ����� , �����
�������� ������ , �����

Table 14   Predicates in CLEVR-Hans

Predicate Explanation

���∕(1, [�����]) The image belongs to the CLEVR-Hans pattern

 Neural predicate Explanation

��∕(2, [������, �����]) The object is in the image
�����∕(2, [������, �����]) The object has the shape of the second argument
�����∕(2, [������, �����]) The object has the color of the second argument
��������∕(2, [������, ��������]) The object has the material of ��������
����∕(2, [������, ����]) The object has the size of the second argument

1490	 Machine Learning (2023) 112:1465–1497

1 3

B.1 YOLO for Kandinsky patterns

Model We used YOLOv53 model, whose implementation is publicly available. We adopted
the YOLOv5s model, which has 7.3 M parameters.

Dataset We generated 15,000 pattern-free figures for training, 5000 figures for validation.
The class labels and positions are generated randomly. The original image size is 620 × 620 ,
and resized into 128 × 128 . The label consists of the class labels and the bounding box for
each object. The class label is generated by the combination of the shape and the color of the
object, e.g., red circle and blue square. The number of classes is 9. Each image contains at
least 2 objects and at most 10 objects.

Optimization We trained the YOLOv5s model by stochastic gradient descent (SGD) for
400 epochs using the pre-trained weights.4 We used the loss function that approximates detec-
tion performance, presented in Redmon et al. (2016). We set the learning rate to 0.01 and the
batch size to 64. The SGD optimizer used the momentum, which is set to 0.937. We set the
weight decay as 0.0005. We took 3 warmup epochs for training.

B.2 Slot Attention for CLEVR‑Hans

We used the same model and training setup as the pre-training of the slot-attention module
in Stammer et al. (2021). In the preprocessing, we downscaled the CLEVR-Hans images to
a dimension of 128 × 128 and normalized the images to lie between −1 and 1. For training
the slot-attention module, an object is represented as a vector of binary values for the shape,
size, color, and material attributes and continuous values between 0 and 1 for the x, y, and z
positions. We trained the slot attention model with the set prediction architecture following
Locatello et al. (2020), using the loss function, which is based on the Hungarian algorithm.
We refer to Stammer et al. (2021) for more details.

Appendix C: Background knowledge in ̨ ILP

�ILP accepts background knowledge as set of facts Gbk and clauses Cbk . For fact gi ∈ Gbk ,
we set the initial valuation value as 1.0, i.e., V(0)

∶,i
= 1.0 . For clauses, let Ibk be an index

tensor for clauses Cbk in background knowledge. Then we compute the reasoning as
V

(t+1) = softor
�

1
(stack1(V

(t), r(V(t);I,W), r(V(t);Ibk, 1))) , where 1 ∈ {0, 1}M×|Cbk| is an iden-
tity matrix.

Appendix D: Details on the softor function

In the differentiable inference process, �ILP often computes logical or for probabilis-
tic values. Taking max repeatedly can violate the gradient flow. The softor�

d
 function

approximates the or computation softly. The key idea is to use the log-sum-exp tech-
nique to approximate the max/min operation (Cuturi & Blondel, 2017). We define the
softor

�

d
 function as follows:

4  https://​github.​com/​ultra​lytics/​yolov5/​relea​ses.

3  https://​github.​com/​ultra​lytics/​yolov5.

https://github.com/ultralytics/yolov5/releases
https://github.com/ultralytics/yolov5

1491Machine Learning (2023) 112:1465–1497	

1 3

where 𝛾 > 0 is a smooth parameter, sumd is the sum function along dimension d, and
S = max(1.0,max

(
� log sumd exp (X∕�)

)
 . The normalization term ensures that the softor�

d

function returns a normalized probabilistic values. The dimension d specifies the dimen-
sion to be removed.

A popular choice is the probabilistic sum function: fprob_sum(X,Y) = X + Y − X⊙ Y ,
which was adopted in Evans and Grefenstette (2018) and Jiang and Luo (2019). We plot
the various functions for logical or in Fig. 11 to compare. From left to right, each plot
corresponds to max, probabilistic sum, softor with � = 0.1 , and softor with � = 0.01 ,
respectively, with respect to 2-dimensional input x, y ∈ [0, 1] . The maximum and
minimum value for each plot are shown on top of each, which are represented by the
colors from blue to red. The softor�

d
 function with a sufficiently small smooth parameter

approximates well the logical or function for probabilistic values.

Appendix E: Mode declaration

Mode Declaration (Muggleton, 1995; Ray & Inoue, 2007) is one of the common lan-
guage biases. We used mode declaration, which is defined as follows. A mode decla-
ration is either a head declaration �����(�, �(����,… , ����)) or a body declaration
�����(�, �(����,… , ����)) , where � ∈ ℕ is an integer, � is a predicate, and ���� is a
mode datatype. A mode datatype is a tuple (��, ��) , where �� is a place-marker and
�� is a datatype. A place-marker is either # , which represents constants, or + (resp. −),
which represents input (resp. output) variables. � represents the number of the usages of
the predicate to compose a solution.

(D.1)softor
�

d
(X) =

1

S
� log

(
sumd exp (X∕�)

)
,

Fig. 11   The visualization of various 4 or functions. From left to right, each plot corresponds to max, proba-
bilistic sum, softor with � = 0.1 , and softor with � = 0.01 , respectively. The maximum and minimum value
for each plot are shown on top of each, which are represented by the colors from blue to red. The softor�

d

function with a sufficiently small smooth parameter approximates well the logical or function for probabil-
istic values (Color figure online)

1492	 Machine Learning (2023) 112:1465–1497

1 3

Fig. 12   Examples in each Kandinsky pattern in our experiments. The left two images are positive examples,
and the right two images are negative examples

1493Machine Learning (2023) 112:1465–1497	

1 3

Appendix F: More examples of Kandinsky patterns and CLEVR‑Hans

We show some examples for each pattern we used in Kandinsky patterns in Fig. 12. We
also show some examples for each class of CLEVR-Hans3 in Fig. 13.

Fig. 13   Examples in CLEVR-Hans3 dataset. The dataset consists of three classes. Two images are shown
for each class. The text on the top of the images describes the confounded classification rule for each class.
For example, images of the first class contain a large cube and a large cylinder. The large cube has the color
of gray in every image of the train and validation split. In the test split, the color of the large cube is shuf-
fled randomly (Color figure online)

1494	 Machine Learning (2023) 112:1465–1497

1 3

Author Contributions  HS, VP, DD, KK designed the study and developed the initial idea. HS, VP, DD, KK
interpreted the data and drafted the manuscript. HS conducted experiments and algorithmic implementa-
tion. VP helped with the writing. HS, VP, DD, KK designed the experimental setting. All authors read and
approved the final manuscript.

Funding  Open Access funding enabled and organized by Projekt DEAL. This work was supported by the
AI lighthouse project “SPAICER” (01MK20015E), the EU ICT-48 Network of AI Research Excellence
Center “TAILOR” (EU Horizon 2020, GA No 952215), and the Collaboration Lab “AI in Construction”
(AICO). The work has also benefited from the Hessian Ministry of Higher Education, Research, Science
and the Arts (HMWK) cluster projects “The Third Wave of AI” and “The Adaptive Mind”.

Data availability  The CLEVR-Hans dataset is available at: https://​github.​com/​ml-​resea​rch/​CLEVR-​Hans.
The full dataset of Kandinsky patterns used in the experiments will be uploaded and publicly available.

Code availability  The public code is available: https://​github.​com/​ml-​resea​rch/​alpha​ilp.

Declarations 

Conflict of interest  Not Applicable.

Ethics approval  Not Applicable.

Consent to participate  Not Applicable.

Consent for publication  Not Applicable.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Amizadeh, S., Palangi, H., Polozov, A., Huang, Y., & Koishida, K. (2020). Neuro-symbolic visual rea-
soning: Disentangling visual from reasoning. Proceedings of the 37th international conference on
machine learning (ICML) (Vol. 119, pp. 279–290).

Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D., Zitnick, C. L., & Parikh, D. (2015). Vqa: Vis-
ual question answering. In Proceedings of the IEEE international conference on computer vision
(ICCV).

Badreddine, S., d’Avila Garcez, A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artificial
Intelligence, 303, 103649.

Bellodi, E., & Riguzzi, F. (2015). Structure learning of probabilistic logic programs by searching the clause
space. Theory and Practice of Logic Programming, 15(2), 169–212.

Besold, T. R., d’Avila Garcez, A. S., Bader, S., Bowman, H., Domingos, P. M., Hitzler, P., Kühnberger, K.,
Lamb, L. C., Lowd, D., Lima, P. M. V., de Penning, L., Pinkas, G., Poon, H., & Zaverucha, G. (2017).
Neural-symbolic learning and reasoning: A survey and interpretation. In CoRRarXiv:​1711.​03902.

Bongard, M. M., & Hawkins, J. K. (1970). Pattern recognition. New York: Spartan Books.
Bošnjak, M., Rocktäschel, T., Naradowsky, J., & Riedel, S. (2017). Programming with a differentiable forth

interpreter. In Proceedings of the 34th international conference on machine learning (ICML) (Vol. 70,
pp. 547–556).

https://github.com/ml-research/CLEVR-Hans
https://github.com/ml-research/alphailp
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1711.03902

1495Machine Learning (2023) 112:1465–1497	

1 3

Burgess, C. P., Matthey, L., Watters, N., Kabra, R., Higgins, I., Botvinick, M. M., & Lerchner, A. (2019).
Monet: Unsupervised scene decomposition and representation. CoRR arXiv:​1901.​11390.

Cropper, A., & Muggleton, S. H. (2016). Metagol system. https://​github.​com/​metag​ol/​metag​ol.
Cropper, A., Dumancic, S., Evans, R., & Muggleton, S. H. (2022). Inductive logic programming at 30.

Machine Learning, 111(1), 147–172.
Cropper, A., & Morel, R. (2021). Learning programs by learning from failures. Machine Learning, 110(4),

801–856.
Cropper, A., Morel, R., & Muggleton, S. (2019). Learning higher-order logic programs. Machine Learning,

109, 1289–1322.
Cuturi, M., & Blondel, M. (2017). Soft-DTW: A differentiable loss function for time-series. In Proceedings

of the 34th international conference on machine learning (ICML) (Vol. 70, pp. 894–903).
Dai, W.-Z., Xu, Q., Yu, Y., & Zhou, Z.-H. (2019). Bridging machine learning and logical reasoning by

abductive learning. In Proceedings of the advances in neural information processing systems (Neu-
rIPS) (Vol. 32).

d’Avila Garcez, A., & Lamb, L. C. (2020). Neurosymbolic AI: The 3rd wave. In CoRRarXiv:​2012.​05876.
De Raedt, L., Frasconi, P., Kersting, K., & Muggleton, S. H. (Eds.) (2008). Probabilistic inductive logic pro-

gramming—theory and applications. Lecture Notes in Computer Science (Vol. 4911). Berlin: Springer.
De Raedt, L., Kersting, K., Natarajan, S., & Poole, D. (2016). Statistical relational artificial intelligence:

Logic, probability, and computation. In Synthesis lectures on artificial intelligence and machine learn-
ing (Vol. 32). San Rafael, CA: Morgan & Claypool.

Diligenti, M., Gori, M., & Saccà, C. (2017). Semantic-based regularization for learning and inference. Arti-
ficial Intelligence, 244, 143–165.

Dittadi, A., Papa, S., De Vita, M., Schölkopf, B., Winther, O., & Locatello, F. (2022). Generalization and
robustness implications in object-centric learning. In Proceedings of the 39th international conference
on machine learning (ICML).

Donadello, I., Serafini, L., & d’Avila Garcez, A. (2017). Logic tensor networks for semantic image interpre-
tation. In Proceedings of the 26th international joint conference on artificial intelligence (IJCAI) (pp.
1596–1602).

Engelcke, M., Kosiorek, A. R., Jones, O. P., & Posner, I. (2020). Genesis: Generative scene inference and
sampling with object-centric latent representations. In Proceedings of the 8th international conference
on learning representations (ICLR).

Evans, R., & Grefenstette, E. (2018). Learning explanatory rules from noisy data. Journal of Artificial Intel-
ligence Research, 61, 1–64.

Goyal, K., Neubig, G., Dyer, C., & Berg-Kirkpatrick, T. (2018). A continuous relaxation of beam search for
end-to-end training of neural sequence models. In Proceedings of the 32th AAAI conference on artifi-
cial intelligence (AAAI) (Vol. 32, No 1).

He, K., Gkioxari, G., Dollár, P., & Girshick, R. B. (2017). Mask r-cnn. In Proceedings of the IEEE interna-
tional conference on computer vision (ICCV) (pp. 2980–2988).

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition (CVPR) (pp. 770–778).

Holzinger, A., Kickmeier-Rust, M., & Müller, H. (2019). Kandinsky patterns as IQ-test for machine learn-
ing. In Proceedings of the 3rd international cross-domain conference for machine learning and knowl-
edge extraction (CD-MAKE) (pp. 1–14).

Holzinger, A., Saranti, A., & Müller, H. (2021). Kandinsky patterns: An experimental exploration environ-
ment for pattern analysis and machine intelligence. In CoRRarXiv:​2103.​00519.

Jiang, Z., & Luo, S. (2019). Neural logic reinforcement learning. In Proceedings of the 36th international
conference on machine learning (ICML) (Vol. 97, pp. 3110–3119).

Johnson, J., Hariharan, B., van der Maaten, L., Fei-Fei, L., Zitnick, C. L., & Girshick, R. B. (2017). Clevr: A
diagnostic dataset for compositional language and elementary visual reasoning. In Proceedings of the
IEEE conference on computer vision and pattern recognition (CVPR) (pp. 1988–1997).

Kautz, H. (2022). The third AI summer: AAAI Robert S. Engelmore memorial lecture. AI Magazine, 43(1),
93–104.

Kim, J., Ricci, M., & Serre, T. (2018). Not-So-CLEVR: Learning same-different relations strains feedfor-
ward neural networks. Interface Focus, 8, 20180011.

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In Proceedings of the 3rd
international conference on learning representation (ICLR).

Kowalski, R. A. (1988). The early years of logic programming. Communications of the ACM, 31(1), 38–43.
Law, M., Russo, A., & Broda, K. (2014). Inductive learning of answer set programs. In E. Fermé, J. Leite

(Eds.), Logics in artificial intelligence—14th European Conference (JELIA). Lecture Notes in Com-
puter Science (Vol. 8761, pp. 311–325).

http://arxiv.org/abs/1901.11390
https://github.com/metagol/metagol
http://arxiv.org/abs/2012.05876
http://arxiv.org/abs/2103.00519

1496	 Machine Learning (2023) 112:1465–1497

1 3

Lee, J., Lee, Y., Kim, J., Kosiorek, A., Choi, S., & Teh, Y. W. (2019). Set transformer: A framework for
attention-based permutation-invariant neural networks. In Proceedings of the 36th international con-
ference on machine learning (ICML) (Vol. 97, pp. 3744–3753).

Lloyd, J. W. (1984). Foundations of logic programming.
Locatello, F., Weissenborn, D., Unterthiner, T., Mahendran, A., Heigold, G., Uszkoreit, J., Dosovitskiy, A.,

& Kipf, T. (2020). Object-centric learning with slot attention. Proceedings of the Advances in Neural
Information Processing Systems (NeurIPS), 33, 11525–11538.

Manhaeve, R., Dumancic, S., Kimmig, A., Demeester, T., & De Raedt, L. (2018). Deepproblog: Neural
probabilistic logic programming. In Proceedings of the advances in neural information processing sys-
tems (NeurIPS) (Vol. 31).

Manhaeve, R., Dumančić, S., Kimmig, A., Demeester, T., & De Raedt, L. (2021). Neural probabilistic logic
programming in DeepProbLog. Artificial Intelligence, 298, 103504.

Mao, J., Gan, C., Kohli, P., Tenenbaum, J. B., & Wu, J. (2019). The neuro-symbolic concept learner: Inter-
preting scenes, words, and sentences from natural supervision. In Proceedings of the 7th international
conference on learning representations (ICLR).

Mensch, A., & Blondel, M. (2018). Differentiable dynamic programming for structured prediction and
attention. In Proceedings of the 35th international conference on machine learning (ICML) (Vol. 80,
pp. 3462–3471).

Minervini, P., Riedel, S., Stenetorp, P., Grefenstette, E., & Rocktäschel, T. (2020). Learning reasoning strat-
egies in end-to-end differentiable proving. In Proceedings of the 37th international conference on
machine learning (ICML).

Muggleton, S. H. (1991). Inductive logic programming. New Generation Computing, 8(4), 295–318.
Muggleton, S. (1995). Inverse Entailment and Progol. New Generation Computing, Special issue on

Inductive Logic Programming, 13(3–4), 245–286.
Müller, H., & Holzinger, A. (2021). Kandinsky patterns. Artificial Intelligence, 300, 103546.
Nguembang Fadja, A., & Riguzzi, F. (2019). Lifted discriminative learning of probabilistic logic pro-

grams. Machine Learning, 108(7), 1111–1135.
Nienhuys-Cheng, S.-H., Wolf, R. D., Siekmann, J., & Carbonell, J. G. (1997). Foundations of inductive

logic programming.
Nie, W., Yu, Z., Mao, L., Patel, A. B., Zhu, Y., & Anandkumar, A. (2020). Bongard-logo: A new bench-

mark for human-level concept learning and reasoning. Proceedings of the Advances in Neural
Information Processing Systems (NeurIPS), 33, 16468–16480.

Petersen, F., Borgelt, C., Kuehne, H., & Deussen, O. (2021). Learning with algorithmic supervision
via continuous relaxations. Proceedings of the Advances in Neural Information Processing Systems
(NeurIPS), 34, 16520–16531.

Pietruszka, M., Borchmann, L., & Gralinski, F. (2021). Successive halving top-k operator. In Pro-
ceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI) (Vol. 35, No. 18, pp.
15869–15870).

Plotkin, G. (1971). A further note on inductive generalization. In Machine intelligence (Vol. 6).
Quinlan, J. R. (1990). Learning logical definitions from relations. Machine Learning, 5, 239–266.
Raedt, L. d., Dumančić, S., Manhaeve, R., & Marra, G. (2020). From statistical relational to neuro-sym-

bolic artificial intelligence. In Proceedings of the 29th international joint conference on artificial
intelligence (IJCAI) (pp. 4943–4950).

Ray, O., & Inoue, K. (2007). Mode-directed inverse entailment for full clausal theories. In Proceedings
of the 17th international conference on inductive logic programming (ILP). Lecture notes in com-
puter science (Vol. 4894, pp. 225–238).

Redmon, J., Divvala, S. K., Girshick, R. B., & Farhadi, A. (2016). You only look once: Unified, real-
time object detection. In Proceedings of the IEEE conference on computer vision and pattern rec-
ognition (CVPR) (pp. 779–788).

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with
region proposal networks. In Proceedings of the advances in neural information processing systems
(NeurIPS) (Vol. 28).

Rocktäschel, T., & Riedel, S. (2017). End-to-end differentiable proving. In Proceedings of the advances
in neural information processing systems (NeurIPS) (Vol. 30).

Ross, A. S., Hughes, M. C., & Doshi-Velez, F. (2017). Right for the right reasons: Training differentiable
models by constraining their explanations. In Proceedings of the 26 international joint conference
on artificial intelligence (IJCAI) (pp. 2662–2670).

Ruder, S. (2016). An overview of gradient descent optimization algorithms. In CoRRarXiv:​1609.​04747.
Russell, S., & Norvig, P. (2009). Artificial intelligence: A modern approach (3rd ed.). Hoboken, NJ:

Prentice Hall Press.

http://arxiv.org/abs/1609.04747

1497Machine Learning (2023) 112:1465–1497	

1 3

Santoro, A., Faulkner, R., Raposo, D., Rae, J., Chrzanowski, M., Weber, T., Wierstra, D., Vinyals, O.,
Pascanu, R., & Lillicrap, T. (2018). Relational recurrent neural networks. In: Proceedings of the
advances in neural information processing systems (NeurIPS) (Vol. 31).

Sen, P., Carvalho, B. W. S. R. D., Riegel, R., & Gray, A. (2022). Neuro-symbolic inductive logic pro-
gramming with logical neural networks. In Proceedings of the AAAI conference on artificial intel-
ligence (AAAI) (Vol. 36, No 8, pp. 8212–8219).

Shapiro, E. Y. (1983). Algorithmic program debugging. Cambridge: MIT Press.
Shindo, H., Nishino, M., & Yamamoto, A. (2021). Differentiable inductive logic programming for struc-

tured examples. In Proceedings of the 35th AAAI conference on artificial intelligence (AAAI) (pp.
5034–5041).

Si, X., Raghothaman, M., Heo, K., & Naik, M. (2019). Synthesizing datalog programs using numeri-
cal relaxation. In Proceedings of the 28th international joint conference on artificial intelligence
(IJCAI) (pp. 6117–6124).

Solar-Lezama, A. (2008). Program synthesis by sketching. Ph.D. Thesis.
Sourek, G., Svatos, M., Zelezný, F., Schockaert, S., & Kuzelka, O. (2017). Stacked structure learning for

lifted relational neural networks. In N. Lachiche, C. Vrain (Eds.), Proceedings of the 27th interna-
tional conference on inductive logic programming. Lecture notes in computer science (Vol. 10759,
pp. 140–151).

Sourek, G., Aschenbrenner, V., Zelezný, F., Schockaert, S., & Kuzelka, O. (2018). Lifted relational
neural networks: Efficient learning of latent relational structures. Journal of Artificial Intelligence
Research, 62, 69–100.

Stammer, W., Schramowski, P., & Kersting, K. (2021). Right for the right concept: Revising neuro-symbolic
concepts by interacting with their explanations. In Proceedings of the IEEE conference on computer
vision and pattern recognition (CVPR) (pp. 3619–3629).

Tsamoura, E., Hospedales, T. M., & Michael, L. (2021). Neural-symbolic integration: A compositional per-
spective. In Proceedings of the 35th AAAI conference on artificial intelligence (AAAI) (pp. 5051–5060).

van Krieken, E., Acar, E., & van Harmelen, F. (2022). Analyzing differentiable fuzzy logic operators. Artifi-
cial Intelligence, 302, 103602.

Vedantam, R., Szlam, A., Nickel, M., Morcos, A., & Lake, B. M. (2021). Curi: A benchmark for productive
concept learning under uncertainty. In Proceedings of the 38th international conference on machine
learning (ICML) (Vol. 139, pp. 10519–10529).

Xie, Y., Dai, H., Chen, M., Dai, B., Zhao, T., Zha, H., Wei, W., & Pfister, T. (2020). Differentiable top-k
with optimal transport. Proceedings of the Advances in Neural Information Processing Systems (Neu-
rIPS), 33, 20520–20531.

Yang, Z., Ishay, A., & Lee, J. (2020). Neurasp: Embracing neural networks into answer set program-
ming. In Proceedings of the 29th international joint conference on artificial intelligence (IJCAI) (pp.
1755–1762).

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	ILP: thinking visual scenes as differentiable logic programs
	Abstract
	1 Introduction
	2 Background and related work
	2.1 Preliminaries on logic and ILP
	2.2 Related work towards visual ILP

	3 ILP
	3.1 Architecture overview
	3.1.1 Reasoning
	3.1.2 Learning

	3.2 Visual perception
	3.3 Facts converter: lifting to symbolic representation
	3.3.1 Neural predicate
	3.3.2 Facts-converting algorithm

	3.4 Differentiable forward-chaining inference
	3.4.1 Tensor encoding
	3.4.2 Valuation
	3.4.3 Clause function
	3.4.4 Soft (logic) program composition
	3.4.5 Prediction

	3.5 Program induction from visual scenes
	3.5.1 Top-k beam search of clauses
	3.5.2 Learning weights

	4 Experimental evaluation
	4.1 Solving Kandinsky patterns
	4.1.1 Dataset
	4.1.2 Pre-training
	4.1.3 Baselines
	4.1.4 Results

	4.2 Solving CLEVR-Hans problems
	4.2.1 Dataset
	4.2.2 Pre-training
	4.2.3 Baselines
	4.2.4 Results

	4.3 Ablation study
	4.3.1 Running time and number of clauses in clause generation
	4.3.2 Running time of weight learning
	4.3.3 Running time of reasoning
	4.3.4 Limitations

	5 Conclusion and future work
	Appendix A: Experimental setting
	A.1 Kandinsky-20k
	A.2 Kandinsky-2k
	A.3 CLEVR-Hans

	Appendix B: Perception models in experiments
	B.1 YOLO for Kandinsky patterns
	B.2 Slot Attention for CLEVR-Hans

	Appendix C: Background knowledge in ILP
	Appendix D: Details on the softor function
	Appendix E: Mode declaration
	Appendix F: More examples of Kandinsky patterns and CLEVR-Hans
	References

