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Abstract
Deep reinforcement learning agents are vulnerable to adversarial attacks. In particu-
lar, recent studies have shown that attacking a few key steps can effectively decrease the 
agent’s cumulative reward. However, all existing attacking methods define those key steps 
with human-designed heuristics, and it is not clear how more effective key steps can be 
identified. This paper introduces a novel reinforcement learning framework that learns key 
steps through interacting with the agent. The proposed framework does not require any 
human heuristics nor knowledge, and can be flexibly coupled with any white-box or black-
box adversarial attack scenarios. Experiments on benchmark Atari games across different 
scenarios demonstrate that the proposed framework is superior to existing methods for 
identifying effective key steps. The results highlight the weakness of RL agents even under 
budgeted attacks.

Keywords Deep learning · Reinforcement learning · Adversarial attacks · Robustness

1 Introduction

Reinforcement learning (RL) is a framework for sequential decision problems, where an 
agent interacts with an unknown environment and tries to maximize the total reward it 
receives. With the rapid development of deep learning, RL agents parametrized by neural 
networks, usually referred to as deep RL agents, are able to learn complex policies from 
raw inputs (Mnih et al., 2015). Deep RL agents have shown great success across various 
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domains, such as achieving superhuman performance on games (Mnih et  al., 2015; Sil-
ver et al., 2016, 2018), completing complex robotic tasks (Levine et al., 2016), optimizing 
patient treatments (Escandell-Montero et  al., 2014; Raghu et  al., 2017), and developing 
autonomous driving skills (Pan et al., 2017; Isele et al., 2018).

However, if we wish to deploy these RL agents into security-critical applications, we 
must take their reliability into consideration. It is discovered that neural network classi-
fiers may make errors on deliberately crafted inputs, known as adversarial examples (Big-
gio et al., 2013; Szegedy et al., 2014; Goodfellow et al., 2015). Deep RL is no exception: 
Many studies have demonstrated that deep RL agents are also vulnerable when attacked by 
adversarial examples (Behzadan & Munir, 2017a; Huang et al., 2017), raising serious con-
cerns on the reliability of these agents for security-critical applications. For example, there 
may be severe consequences if an RL-agent-driven autonomous vehicle is compromised by 
adversarial examples fed from a malicious attacker.

Given the sequential nature of RL, several existing studies argue that it is not neces-
sary to attack at every time step to degrade the agent’s performance significantly (Lin 
et al., 2017; Kos & Song, 2017). The reason is that not all decisions made by the agent are 
equally important. Some decisions may be critical to the agent, such as those for long-term 
planning or immediate reward gathering; some other decisions may not have much effect 
on the environment nor the rewards, and thus attacking those steps would not affect the 
agent’s performance. Lin et al. (2017) termed the critical decisions as strategically-timed 
while Kos and Song (2017) termed them as crucial moments, based on the corresponding 
attacking heuristics. In this work, we refer to all such critical steps, which decrease the 
cumulative reward more effectively when being attacked, as key steps for simplicity.

Figure 1 illustrates a key step and a non-key step in Atari Pong, where the main dif-
ference between them is whether the ball has already passed through the agent. Attackers 
aware of this difference can concentrate on attacking those key steps, and save efforts of 
generating, injecting, and hiding adversarial examples to attack non-key steps. Therefore, 
an intelligent attacker should prefer attacking key steps over non-key steps. From the per-
spective of making an RL agent more robust, we should also prefer identifying and under-
standing key steps as they reveal the Achilles’ heel of the agent that needs to be better 
protected.

A natural question arises: How does an attacker identify the key steps to attack? As an 
initial attempt to address this question, Lin et  al. (2017) formulate the problem from an 
optimization perspective, and propose a heuristic that attacks the agent when it strongly 
prefers one action over others. Concurrently, Kos and Song (2017) propose another heu-
ristic that attacks when the action appears rewarding to the agent. However, since these 

Fig. 1  An example of the key 
step and non-key step in Atari 
Pong. a The ball is moving in 
the direction indicated by the 
red arrow. If the agent does not 
move down at this step or some 
earlier steps, the ball would pass 
through, making the agent lose 
a point. b The ball has already 
passed through the agent. Any 
decision at this step does not save 
the situation and does not affect 
the environment much
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heuristics are designed based on human knowledge, it is unclear whether there exist more 
effective key steps. In this work, we study the possibilities of finding more effective key 
steps, and of finding them automatically without human knowledge. We confirm both pos-
sibilities by introducing an RL framework where the attacker learns the key steps from 
scratch through interacting with the agent.

In particular, we study the key-step identification problem proposed by Lin et al. (2017). 
We prove that this constrained optimization problem can be converted into another form 
that matches the objective of RL. Then, we design a corresponding RL environment to 
train the attacker. Our contributions are summarized as follows:

• We formulate the key-step identification problem in an unconstrained form, and pro-
pose an RL framework that solves it directly without incorporating human knowledge. 
The proposed RL framework is independent of how adversarial examples are gener-
ated, and thus could be combined with white-box or black-box attacks.

• We justify the necessity of our proposed learning framework by constructing an exam-
ple environment where existing human-designed heuristics fail to identify the key steps.

• We conduct thorough experiments on five benchmark Atari games to test the effective-
ness of our proposed framework. The attacker trained by our framework can learn key 
steps that decrease the cumulative rewards of the RL agents more effectively than those 
steps found by existing human heuristics. The results confirm the possibility of finding 
more effective key steps automatically without human knowledge.

2  Background and related work

2.1  Reinforcement learning

We begin by defining notations for the RL environment, namely the Markov Decision Pro-
cess (MDP) (Sutton & Barto, 2018), which is a tuple (�,�,P,R,P0, �) . At each step t, an 
RL agent is in a state st from a finite set � , and picks an action at from a finite set � ; then 
the environment returns a next state st+1 with transition probability P(st+1 ∣ st, at) , and a 
bounded reward rt ∈ [−1, 1] sampled from a reward distribution R(st, at) . For convenience, 
we define r(st, at) = �rt∼R(st ,at)

[rt] to be the mean reward function. The state s0 is drawn 
from an initial state distribution P0 , and � ∈ [0, 1] is a discount factor.

We work in the �-discounted finite-horizon setting with a maximum step of T. Let Π be 
the set of all stationary stochastic policies that take actions in � given states in � . The value 
function of a policy � ∈ Π is defined to be the expected return:

where the expectation with respect to � denotes the expectation with respect to the trajec-
tory it generates ( s0 ∼ P0 , at ∼ �(st) , and st+1 ∼ P(st, at) for t ≥ 0 ). Similarly, the Q-value 
function of a policy � starting from (st, at) is defined by

V(�) = ��

[
T∑

t=0

� tr(st, at)

]
,

Q�(st, at) = ��

[
T−t∑

k=0

�kr(st+k, at+k)

]
.
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To learn an optimal policy �∗ = argmax �∈ΠV(�) , Deep Q-Network (DQN, Mnih et al., 
2015) first approximates the Q-value function by a neural network that takes a state as 
input and outputs the Q-values for all actions. The policy is then induced by picking the 
action with the largest Q-value at each state. Given a transition step (st, at, rt, st+1) , the net-
work f� is trained by minimizing the Bellman squared error

where we use f�(s)a to denote the a-th entry of the Q-values  f�(s).

2.2  Adversarial attacks

In the context of adversarial attacks, an attacker tries to fool a target model by crafting 
adversarial examples that the target model would mis-classify (Biggio et  al., 2013; Sze-
gedy et  al., 2014; Goodfellow et  al., 2015). These adversarial examples are constructed 
through adding small perturbations to original examples. According to how much knowl-
edge the attacker knows about the target model, adversarial attacks can be roughly divided 
into white-box ones and black-box ones.

White-box attacks assume that the attacker has full knowledge about the target model, 
including the target model’s network parameters. For example, given a target model f� par-
ametrized by � and an image–label pair (x, y), the fast gradient sign method (FGSM, Good-
fellow et al., 2015) computes the perturbation as

where � is a scaling factor that controls the norm of the perturbation, and J(�, x, y) is an 
objective function that depends on the attacker’s goal. In untargetted attacks, the attacker 
aims to minimize the target model’s classification accuracy, and thus the objective J(�, x, y) 
is set to DKL(e

(y)‖f�(x)) , the Kullback–Leibler divergence between the label’s one-hot 
encoding e(y) and the predicted probabilities f�(x) . In targetted attacks, on the other hand, 
the attacker’s goal is to make the target model predicts some other class y′ ≠ y , and thus 
the objective is set to −DKL(e

(y�)‖f�(x)).
The main disadvantage of white-box attacks is that their assumptions may not be satis-

fied in real-world tasks. In contrast, black-box attacks assume no access to network param-
eters and study other conditions instead, such as the ability to query model outputs (Chen 
et al., 2017). One of the most common black-box attacks is the substitute model approach 
(Papernot et al., 2016a, 2017), where the attacker computes perturbations using a substi-
tute model that is trained to perform the same task as the target model. This approach is 
based on the finding that adversarial examples can be transferable; that is, if an adversarial 
example fools a model, it might also fool other models trained to perform the same task, 
regardless of the network architecture (Szegedy et al., 2014). Using this approach, once the 
attacker gains access to the training set, any white-box attack method can also be applied in 
a black-box setting.

2.3  Adversarial attack on deep RL agents

As opposed to traditional adversarial attacks on classifiers, attacking an RL agent is a dif-
ferent task that comes with unique goals. When attacking a classifier, we typically aim to 

L� =
((

rt + � max
a

f�(st+1)a

)
− f�(st)at

)2

,

� = � sign (∇xJ(�, x, y)),
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minimize the classification accuracy or to maximize the probability that the classifier pre-
dicts some given class. When attacking an RL agent, however, we usually do not care about 
individual actions that the agent picks (Behzadan & Munir, 2018; Xiao et al., 2019). Possi-
ble attacking goals include minimizing the agent’s cumulative reward (Huang et al., 2017), 
luring the agent into a designated state (Lin et al., 2017), misguiding the agent to optimize 
an adversarial reward (Tretschk et al., 2018), or forcing the agent into executing a policy 
specified by the attacker (Rakhsha et  al., 2020). The types of attacks against RL agents 
are also multifarious, ranging from testing-time attacks such as perturbation-based attacks 
(Huang et  al., 2017) and action-based attacks (Lee et  al., 2020), to training-time attacks 
such as reward-poisoning attacks (Zhang et al., 2020) and environment-poisoning attacks 
(Rakhsha et al., 2020). Learning adversarial policies in multi-agent systems has also been 
studied (Gleave et al., 2020).

In this work, we study the problem of minimizing the agent’s cumulative reward 
through perturbation-based attacks at testing time (Lin et al., 2017; Kos & Song, 2017). 
The attacker needs to decide not only the way perturbations are generated, but also the key 
steps at which the attack would be effective, adding another dimension of complexity to the 
problem. Several studies discuss how perturbation-based attacks could be generated against 
RL agents. In the white-box setting, the FGSM has been used to craft adversarial exam-
ples that fool target agents into picking wrong actions (Behzadan & Munir, 2017a; Huang 
et al., 2017; Mandlekar et al., 2017; Pattanaik et al., 2018). Other white-box attacks such 
as the Jacobian saliency map algorithm (Papernot et al., 2016b) and the attack proposed by 
Carlini and Wagner (2017) are also shown to be effective against RL agents (Behzadan & 
Munir, 2017a; Lin et al., 2017). As for the black-box attacks, adversarial examples can be 
crafted with a substitute agent that is trained in the same environment as the target agent 
(Behzadan and Munir 2017a; Huang et al., 2017) or in a learned environment (Inkawhich 
et al., 2019). Nevertheless, to the best of our knowledge, few studies have investigated the 
most effective steps to perform those attacks. We aim to study the underexplored aspect—
identifying the key steps to attack. We shall treat the perturbation generation part as a pro-
cedure call in this work.

One reason to study attacks against RL agents is that a well-studied attacking scheme 
helps improve the agent’s robustness. For instance, the agent’s robustness to visual per-
turbations can be improved through adversarial training (Kos & Song, 2017; Mandlekar 
et al., 2017; Behzadan & Munir, 2017b; Pattanaik et al., 2018), a defense technique that 
adds adversarial examples into training sets (Goodfellow et al., 2015). On the other hand, 
both Pinto et al., (2017) and Tessler et al., (2019) obtain policies that are robust to environ-
ment changes by training the agent and the adversary in an alternating procedure, where 
the attacks are operated on the environment dynamics instead of visual perturbations. By 
proposing an effective attack method, we hope to stimulate the study of defense schemes 
and robust agents.

3  Learning key steps to attack

3.1  The key‑step identification problem

Suppose that an attacker would like to attack a target agent with policy � by adding per-
turbations to the states. We use � to denote an arbitrary attack method that maps from a 
state to a perturbation. Let B be the budget, the maximum number of attacks permitted in 
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one episode. The key-step identification problem (Lin et al., 2017) can be formulated as 
follows:

In this problem, the attacker aims to minimize the expected return of the target agent under 
the budget constraint. The binary variable bt indicates whether the perturbation �(st) is 
added to the state st , and step t is a key step found by the attacker if bt = 1.

Problem  1 is a difficult combinatorial problem with an exponentially large search 
space. Each decision of the attacker changes the subsequent steps. Moreover, the transition 
dynamics and reward distribution may be random. Even if the attacker manages to search 
the whole space by brute force, the collected experiences are merely samples; the attacker 
still needs to estimate and minimize the expected return. Due to these difficulties, previous 
studies (Lin et al., 2017; Kos & Song, 2017) rely on heuristics to find the key steps.

3.2  Existing methods and their weakness

Suppose that the target agent is parametrized by a Q-network f�.1 Kos and Song (2017) 
observe that steps with large Q-values are usually followed by large immediate reward. 
They hypothesize that an attack is effective at steps with large Q-values, and propose to 
set bt = 1 if the maximum Q-value maxa f�(st)a is larger than a given threshold. On the 
other hand, Lin et  al. (2017) propose to add perturbations when the agent is confident 
about its action. They use the softmax function to convert the Q-values into a policy 
(i.e., � = softmax◦f� ), and set bt = 1 if the probability gap maxa �(st)a −mina �(st)a is 
larger than a given threshold. We refer to these two heuristics as large-value (Kos & 
Song, 2017) and large-prob-gap (Lin et al., 2017) in the following.

However, these methods might not work well in general. An extreme case in the next 
proposition deliberately presents a scenario where existing heuristics are totally ineffective. 
In particular, the success of existing heuristics hinges on the goodness of the target agent, 
and thus the heuristics backfire when the target agent is far from optimal.

Proposition 1 Let Q ∶ 𝕊 ×𝔸 → ℝ be the function satisfying

If the target agent estimates the Q-value function to be −Q and follows the policy 
�(s) = argmax a − Q(s, a) , then the expected return of � cannot decrease when the agent is 
attacked by the large-value or large-prob-gap heuristics.

(1)

min
b0,…,bT∈{0,1}

�

[
T∑

t=0

r(st, at)

]

s.t. s0 ∼ P0,

at ∼ �(st + bt�(st)), st+1 ∼ P(st, at),

T∑

t=0

bt ≤ B.

Q(s, a) = r(s, a) + �
∑

s�∈�

P(s� ∣ s, a)min
a�∈�

Q(s�, a�).

1 These heuristics can be applied to attack other value-based or policy-based agents in a similar way.
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The proposition above reveals a case where a non-optimal target agent causes the 
heuristics to fail. Next, we demonstrate a carefully-crafted case where the heuristics 
fail on even an optimal target agent in Fig. 2. In this example, the target agent under 
attack is of optimal Q-values and an optimal policy, but both heuristics are still unable 
to find the key steps. This toy example highlights the potential drawback of these heu-
ristics. Since the attacker may change the agent’s policy in future steps, the agent’s 
Q-value estimates in the current step could be inaccurate. As a result, heuristics based 
on these Q-value estimates cannot find the most effective key steps in general.

A possible solution to fix the issue in Proposition 1 is to adopt the large-abso-
lute-value heuristic that attacks when the absolute Q-values are the largest. Some-
how the new heuristic suffers from other issues, such as being short-sighted to negative 
Q-values. The results for attacking the RL agent on an Atari game, Pong (Fig.  6a), 
demonstrate that the large-value and large-prob-gap heuristics, as well as 
the new large-absolute-value one, are not as competitive as the proposed 
framework. The results justify that simple heuristics cannot always work well on iden-
tifying the key steps to attack RL agents.

The cases in this subsection show that existing heuristics can fail when targeted 
towards either an imperfect agent or a perfect one. From these cases it appears impos-
sible to design an effective attack method without additional information. In the fol-
lowing, we propose a general RL framework that is able to learn key steps, by assum-
ing additional interactions with the target agent.

1 -1 0.99 -1

0.81

0.9 0.891

1 -1 0.99 -1

0 -1 1 -10

0.81

0 0.9

0 -1 1 -10

s0

s1

s3

s7 s8

s4

s9 s10

s2

s5 s6

s11 s12 s13 s14

step 0

step 1

step 2

target agent

optimal attack

heuristics

reward

Fig. 2  An MDP example where prior methods fail. The MDP components are described as follows. A circle 
represents a state, and a double circle represents a terminal state. At each state, the agent can choose to go 
left or right, as shown by the lines. Red numbers under the terminal states represent the reward an agent 
gets if the agent reaches that state. The discount factor � is set to 0.9. The target agent’s estimated Q-values 
and policy are shown by the blue numbers and blue arrows, respectively. Let the budget constraint B = 2 . 
To minimize the agent’s return, a smart attacker should attack at steps 0 and 2, guiding the agent into state 
s14 . However, the large-value heuristic would attack at steps 1 and 2 since the maximum Q-value is 
larger at those steps. On the other hand, the large-prob-gap heuristic also attacks steps 1 and 2 since 
the gap of Q-values is larger at those steps (so the probability gap is larger too). As a result, both heuristics 
guide the agent into state s10 , failing to find the most effective key steps
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3.3  Problem transformation

The main obstacle of solving Problem  1 is the budget constraint. We first prove an 
equivalent formulation of Problem  1 based on the Lagrange relaxation technique, 
replacing the hard budget constraint with a soft penalty term, and then solve the prob-
lem through RL. For this purpose we introduce the following notations.

Given a cost function c ∶ 𝕊 × 𝔸 → ℝ and a vector-valued constraint function 
g ∶ 𝕊 × 𝔸 → ℝ

K , we define the cost value function C ∶ Π → ℝ and constraint value 
function G ∶ Π → ℝ

K as

The next proposition states the equivalence between the constrained and regularized policy 
optimization problems.

Proposition 2 (A refinement of Proposition 2.1 in Le et al. (2019)) Consider the two policy 
optimization tasks:

Assume that the constraint G(�) ≤ � is feasible and cannot be removed without chang-
ing the optimal solution (i.e., inf𝜋∈Π C(𝜋) < inf𝜋∈Π∶G(𝜋)≤𝜏 C(𝜋) ). Then for all 𝜆 > 0 , there 
exists � , and vice versa, such that Constraint and Regularization share the same 
optimal solutions.

We provide a complete proof based on the occupancy measure (Puterman, 2014) in 
Appendix 1. Proposition 2 states that the constrained policy optimization problem can 
be solved via an equivalent unconstrained form. With this proposition in hand we then 
have the following proposition.

Proposition 3 Assume that the budget constraint in Problem 1 cannot be removed without 
changing the optimal solution. Consider the following problem:

For all � ≥ 0 , there exists B > 0 , and vice versa, such that Problems 1 and 2 share the 
same optimal solutions.

C(�) = ��

[
T∑

t=0

� tc(st, at)

]
,

G(�) = ��

[
T∑

t=0

� tg(st, at)

]
.

�������������� ∶ min
�∈Π

C(�) + �TG(�).

���������� ∶ min
�∈Π

C(�) s.t. G(�) ≤ �.

(2)

min
b0,…,bT∈{0,1}

�

[
T∑

t=0

r(st, at)

]
+ �

T∑

t=0

bt

s.t. s0 ∼ P0,

at ∼ �(st + bt�(st)), st+1 ∼ P(st, at).
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This proposition is an instantiation of Proposition 2 and we also provide the proof in 
Appendix 1. Intuitively, � can be viewed as a parameter that controls the penalty for each 
attack. A larger penalty parameter � corresponds to a smaller budget constraint B.

Proposition  3 states that we can transform the key-step identification problem into a 
sequential decision problem without additional constraints. Our next step is to solve this 
equivalent problem through RL by training an attack policy that learns to identify the key 
steps.

3.4  An RL framework for learning key steps

Here we describe the proposed RL framework in detail. Suppose that the target agent with 
policy � is trained to maximize the expected return in an MDP M = (�,�,P,R,P0, �) . We 
propose to train the attack policy �′ in another MDP M� = (��,��,P�,R�,P�

0
, � �) , where 

each component is defined as follows:

• �
� = � , �� = {0, 1} , P�

0
= P0 , and � � = 1.

• For all s ∈ �
� , b ∈ �

� , the transition dynamics P�(s, b) = P(s, a) , and the reward 
R�(s, b) = −R(s, a) − b� , where a ∼ �(s + b�(s)) is the target agent’s action.

The new environment M′ has the same state space as M, but reduces to binary action space 
with the action “1” representing an attack at that step and “0” otherwise. The attacker’s 
reward is the negative of the target agent’s reward, plus a penalty of −� for each attack. 
Therefore, maximizing the expected return in M′ is equivalent to minimizing the objective 
in Problem 2. An illustration of the interactions among the environment, the target agent, 
and the attacker is given in Fig. 3.

Our proposed RL framework is general. We make no assumption on the environment or 
on the target agent. In addition, our RL framework can be freely paired with any RL algo-
rithm and with any attack method. Thus, our framework can be applied to white-box attack 
scenarios as well as black-box ones.

attacker

target agent

environment attack policy

adversarial
attack

algorithm

perturbation

action reward

state

possibly
perturbed

state

Fig. 3  Interactions among the environment, the target agent, and the attacker. If the attack policy outputs 
“1”, the attacker would intercept the state from the environment and inject the perturbed state to the target 
agent; otherwise the state is left unperturbed. Different from prior methods, our method parametrizes the 
attack policy with a neural network and trains it by an RL framework
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4  Experiments

We perform experiments on the toy example in Fig. 2 and five Atari 2600 games in the 
Arcade Learning Environment (Bellemare et al., 2013). We aim to answer the following 
questions in our experiments: (1) whether our RL framework can learn more efficient 
key steps than prior methods, and (2) whether the empirical behavior is consistent with 
the theory.

4.1  Toy example

As a sanity check, we test our framework on the toy example described in Fig. 2. Since 
the target agent has only two possible actions, we simulate the attack by directly chang-
ing the target agent’s action. We train the attack policy using DQN, with other details 
provided in Appendix 2. The results are shown in Fig. 4. When trained with the penalty 
parameter � = 101 , RL attack policy would perform no attacks since the penalty for each 
attack is too large. On the other hand, when trained with � ∈ {100, 10−1} , the attack 
policy is able to learn the most effective key steps (under a budget constraint B = 2 ), 
outperforming prior heuristics. As our analysis suggests, we can learn the effective key 
steps with appropriate values of �.

4.2  Atari

Next, we evaluate our framework on five Atari benchmark games (Pong, Space Invad-
ers, Seaquest, Riverraid, Battlezone), which cover a variety of environments. The envi-
ronment setting and preprocessing match the guidelines suggested by Machado et  al. 
(2018). In particular, we use a sticky-action probability of 0.25 in these environments. 
For the target agent, we take pretrained DQN agents from Dopamine (Castro et  al., 
2018), which have the same network architecture as Mnih et  al. (2015), and fix them 
thereafter. We also train attack policies using DQN with the same architecture. Other 
hyperparameters are reported in Appendix 2.

Throughout the experiments, we use the untargetted FGSM to generate perturbations 
due to its computation efficiency. We use Foolbox (Rauber et al., 2017) to generate the 

Fig. 4  Toy example results. The 
return of target agent is averaged 
over ten testing episodes
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adversarial examples with the perturbation norm constraint � set to 0.01. Figure 5 shows 
an example of the perturbation, which is imperceptible to human.

To make the scenario more realistic, we follow Hussenot et al. (2020) and perturb the 
target agent’s observation, rather than the whole state. That is, although the target agent 
stacks the latest four frames as its current state, the attacker is only allowed to add per-
turbation to the latest frame. We compare our method to a random baseline that attacks 
uniformly at random, and to two heuristics, large-value (Kos & Song, 2017) and 
large-prob-gap (Lin et  al., 2017). For the Pong environment, we include large-
absolute-value as another heuristic for comparison.

4.2.1  Performance comparison with small training budget

For each environment, we first train five attack policies with penalty parameter 
� ∈ {101, 100, 10−1, 10−2, 10−3} for 10 million training frames, which is only 1/20 of the 
training cost of the target agent. Figure 6 plots the results in the white-box setting. Despite 
the small training cost, when there is enough budget on attacking, the attack policy learned 
in our RL framework achieves superior performance in Pong and Riverraid, and exhibits 
competitive performance to all competitors in other environments.

The results provide a positive answer to our first question on whether our RL framework 
can learn more efficient key steps than prior heuristics. Somehow it is worth noting some 
parts of the curve that our RL framework does not reach the best performance. One is when 
the budget of attacking is small, like less than 20% on Riverraid. In this case, intuitively 
there is less need to learn a strategic policy, and a simple heuristic seems to be strong 
enough. The other is when there is a huge variance about the effectiveness of attacks, such 
as on Space Invaders, Seaquest, and Battlezone. Even in those cases, we see that the RL 
framework usually stays competitive to other heuristics, while being often better than ran-
dom attacks.

4.2.2  The effect of the penalty parameter

To investigate the penalty parameter � , we summarize the performance of the learned 
attack policies with white-box attacks in Table 1. As � increases, the learned attack policy 
tends to have a lower attack ratio. Also, training with too large values of � would prevent 

Fig. 5  An example of perturbation generated by the FGSM with � = 0.01 . Left: Original frame. Middle: 
Perturbed frame. Right: Added perturbation  (rescaled to [0,  1] for visualization). The frames before and 
after perturbation look indistinguishable to human eyes
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the attack policy from launching any attacks. The tradeoff between the penalty parameter 
and budget constraint confirms the theory.

These results suggests that choosing an appropriate � is important for learning effective 
key steps. Empirically, we observe that setting � around the same order of magnitude as

would produce stable results (see Table 1, Appendix 3.1 and 3.2). We thus list Equation (3) 
to provide a stable � as an initial value. A possible future direction is to allow the proposed 
RL framework to be combined with adaptive control or AutoML tools to get the right � 
under a given attack budget in different environments.

4.2.3  Performance comparison with full training budget

Next, we choose a value of � that is close to the average potential reward loss in 
Equation  (3) for each environment, and train the attack policy for 200  million train-
ing frames, the same as the target agent’s training budget.  2 The results are shown in 

(3)
Average potential reward loss per step

=
Original return of target agent −Minimum return

Number of steps per episode

(a) Pong (b) Space Invaders (c) Seaquest

(d) Riverraid (e) Battlezone

Fig. 6  Performance comparison of attack policies. The vertical axis is the target agent’s undiscounted 
return, and the horizontal axis is the attack ratio (the number of attacks divided by the number of steps 
in an episode). Under the same attack ratio, the lower the target agent’s undiscounted return is, the better 
the attack method does. All reported scores are averaged over ten testing episodes and shown with one 
standard deviation. The results of the two heuristics are obtained by setting ten different thresholds on their 
corresponding criteria. For our RL method, we plot the score for each learned policy at 10 million training 
frames, and show the testing episodes by red dots

2 Because of computational resource constraints, the following experiments are conducted on the first four 
environments only.
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Table 2. The RL attack policy improves with the full training budget and outperforms 
prior methods by a large margin. These results further validate that key steps are learn-
able, and that our method can learn more effective key steps automatically without any 
domain knowledge.

Table 1  Comparison of our RL attack policy with different � (10 million training frames)

Results are averaged over ten testing episodes with the standard deviation shown in parentheses

�

101 100 10−1 10−2 10−3

Pong
 Return 18.4 (1.9) 18.4 (1.9) − 20.5 (0.7) − 20.6 (1.2) − 20.9 (0.3)
 Attack ratio 

(%)
0.0 (0.0) 0.0 (0.0) 5.3 (1.0) 9.7 (4.7) 15.8 (3.1)

Space invaders
 Return 1063.0 (796.4) 714.0 (438.7) 201.5 (152.5) 139.5 (124.6) 254.0 (147.4)
 Attack ratio 

(%)
0.0 (0.0) 26.0 (4.9) 50.0 (9.4) 71.9 (5.3) 77.1 (8.1)

Seaquest
 Return 1280.0 (308.4) 414.0 (183.3) 84.0 (72.6) 54.0 (34.7) 122.0 (94.0)
 Attack ratio 

(%)
0.0 (0.0) 21.8 (4.6) 39.8 (7.7) 47.7 (5.2) 61.1 (5.2)

Riverraid
 Return 888.0 (636.1) 407.0 (127.3) 464.0 (295.9) 546.0 (113.6) 616.0 (328.7)
 Attack ratio 

(%)
27.8 (5.8) 35.3 (7.0) 82.5 (2.6) 83.6 (5.0) 92.2 (5.6)

Battlezone
 Return 7400.0 (6327.7) 2900.0 (2981.6) 2800.0 (2561.2) 2000.0 (2144.8) 5300.0 (3348.1)
 Attack ratio 

(%)
31.2 (8.1) 43.4 (7.5) 57.8 (11.1) 78.4 (4.5) 85.7 (4.2)

Table 2  Performance comparison under the same attack ratio with white-box attack

We train RL attack policies for 200 million training frames with the chosen � , and then we test the com-
petitors using the same attack ratios as the learned attack policies. Results are averaged over ten testing 
episodes with the standard deviation shown in parentheses

� Attack ratio Return

(%) RL Random Large-value Large-prob-gap

Pong 10−1 3.9 (0.8) − 21.0 (0.0) 15.4 (2.1) 15.7 (1.7) − 11.4 (3.9)
Space Invaders 100 10.3 (3.1) 103.5 (117.4) 1292.0 (754.3) 1018.0 (578.6) 398.0 (223.7)
Seaquest 100 13.5 (3.5) 362.0 (110.4) 978.0 (333.4) 662.0 (374.7) 746.0 (140.9)
Riverraid 101 17.9 (3.3) 446.0 (62.6) 8981.0 (2142.1) 7014.0 (3770.7) 3495.0 (1800.5)
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4.2.4  Behavior comparison of the attack policies

To understand to what extent the attack policy learned in our RL framework is different 
from human heuristics, we attack the target agent by the learned attack policy, and com-
pute the statistics used by the two heuristics at each step. Figure 7 plots the histogram of 
those statistics in Pong and Space Invaders. The key steps found by our method spread 
across different intervals, rather than focusing on the largest intervals. This result sug-
gests that our method does not simply mimic the heuristics, but learns unique key steps 
to attack.

4.2.5  Black‑box scenario

We adopt the substitute model approach and take the substitute agent from Dopamine. The 
substitute agent has the same architecture as the target agent, but is trained with a differ-
ent random seed and network initialization. This setting is the same as the experiments 
of “Transferability Across Policies” in Huang et al. (2017). Perturbations for adversarial 
attacks and statistics for large-value and large-prob-gap are then computed with 
respect to the substitute agent.

(a) Pong (b) Space Invaders

(c) Seaquest (d) Riverraid

Fig. 7  Behavior comparison of our method to previous heuristics. Left: Histogram of the maximum Q-value 
computed by large-value. Right: Histogram of the probability gap computed by large-prob-
gap. (all: number of all steps in one episode; attack: number of steps that our method attacks)

(a) Pong (b) Space Invaders (c) Seaquest (d) Riverraid

Fig. 8  Performance comparison of attack policies with black-box attacks. This figure is the black-box ver-
sion of Fig. 6 (white-box). It can be observed that the RL-learned policy remains competitive on Pong



1513Machine Learning (2023) 112:1499–1522 

1 3

Due to limited resources, we only train the attackers for 10  million training frames. 
Results are shown in Fig. 8 and the comparison of different � can be found in Table 3. In 
Pong, our method improves over baseline and prior methods. In other environments, we 
observe higher rates of attack failures, which we hypothesize to be the reason that causes 
all methods to show similar performance. On the comparison with different � , we observe 
similar trends as the white-box scenario, where larger � corresponds to smaller attack ratio. 
Overall, even with a small training budget, our method is still able to outperform or per-
form comparably to previous methods in the black-box scenario.

5  Discussion

The experiment results on simulated environments demonstrate the potential of our pro-
posed RL framework in being superior in attacking at the key steps than human-designed 
heuristics. The heuristics are admittedly competitive when the attack budget is low or when 
the efficacy of attacks is less certain; the proposed framework, however, is significantly 
more effective in the other scenarios, especially in the white-box setting.

The findings above can be useful to a willing attacker to launch attacks successfully. 
Suppose the attacker has enough budget and a competent method for producing effective 
attacks. In that case, the attacker can immediately employ our proposed framework to 
attack the target agent through interactions. The proposed framework spends the budget 
efficiently by selecting the key steps. Furthermore, the key steps offered by the framework 
are significantly different from those by a single heuristic, which makes it harder for the 
system running the target agent to detect the attempt to attack.

The usefulness discussed above, however, comes with two assumptions. The assump-
tions may restrict the feasibility of a willing attacker’s application of the proposed 

Table 3  Comparison of our RL policy with different � with black-box attacks (10 million training frames)

Results are averaged over ten testing episodes with the standard deviation shown in parentheses

�

101 100 10−1 10−2 10−3

Pong
 Return 18.4 (1.9) 14.7 (2.2) − 17.2 (2.5) − 20.2 (1.0) − 19.7 (1.6)
 Attack ratio 

(%)
0.0 (0.0) 0.1 (0.0) 3.1 (0.4) 12.4 (3.5) 31.5 (6.9)

Space invaders
 Return 1063.0 (796.4) 571.0 (294.4) 539.5 (309.2) 269.5 (183.6) 422.5 (267.9)
 Attack ratio 

(%)
0.0 (0.0) 9.3 (2.8) 46.6 (4.7) 57.7 (6.3) 73.9 (7.1)

Seaquest
 Return 1280.0 (308.4) 1038.0 (463.8) 1252.0 (524.2) 1056.0 (340.8) 978.0 (310.2)
 Attack ratio 

(%)
0.0 (0.0) 2.3 (1.3) 39.0 (4.2) 46.6 (5.2) 47.2 (4.3)

Riverraid
 Return 11057.0 (2950.7) 9891.0 (2584.1) 9353.0 (3229.2) 11176.0 (2942.4) 7069.0 (2488.5)
 Attack ratio 

(%)
0.0 (0.1) 42.8 (4.0) 56.2 (3.1) 59.9 (3.5) 95.7 (1.9)
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framework. The first assumption is a competent method for producing effective attacks. 
As our experiments demonstrate, this assumption is easier to achieve in the white-box set-
ting but only sometimes possible in the black-box setting. The white-box setting is a very 
strong restriction in the real world, as the target agent’s model is typically not fully acces-
sible. The second assumption is that the framework is executed with a reasonable � . While 
we attempt to provide a reasonable � through Equation (3) based on our experience in the 
simulated environments, it is unclear whether such a � also applies to real-world environ-
ments. Furthermore, the relationship between � and the budget B cannot be easily com-
puted. Therefore, an attacker running on a strict budget may find it challenging to locate a 
good � corresponding to the desired budget.

Suppose we switch from the attacker’s viewpoint to the perspective of any safety-sensi-
tive RL system. The framework is arguably useful for identifying the weakness of the sys-
tem. Once the weakness, in the form of key steps, is located, we can apply techniques like 
adversarial training to strengthen the system’s robustness. In addition, the framework is 
usually feasible in such a scenario, as the developers hold complete knowledge of the mod-
els within the system and can use multiple � to stress-test the system. With its usefulness 
and feasibility, the proposed framework has the potential to help enhance the robustness of 
any safety-sensitive RL system.

6  Conclusion and future direction

We show that the key-step identification problem can be solved by training an attack policy 
through an RL framework. Compared to existing studies, our method learns unique key 
steps without any human knowledge and can be flexibly paired with white-box or black-
box settings. Results on Atari benchmarks validate our belief that the proposed method can 
learn more effective key steps in the white-box setting. We also demonstrate the potential 
of the proposed framework in the black-box setting on Pong. Nevertheless, for Atari envi-
ronments other than Pong, all the existing approaches cannot attack more effectively than 
random attacking in the black-box setting. The results suggest that while attacks may be 
transferable, the key steps are not easily transferable. We hope that this work could serve as 
a building stone towards more practical attacks and defenses of deep RL agents.

One interesting future direction is to blend the strength of RL and humans, such as using 
RL to learn a dynamic threshold on top of human heuristics. The dynamic thresholding 
can possibly be achieved by some specially-designed state space that encodes the human 
heuristics. Another direction is to study the condition on when key steps can be transfer-
able, like Pong, which helps understand the nature of attacking at the key steps. The other 
direction is to couple the RL framework with adversarial training and alternating training 
techniques (Pinto et al., 2017; Tessler et al., 2019) to robustify the deep RL agent.

Appendix 1: Proofs of Sect. 3

Here we provide proofs for the propositions.

Proposition 1 Let Q ∶ 𝕊 ×𝔸 → ℝ be the function satisfying
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If the target agent estimates the Q-value function to be −Q and follows the policy 
�(s) = argmax a − Q(s, a) , then the expected return of � cannot decrease when the agent is 
attacked by the large-value or large-prob-gap heuristics.

Proof The target agent has policy �(s) = argmax a − Q(s, a) = argmin aQ(s, a) . By defini-
tion of Q, this policy achieves minimum expected return: � = argmin �∈ΠV(�) . Therefore, 
its expected return cannot decrease. Furthermore, the expected return strictly increases if 
there is an attack that changes the target agent’s action from a to a′ at some state s with 
Q(s, a) ≠ Q(s, a�) .   ◻

Proposition 2 (A refinement of Proposition 2.1 in Le et al. (2019)) Consider the two policy 
optimization tasks:

Assume that the constraint G(�) ≤ � is feasible and cannot be removed without chang-
ing the optimal solution (i.e., inf𝜋∈Π C(𝜋) < inf𝜋∈Π∶G(𝜋)≤𝜏 C(𝜋) ). Then for all 𝜆 > 0 , there 
exists � , and vice versa, such that Constraint and Regularization share the same 
optimal solutions.

Proof Let �∗ be an optimal policy in Regularization for some 𝜆 > 0 , and let 
�∗ = G(�∗) . Suppose that there exists � ∈ Π such that G(�) ≤ �∗ and C(𝜋) < C(𝜋∗) . Then 
we have

contradicting to the optimality of �∗ . Thus, �∗ is also optimal in Constraint with � = �∗

.
To prove the other direction, let us first define for a policy � ∈ Π its occupancy measure 

�� ∶ 𝕊 × 𝔸 → ℝ as

The occupancy measure can be viewed as an unnormalized distribution of state–action vis-
itation, and for any function c ∶ 𝕊 × 𝔸 → ℝ we have

The set � ∶= {�� ∶ � ∈ Π} of valid occupancy measures can be written as a feasible set of 
affine constraints (Puterman, 2014):

Q(s, a) = r(s, a) + �
∑

s�∈�

P(s� ∣ s, a)min
a�∈�

Q(s�, a�).

�������������� ∶ min
�∈Π

C(�) + �TG(�).

���������� ∶ min
�∈Π

C(�) s.t. G(�) ≤ �.

C(𝜋) + 𝜆TG(𝜋) < C(𝜋∗) + 𝜆T𝜏∗ = C(𝜋∗) + 𝜆TG(𝜋∗),

�(a ∣ s)

T∑

t=0

� tPr(st = s ∣ �).

C(�) ∶= ��

[
T∑

t=0

� tc(st, at)

]
=
∑

s,a

��(s, a)c(s, a).
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Furthermore, we have a one-to-one correspondence between Π and � (Theorem 2 of Syed 
et al., 2008): If � ∈ � , then � is the occupancy measure for �� ∶= �(s, a)∕

∑
a� �(s, a

�) , and 
�� is the only policy whose occupancy measure is �.

Therefore, we can rewrite the two problems as linear programs:

Let �∗ be an optimal solution of Constraint for some � . The Lagrangian of Con-
straint is given by

and we have �∗ = argmin �∈� max�≥0 L(�, �) . Let �∗ = argmax �≥0 min�∈� L(�, �) . Since 
strong duality holds for any linear program provided that the primal problem is feasible 
(Boyd & Vandenberghe, 2004), we have

Removing the constant −(�∗)T� , we have that �∗ is optimal in Regularization with 
� = �∗ . Finally, since the constraint cannot be removed without changing the optimal solu-
tion, �∗ ≠ argmin �∈�

∑
s,a �(s, a)c(s, a) , and we must have 𝜆∗ > 0 .   ◻

Proposition 3 Assume that the budget constraint in Problem 1 cannot be removed without 
changing the optimal solution. Consider the following problem:

For all � ≥ 0 , there exists B > 0 , and vice versa, such that Problems 1 and 2 share the 
same optimal solutions.

Proof Suppose that the target agent with policy � is trained to maximize the expected 
return in an MDP M = (�,�,P,R,P0, �) . We define the cost function c ∶ 𝕊 × {0, 1} → ℝ 
as

� =

{
� ∶ � ≥ 0 and ∀s ∈ �,

∑

a

�(s, a) = P0(s) + �
∑

s� ,a

P(s ∣ s�, a)�(s�, a)

}
.

�������������� ∶ min
�∈�

∑

s,a

�(s, a)
(
c(s, a) + �Tg(s, a)

)
.

���������� ∶ min
�∈�

∑

s,a

�(s, a)c(s, a) s.t.
∑

s,a

�(s, a)g(s, a) ≤ �.

L(�, �) =
∑

s,a

�(s, a)
(
c(s, a) + �Tg(s, a)

)
− �T�,

�∗ = arg min
�∈�

max
�≥0

L(�, �)

= max
�≥0

arg min
�∈�

L(�, �)

= arg min
�∈�

L(�, �∗)

= arg min
�∈�

∑

s,a

�(s, a)
(
c(s, a) + (�∗)Tg(s, a)

)
− (�∗)T�.

(2)

min
b0,…,bT∈{0,1}

�

[
T∑

t=0

r(st, at)

]
+ �

T∑

t=0

bt

s.t. s0 ∼ P0,

at ∼ �(st + bt�(st)), st+1 ∼ P(st, at).
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and the constraint function g ∶ 𝕊 × {0, 1} → ℝ as g(s, b) = b . Let Πb be the set of all sta-
tionary stochastic policies that take actions in {0, 1} given states in � . Define the cost value 
function C ∶ Πb → ℝ and constraint value function G ∶ Πb → ℝ as

where s0 ∼ P0 , bt ∼ �b(st) , at ∼ �(s + b�(s)) , and st+1 ∼ P(st, at) for t ≥ 0 . Using these def-
initions, we can rewrite Problem 1 as

and Problem 2 as

It remains to apply Proposition 2.   ◻

Appendix 2: Experimental settings

In the toy example, we use one-hot encoding to represent each state for all 15 states. The 
Q-network is composed of five fully-connected layers, with the dimensions for hidden 
layers being (128,  128,  512,  512). For Atari games, the architecture of Q-network fol-
lows Mnih et al. (2015). All hyperparameters are listed in Tables 4 and  5.

Preliminary results comparing the effect of discount factor � are provided in Table 6. 
The results do not clearly show which value is better for training attack policies. We choose 

c(s, b) = −�a∼�(s+b�(s))

[
�r∼R(s,a)[r]

]
,

C(�b) = ��b

[
T∑

t=0

c(st, bt)

]
,

G(�b) = ��b

[
T∑

t=0

g(st, bt)

]
,

min
�∈Πb

C(�) s.t. G(�) ≤ B,

min
�∈Πb

C(�) + �G(�).

Table 4  Hyperparameters for the 
toy example

Hyperparameter Value

Optimizer Adam
Learning rate 0.0001
Batch size 32
Discount factor 1
Target network update frequency 10
Replay buffer size 100
Learning start step 0
Learning frequency 1
Exploration type �-greedy
Epsilon decay type Linear decay
Exploration decay horizon 300
Minimum epsilon during training 0.01
Epsilon during testing 0
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to use � = 0.99 throughout our experiments, as this value is the common choice when 
training Atari agents.

Appendix 3: Additional experimental results

Appendix 3.1: Statistics of the target agent

See Table 7.

Table 5  Hyperparameters for 
Atari games

Hyperparameter Value

Optimizer Adam
Learning rate 0.0001
Batch size 32
Discount factor 0.99
Target network update frequency 1000
Replay buffer size 100,000
Learning start step 20,000
Learning frequency 4
Exploration type �-greedy
Epsilon decay type Linear decay
Exploration decay horizon 250,000
Minimum epsilon during training 0.01
Epsilon during testing 0.001
Adversarial attack method FGSM
Maximum norm constraint for perturbation 0.01
Perturbation searching intervals 100

Table 6  Comparison of discount factor � used in training white-box attack policies (10  million training 
frames)

Results are averaged over ten testing episodes with the standard deviation shown in parentheses

� �

101 100 10−1 10−2 10−3

Pong 0.99 Return 18.4 (1.9) 18.4 (1.9) − 20.5 (0.7) − 20.6 (1.2) − 20.9 (0.3)
Attack ratio 

(%)
0.0 (0.0) 0.0 (0.0) 5.3 (1.0) 9.7 (4.7) 15.8 (3.1)

Pong 1 Return 18.4 (1.9) 18.4 (1.9) − 18.1 (2.5) − 19.7 (0.9) − 19.3 (1.1)
Attack ratio 

(%)
0.0 (0.0) 0.0 (0.0) 3.8 (0.7) 22.0 (3.1) 49.0 (3.4)

Space 0.99 Return 1063.0 (796.4) 714.0 (438.7) 201.5 (152.5) 139.5 (124.6) 254.0 (147.4)
Invaders Attack ratio 

(%)
0.0 (0.0) 26.0 (4.9) 50.0 (9.4) 71.9 (5.3) 77.1 (8.1)

Space 1 Return 1063.0 (796.4) 190.0 (108.7) 93.5 (59.5) 199.5 (193.6) 156.5 (118.0)
Invaders Attack ratio 

(%)
0.0 (0.0) 62.9 (10.7) 46.4 (11.4) 43.3 (13.7) 67.8 (12.5)
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Appendix 3.2: Training curves (white‑box)

See Fig. 9.

Table 7  Statistics of the target agents averaged over ten episodes

Original return of 
target agent

Minimum return Number of steps 
per episode

Average potential 
reward loss 
(Eq. 3)

Pong 18.4 − 21.0 2498.9 1.58 × 10−2

Space Invaders 1063.0 0.0 1196.5 8.88 × 10−1

Seaquest 1280.0 0.0 1531.5 8.36 × 10−1

Riverraid 12912.0 0.0 1772.6 7.28 × 100

(a) Pong

(b) Space Invaders

(c) Seaquest

(d) Riverraid

Fig. 9  Attack policy’s undiscounted return in MDP M′ during training ( � = 101, 100, 10−1, 10−2, 10−3 from 
left to right). The attack policy is tested every 100,000 steps and we report scores averaged over ten testing 
episodes
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Training curves (black‑box)

See Fig. 10.
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(b) Space Invaders

(c) Seaquest

(d) Riverraid

Fig. 10  Attack policy’s undiscounted return in MDP M′ during training ( � = 101, 100, 10−1, 10−2, 10−3 from 
left to right) with black-box attacks. The attack policy is tested every 100,000 steps and we report scores 
averaged over ten testing episodes
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