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Abstract
Counterfactuals are central in causal human reasoning and the scientific discovery process. 
The uplift, also called conditional average treatment effect, measures the causal effect of 
some action, or treatment, on the outcome of an individual. This paper discusses how it is 
possible to derive bounds on the probability of counterfactual statements based on uplift 
terms. First, we derive some original bounds on the probability of counterfactuals and we 
show that tightness of such bounds depends on the information of the feature set on the 
uplift term. Then, we propose a point estimator based on the assumption of conditional 
independence between the counterfactual outcomes. The quality of the bounds and the 
point estimators are assessed on synthetic data and a large real-world customer data set 
provided by a telecom company, showing significant improvement over the state of the art.
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1  Introduction

Counterfactual statements (or counterfactuals for short) concern the potential of events 
in  situations different from the actual state of the world. An example of counterfac-
tual statement is“I got no effect since I made no action but something would have hap-
pened had I acted”. Counterfactuals are used in many fields, ranging from algorithmic 
recourse (Karimi et al., 2021) to online advertisement and customer relationship manage-
ment (Li & Pearl, 2019).

Counterfactuals have been formally defined in terms of structural causal models by 
Pearl (2009). Nevertheless, since a counterfactual statement cannot be directly observed, 
the research focuses on estimating or bounding their probability (e.g. the probability that 
we have an effect given a treatment and no effect else). The probability of some specific 
counterfactual expressions have been studied in the literature (Tian & Pearl, 2000) because 
of their relevance in causal decision-making. The probability of necessity (PN) is the prob-
ability that an event y would not have occurred in the absence of an action or treatment t, 
given that y and t in fact occurred. Conversely, the probability of sufficiency (PS) is the 
probability that event y would have occurred in the presence of an action t, given that both 
y and t in fact did not occur. Lastly, the probability of necessity and sufficiency (PNS) is the 
probability that the event y occurs if and only if the event t occurs.

In the case of incomplete knowledge about the causal model, identification procedures 
indicate when and how the probability of counterfactuals can be computed from a combi-
nation of observational data, experimental data (i.e. data with randomized treatment), and 
causal assumptions (Correa et al., 2021). In situations where the exact probability of coun-
terfactuals cannot be directly computed, an alternative consists in bounding this quantity. 
This problem, called partial counterfactual identification, has first been addressed by Tian 
and Pearl (2000), and more recently by Mueller et al. (2021) and Zhang et al. (2022).

Counterfactual reasoning has practical applications in business, notably churn mod-
eling: consider a company wishing to use direct marketing actions to prevent customers 
from churning (i.e. stop using their service). The behavior of the customers in reaction 
to the two possible actions (contact or not) could be described in terms of counterfactual 
statements (Devriendt et al., 2019):

•	 Sure thing: customer not churning regardless of the action.
•	 Persuadable: customer churning only if not contacted.
•	 Do-not-disturb: customer churning only if contacted.
•	 Lost cause: customer churning regardless of the action.

Note that the probability of a customer being a do-not-disturb is an example of PNS (Tian 
& Pearl, 2000) while, to the best of our knowledge, the other three probabilities have not 
been labeled in the causal inference literature. Though not observable, those quantities are 
relevant for adequate decision-making, and partial counterfactual identification can help in 
reducing the uncertainty about the possible customer behaviors.

Uplift modeling, where uplift stands for the conditional average treatment effect 
(CATE), or heterogeneous treatment effect  (Zhang et  al., 2021), is another well-known 
approach for estimating causal effects. It returns an estimate at the individual level of the 
impact of some action on the probability of the outcome. In the example of churn pre-
vention, uplift modeling estimates the impact of a promotional offer on the probability of 
churn for each customer. Most recent and powerful uplift models are based on machine 
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learning (Curth & van der Schaar, 2021). Some uplift models expect experimental data and 
are based on conventional classification models (Jaskowski & Jaroszewicz, 2012; Athey & 
Imbens, 2016). Other models accept observational (possibly confounded) data and estimate 
the uplift through some sort of adjustment, for example with propensity scores in (Künzel 
et al., 2019) and (Curth & van der Schaar, 2021).

Counterfactuals and uplift are closely related, yet formally distinct notions. The counter-
factual distribution describes the probability of each possible combination of realized and 
hypothetical outcomes, while the uplift describes the change in outcome probability due 
to the treatment. While the counterfactual distribution is more informative, it is also more 
difficult to estimate than the uplift. In (Li & Pearl, 2019) it is mentioned that the similarity 
between these two notions can lead to confusion, especially since they collapse under the 
assumption of monotonicity (the absence of negative causal effects).

Existing works on partial counterfactual identification  (Mueller et  al., 2021; Zhang 
et al., 2022) make structural assumptions on the causal model to derive bounds whose esti-
mate requires a combination of experimental and observational data. In this paper, we pro-
pose some original bounds on the probability of counterfactuals based on the uplift terms. 
The originality of our approach consists in defining bounds that depend on terms (like 
uplift) for which nowadays a lot of reliable estimators exist in literature. This is of particu-
lar interest in big data applications, where structural assumptions are hard to validate but 
a large number of observations about individual descriptors (covariates) and past behavior 
are available.

The main contributions of this paper are as follows:

•	 A set of original bounds on the probability of counterfactuals, expressed in terms of the 
uplift quantity.

•	 A formal derivation of the relationship between our original bounds and the state-of-
the-art Fréchet bounds derived by Tian and Pearl (2000).

•	 A point estimator of the counterfactual probabilities based on the conditional independ-
ence assumption.

•	 A hierarchical Bayesian model for simulating counterfactual settings and assessing the 
accuracy of the sample version of the derived bounds.

•	 A real-world assessment of the proposed bounds with a large data set of customer churn 
campaigns and a discussion of the potential benefits.

The rest of this paper is organized as follows. In Sect. 2, we present related work in the 
literature on partial counterfactual identification. In Sect. 3, we present the formalism used 
throughout this paper. In Sects. 4 and 5, we derive bounds and point estimates on the prob-
ability of counterfactuals. We analyze the behavior of these estimators under various con-
ditions with simulated examples in Sect. 6. We apply our estimator to a real-world data set 
from our industrial partner and estimate the suggested potential benefits in Sect. 7. Conclu-
sions and limitations are given in Sect. 8.

2 � Related work

The probability of necessity and sufficiency (PNS) as presented by Pearl (2009 p. 286) 
is one of the four counterfactual probabilities that we consider in this paper. Seminal 
works on partial counterfactual identification include (Balke & Pearl, 1994) and (Tian & 
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Pearl, 2000). They show that in the exogenous case (e.g. when the treatment is randomly 
assigned), the bounds on the PNS reduce to the Fréchet bounds (Fréchet, 1935). We will 
use these bounds as a baseline in the remaining of this paper.

The PNS conditioned on a set of covariates x is called x-specific PNS in (Li & Pearl, 
2019). The main focus of Li and Pearl (2019) is the estimation of the benefit generated by 
a customer retention campaign when the different types of customers have different values. 
For example, keeping a persuadable customer (a customer who does not churn only when 
targeted) might be more beneficial than keeping a customer who would never leave, besides 
the cost of the targeted action. In (Li & Pearl, 2022), the authors further refine the bounds 
on the campaign benefit based on causal assumptions derived from causal diagrams.

Mueller et al. (2021) derived tighter bounds on the PNS for a variety of causal diagrams, 
such as with sufficient covariates or with a mediator variable. In particular, the bounds in 
Theorem 5 in (Mueller et al., 2021) are formally very close to the bounds we develop in 
this paper, although they consider a set of discrete covariates, whereas we use uplift mode-
ling which allows for arbitrary high-dimensional covariate sets. Zhang et al. (2022) express 
the problem of bounding the probability of counterfactuals into polynomial programming, 
providing tight bounds for any causal graph and combination of experimental and observa-
tional data.

Our approach in this paper differs from Mueller et al. (2021) and Zhang et al. (2022) 
in that we make very few causal assumptions (only that the treatment is randomized), but 
we suggest uplift modeling as a powerful way to estimate conditional probabilities, and we 
analyze the impact of mutual information between the conditioning set and the potential 
outcomes.

3 � Notation

In this section, we present the mathematical notation used throughout this paper. A sum-
mary is given in Table 1.

We use Pearl’s causal framework, which is based on the notion of structural causal 
models (SCM). A formal definition of SCMs is given by Pearl (2009 Def. 7.1.1). In this 
framework, T denotes the action or treatment, Y the causal effect (or outcome), X a set of 
features (or covariates) describing the unit/individual under treatment and the do(T = t) 
operator denotes a causal intervention in the system. In this paper, we will limit ourselves 
to consider binary treatments and outcomes. For example, let T be the binary variable rep-
resenting a medical treatment: the notation do(T = 1) indicates that the treatment is forced 

Table 1   Mathematical notation

Y ∈ {0, 1} Outcome
T ∈ {0, 1} Treatment indicator
X Set of features
do(T = t) Intervention T = t

P(Yt = y) Probability of the outcome Y = y under do(T = t)

S0, S1 P(Y0 = 1),P(Y1 = 1)

�, �, � , � P(Y0 = 0,Y1 = 0),… ,P(Y0 = 1,Y1 = 1) (see Equations (4) to (7))
Q(x) Quantity Q conditioned on X = x , e.g. S0(x) = P(Y0 = 1 ∣ X = x)
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on an individual regardless of whether they would have received it without explicit inter-
vention. The conditional probability of Y = y given X = x under the intervention do(T = t) 
is written P(Y = y ∣ do(T = t),X = x) . An alternative notation consists in indicating the 
intervened variable as a subscript to the other variables, such as1 P(Yt = y ∣ X = x) . In our 
application about customer churn prevention, Y = 1 indicates that the customer churned, 
X a set of descriptive features of the customer and the treatment T denotes the exposure of 
the customer to a targeted marketing action in the form of an e-mail or a phone call ( T = 1 
when targeted, T = 0 otherwise).

We note the probability of the outcome Y under intervention do(T = 0) given some fea-
ture X = x as

Similarly, under the intervention do(T = 1) we have

The uplift is defined to be the difference between these probabilities:

Note that the uplift is also sometimes defined as U(x) = S1(x) − S0(x) , depending on the 
context and the meaning of the outcome Y. Throughout this paper, the argument x in quan-
tities such as S0(x) indicates the conditioning on X = x . If omitted, the quantity is supposed 
to be no longer conditioned on x (e.g. S0 = P(Y0 = 1) ). Equivalently, we can consider S0(x) 
as a function from the domain of X to [0, 1], therefore we can define S0 as S0 = �X[S0(X)] , 
and similarly for S1 and U.

The probabilities S0(x) and S1(x) cannot be estimated without further assumptions. In 
this paper, we make the assumption of unconfoundedness2  (Pearl, 2009,Def. 9.2.9):

Definition 1  (Unconfoundedness) A variable Y is unconfounded with respect to T given X 
if, for any values y, t and x,

Or, alternatively, if for any value t,

Note that in  (Pearl, 2009), the unconfoundedness is called exogeneity and is defined 
without conditioning on X. The distinction is made between weak exogeneity and strong 
exogeneity: Definition 1 corresponds to weak exogeneity, while strong exogeneity assumes 
{Y0, Y1} ⟂ T ∣ X . This distinction has no impact on the results presented in this paper.

Unconfoundedness allows the estimation of the scores S0(x) and S1(x) from data, since

(1)S0(x) = P(Y0 = 1 ∣ X = x).

(2)S1(x) = P(Y1 = 1 ∣ X = x).

(3)U(x) = S0(x) − S1(x).

P(Y = y ∣ do(T = t),X = x) = P(Y = y ∣ T = t,X = x)

Yt ⟂ T ∣ X.

1  The features X should also receive the subscript t under the intervention do(T = t) . In our case, the treat-
ment is supposed to occur after the measurement of X, and has thus no effect on X. This implies that Xt = X.
2  Also called ignorability by Rosenbaum and Rubin (1983), exogeneity by Pearl (2009), or conditional 
independence assumption by Gutierrez and Gérardy (2016).
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and similarly for S1(x) . Unconfoundedness is guaranteed when the treatment T is rand-
omized. In absence of randomization by using a suitable adjustment set (i.e. satisfying the 
back-door criterion  (Pearl, 2009)) an estimation method could still permit the unbiased 
estimation of S0(x) and S1(x) . Such assumption is typically made in uplift approaches inte-
grating propensity scores, notably the X-learner (Künzel et al., 2019) and, more recently, 
double machine learning estimators (Jung et al., 2021).

Let us suppose that Y0 = 1 , i.e. we observe Y = 1 after having assigned the treatment 
T = 0 to a given individual. Though we cannot observe the counterfactual outcome 
Y1 , we can reason about the value it would have. If Y1 = 0 , the treatment would have a 
causal impact on the outcome, since the outcome Y changes by intervening on T. Oth-
erwise, if Y1 = 1 , the treatment would have no causal influence on the outcome of this 
individual. More generally, the joint values of Y0 and Y1 define four different counter-
factual expressions. In this paper their probability is noted

From which we can derive

Note that the probability of necessity and sufficiency (PNS) in (Pearl, 2009) is the � term 
in (6).

In customer churn prevention, the four counterfactuals may be mapped to the four 
categories of customers presented in the introduction (Table 2). An effective campaign 
should then only reach out to persuadable customers (whose proportion in the popula-
tion is � ), since sure-thing and lost cause customers would not change their minds in 
reaction to the marketing action, and the do-not-disturb would react negatively to it.

The next sections will discuss the paper’s contributions on the estimation of the 
probabilities �, �, � and �.

S0(x) = P(Y = 1 ∣ do(T = 0),X = x) = P(Y = 1 ∣ T = 0,X = x)

(4)� = P(Y0 = 0, Y1 = 0)

(5)� = P(Y0 = 1, Y1 = 0)

(6)� = P(Y0 = 0, Y1 = 1)

(7)� = P(Y0 = 1, Y1 = 1)

(8)S0 = P(Y0 = 1) = P(Y0 = 1, Y1 = 0) + P(Y0 = 1, Y1 = 1) = � + �

(9)S1 = P(Y1 = 1) = P(Y0 = 0, Y1 = 1) + P(Y0 = 1, Y1 = 1) = � + �.

Table 2   The four categories of 
customers for churn prevention in 
terms of counterfactual outcomes

Y
0
= 0 Y

0
= 1

Y1 = 0 Sure thing Persuadable
Y1 = 1 Do-not-disturb Lost cause
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4 � Bounds on the probability of counterfactuals

Bounds on the probability of counterfactuals have first been derived in Tian and Pearl 
(2000), where the authors focus on P(Y0 = 0 ∣ T = 1, Y = 1) , P(Y1 = 1 ∣ T = 0, Y = 0) , 
and P(Y0 = 0, Y1 = 1) (denoted � in (6)) under various assumptions. They showed that the 
quantity � can be bounded as

The bounds derive from the classical Fréchet bounds (Fréchet, 1935) stating that for any 
pair of events A and B

For instance, by replacing A with Y0 = 0 and B with Y1 = 1 , it is easy to derive the ine-
qualities (10). Tighter bounds on counterfactual probabilities are derived in (Mueller et al., 
2021; Zhang et al., 2022) by making structural assumptions on the causal directed acyclic 
graph (DAG).

In this paper, we focus on a setting where (i) no structural assumptions may be made 
(besides unconfoundedness) and (ii) an estimation of the uplift is possible on the basis of 
historical data. For this reason, we derive a set of original bounds that depend on the condi-
tional probabilities terms S0(x) = P(Y0 = 1 ∣ X = x) and S1(x) = P(Y1 = 1 ∣ X = x).

Our derivation consists in first generalizing the Fréchet bounds to all four counterfactual 
probabilities, by substituting A with Y0 = 0 or Y0 = 1 , and B with Y1 = 0 or Y1 = 1:

Then, we assume that a reliable estimate (e.g. by uplift modeling) of the conditional scores 
S0(x) and S1(x) is available. Such scores can be used to refine the bounds on �,… , � by 
leveraging Jensen’s inequality.3 We apply first Jensen’s inequality to the lower bounds of 
Equations (12)-(15) by taking f as the max(0, ⋅) function and then to the upper bounds with 
f as the min(⋅, ⋅) function. We detail here the derivation for the lower bound on � , but the 
same reasoning can be easily extended to the other bounds as well.

(10)max{0,P(Y1 = 1) − P(Y0 = 1)} ≤ � ≤ min{P(Y0 = 0),P(Y1 = 1)}.

(11)max{0,P(A) + P(B) − 1} ≤ P(A,B) ≤ min{P(A),P(B)}.

(12)max{0,P(Y0 = 0) − P(Y1 = 1)} ≤ � ≤ min{P(Y0 = 0),P(Y1 = 0)}

(13)max{0,P(Y0 = 1) − P(Y1 = 1)} ≤ � ≤ min{P(Y0 = 1),P(Y1 = 0)}

(14)max{0,P(Y1 = 1) − P(Y0 = 1)} ≤ � ≤ min{P(Y0 = 0),P(Y1 = 1)}

(15)max{0,P(Y0 = 1) − P(Y1 = 0)} ≤ � ≤ min{P(Y0 = 1),P(Y1 = 1)}.

(16)max{0,P(Y0 = 1) − P(Y1 = 1)} = max{0, S0 − S1}

(17)= max{0,�[S0(X) − S1(X)]}

3  Jensen’s inequality, in its probabilistic form, states that for a convex function f and a random variable X, 
we have

f (�[X]) ≤ �[f (X)].
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Note that the quantity in (16) is the Fréchet bound, which by Jensen’s inequality is lower 
than  (18). It follows that our derivation returns a tighter upper bound than the Fréchet 
upper bound. The inequality (19), derived from (13) conditioned on X = x , guarantees that 
this is a lower bound on � . To summarize, we propose to bound �,… , � as follows

Hereafter we will refer to those bounds as the uplift bounds (UB) since they are defined in 
terms of the uplift terms. To assess whether these bounds improve the state-of-the-art Fré-
chet bounds, we consider their respective spans (i.e. the difference between the upper and 
the lower bound). It can be shown that the uplift bounds span Span UB is the same for all the 
counterfactual probabilities:

Where in (26) we used the equality −max{a, b} = min{−a,−b} , and in (27) the equality 
min{a, b} +min{c, d} = min{a + c, a + d, b + c, b + d}.

The span of the Fréchet bounds, denoted by Span Fr , is equal to

For all four counterfactual probabilities. Note that Span Fr depends solely on the marginal 
terms S0 and S1 (i.e. the average probability of the outcome in the control and target groups) 
whereas Span UB is a function of the descriptive features (or covariates) X. This means that 
in the case of informative features (i.e. when the conditional entropy of Y0 and Y1 is smaller 
than the marginal entropy), the uplift bounds are tighter than the Fréchet ones. In the case 
of perfect knowledge (i.e. when Y0 and Y1 are deterministic functions of X), S0(x) and S1(x) 
are either 0 or 1, the span of the uplift bounds collapses to zero and the counterfactual 
distribution is fully determined. In the case of noninformative features (i.e. when the condi-
tional entropy of Y0 and Y1 is equal to the marginal entropy) the uplift bounds reduce to the 
Fréchet bounds.

Such considerations can be formalized in terms of conditional entropy by the following 
Theorem:

(18)≤ �[max{0, S0(X) − S1(X)}]

(19)≤ �[�(X)] = �.

(20)�[max{0, 1 − S0(X) − S1(X)}] ≤ � ≤ �[min{1 − S0(X), 1 − S1(X)}]

(21)�[max{0, S0(X) − S1(X)}] ≤ � ≤ �[min{S0(X), 1 − S1(X)}]

(22)�[max{0, S1(X) − S0(X)}] ≤ � ≤ �[min{1 − S0(X), S1(X)}]

(23)�[max{0, S0(X) + S1(X) − 1}] ≤ � ≤ �[min{S0(X), S1(X)}].

(24)Span UB = �[min{S0(X), 1 − S1(X)}] − �[max{0, S0(X) − S1(X)}]

(25)= �[min{S0(X), 1 − S1(X)} −max{0, S0(X) − S1(X)}]

(26)= �[min{S0(X), 1 − S1(X)} +min{0, S1(X) − S0(X)}]

(27)= �[min{S0(X), S1(X), 1 − S0(X), 1 − S1(X)}]

Span Fr = min{S0, S1, 1 − S0, 1 − S1}
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Theorem  1  As the conditional entropy H(Y0, Y1 ∣ X) approaches zero, the uplift bounds 
on the probability P(Y0 = y0, Y1 = y1) collapse to the exact value of that probability. Con-
versely, as the conditional entropy H(Y0, Y1 ∣ X) approaches the entropy H(Y0, Y1) , the 
uplift bounds reduce to the Fréchet bounds.

Proof  We have

Where the sum runs over the four possible values of Y0, Y1 , and fX(x) is the probability den-
sity function of X. This expression can also be noted

It is minimized (in fact, equal to zero) when one of �(x),… , �(x) is equal to one and the 
three other ones are equal to zero for all x. Also, the span of the uplift bounds is

When one of �(x),… , �(x) is equal to one and the three other values are equal to zero for 
all x, this expression collapses to zero, since two of the four terms in the minimum will be 
equal to zero. In this case, the bounds collapse to the true value of the counterfactual prob-
ability. This proves the first part of the theorem.

For the second part of the theorem, let’s assume that X brings no information about 
Y0, Y1 , which we formalize as H(Y0, Y1 ∣ X) = H(Y0, Y1) , or also in terms of statistical 
independence as (Y0, Y1) ⟂ X . By definition of statistical independence, we know that 
P(y0 ∣ x) = P(y0) and P(y1 ∣ x) = P(y1) for all values y0, y1 and x. Hence, as an example for 
� , the uplift bounds simplify to

The expected value is on the distribution of X, but since the terms in the expected value do 
not depend on X, the bounds reduce to

Which are the Fréchet bounds on � . The same reasoning applies to the bounds on �, � and 
� . 	�  ◻

4.1 � Probability bounds and uplift estimation

The main motivation underlying the derivation of the uplift bounds is that in real-world 
settings characterized by large historical data sets (like churn modeling), it is possible to 
derive sample-based estimates of the terms bounding the counterfactual probabilities. In 
particular, we advocate the adoption of a plug-in estimator from an uplift model Ŝ0(x), Ŝ1(x) 

H(Y0, Y1 ∣ X) = −∫
∑

y0,y1

P(y0, y1 ∣ x) logP(y0, y1 ∣ x)fX(x) dx

H(Y0, Y1 ∣ X) = −∫ (�(x) log(�(x)) + �(x) log(�(x))

+�(x) log(�(x)) + �(x) log(�(x)))fX(x) dx.

Span UB = �[min{S0(X), S1(X), 1 − S0(X), 1 − S1(X)}]

= ∫ min{�(x) + �(x), �(x) + �(x), �(x) + �(x), �(x) + �(x)}fX(x) dx

�[max{0,P(Y0 = 1) − P(Y1 = 1)}] ≤ � ≤ �[min{P(Y0 = 1),P(Y1 = 1)}].

max{0, S0 − S1} ≤ � ≤ min{S0, S1}
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on a data set D = {x(1),… , x(N)} . In this case, a sample-based version of the lower bound 
on � is

And similarly for the other bounds on �,… , �.
It is sometimes desirable to obtain a point estimate on the probability of counterfactuals, 

for example when a unique number is expected as the result of the counterfactual analysis. 
Though a naive estimator could be derived by taking the midpoint of the bounds, in the 
next section we will introduce a more theoretically founded estimator.

5 � Point estimate of counterfactual probabilities

Counterfactual probabilities are latent yet very important quantities to be taken into consid-
eration for decision-making. In the previous section, we proposed an original approach to 
bound their values. However, it is sometimes desirable to compute a point estimate of those 
probabilities, even if this requires stronger assumptions. Here we present a point estimator 
of the probabilities �,… , � (Equations (4) to (7)) based on the conditional independence 
between Y0 and Y1 . The introduction of specific assumptions is required since those prob-
abilities, e.g.

Cannot be estimated from observational or experimental data, given that one of the two 
outcomes will be necessarily unobserved. The conditional independence between Y0 and Y1 
given X = x , which is formally expressed as Y0 ⟂ Y1 ∣ X = x , allows developing the term 
�(x) in Equation (29) as

In order to study the impact of the conditional independence assumption, we 
define the difference between P(Y0 = 0, Y1 = 0 ∣ X = x) and the approximation 
P(Y0 = 0 ∣ X = x)P(Y1 = 0 ∣ X = x) as �(x) . This quantity appears in the other conditional 
probabilities too:

Note that the quantity �(x) can be interpreted as a conditional measure of dependency 
between Y0 and Y1 and is similar to classical binary dependency measures, like the odd 
ratio, Yule’s Q coefficient, or the difference coefficient  (Edwards, 1957). We will see in 
Theorem 2 that

(28)�[max{0, S0(X) − S1(X)}] ≈
1

N

N
∑

i=1

max
{

0, Ŝ0
(

x(i)
)

− Ŝ1
(

x(i)
)

}

(29)� = P(Y0 = 0, Y1 = 0) = �X[P(Y0 = 0, Y1 = 0 ∣ X)] = �X[�(X)]

(30)�(x) ≈ P(Y0 = 0 ∣ X = x)P(Y1 = 0 ∣ X = x).

(31)�(x) = P(Y0 = 0 ∣ X = x)P(Y1 = 0 ∣ X = x) + �(x)

(32)�(x) = P(Y0 = 1 ∣ X = x)P(Y1 = 0 ∣ X = x) − �(x)

(33)�(x) = P(Y0 = 0 ∣ X = x)P(Y1 = 1 ∣ X = x) − �(x)

(34)�(x) = P(Y0 = 1 ∣ X = x)P(Y1 = 1 ∣ X = x) + �(x).
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Meaning that � depends both on the distribution of counterfactuals ( �, �, � and � ) and the 
dependency between the scores S0(x) and S1(x) . From (29) we obtain

Where � = �[�(X)] . If we assume Y0 ⟂ Y1 ∣ X , then � = 0 and

The question of the dependency between Y0 and Y1 has already been discussed in the causal 
inference literature (Imbens & Rubin, 2015,Sec.8.6). A possible approach could be to 
assume the maximum possible dependency between the potential outcomes. Alternatively, 
one could make no a priori preference between a positive and negative association between 
Y0 and Y1 (i.e. Y0 and Y1 taking similar or opposite values), thus assuming no association. 
Since, in absence of some preexisting knowledge, there is no a priori good answer, it is 
more interesting to reason about the dependency between Y0 and Y1 as follows:

•	 A positive correlation4 between Y0 and Y1 means that they are often equal, indicating 
that the treatment has little effect on the outcome. When the correlation is maximum, 
the upper bounds on � and � in Equations (20) and (23) are met.

•	 A negative correlation between Y0 and Y1 indicates that the treatment has either a 
strongly positive or negative impact on the outcome. When the correlation is maxi-
mally negative, the upper bounds on � and � in Equations (21) and (22) are met.

•	 The absence of dependency indicates an even mix of the two previous cases. This cor-
responds to the point estimator presented in this section.

5.1 � Point estimate and uplift estimation

Given estimators Ŝ0(x), Ŝ1(x) of the uplift terms, and an evaluation data set {x(i)}i=1,…,N , we 
propose to estimate �,… , � as

(35)� = �� − �� − covX(S0(X), S1(X)).

(36)� = �[�(X)]

(37)= �[P(Y0 = 0 ∣ X)P(Y1 = 0 ∣ X) + �(X)]

(38)= �[(1 − S0(X))(1 − S1(X))] + �

(39)� ≈ �[(1 − S0(X))(1 − S1(X))].

(40)𝛼̂ =
1

N

∑

i

(1 − �S0(x
(i))(1 − �S1(x

(i)))

(41)𝛽 =
1

N

∑

i

�S0(x
(i))(1 − �S1(x

(i)))

(42)𝛾̂ =
1

N

∑

i

(1 − �S0(x
(i)))�S1(x

(i))

4  The correlation between Y0 and Y1 refers to the tendency of Y0 and Y1 to take identical or opposite values.
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The bias of these estimators is expressed in Theorem 2.

Theorem 2  Given that Ŝ0(x) and Ŝ1(x) are unconfounded and unbiased estimators of S0(x) 
and S1(x) trained on a training set with distribution D, in the large sample limit the bias of 
𝛼̂,… , 𝛿 is

Proof  We will derive the bias of 𝛽  , and the bias of the three other estimators can be derived 
in a similar way. The expected value of 𝛽  over the distribution of training sets D is

In the large sample limit ( N → +∞ ), we can assume that this sum converges to

The first term can be expanded as

And thus

Finally, the bias of 𝛽  is

(43)𝛿 =
1

N

∑

i

�S0(x
(i))�S1(x

(i)).

(44)
Bias[𝛽] = Bias[𝛾̂] = −Bias[𝛼̂] = −Bias[𝛿]

= 𝛼𝛿 − 𝛽𝛾 − covX(S0(X), S1(X)) − �X[covD(
�S0(X),

�S1(X))]

(45)= � − �X[covD(Ŝ0(X), Ŝ1(X))].

�D[𝛽] = �D

[

1

N

N
∑

i=1

�S0(x
(i))(1 − �S1(x

(i)))

]

=
1

N

N
∑

i=1

�D

[

�S0(x
(i))(1 − �S1(x

(i)))

]

=
1

N

N
∑

i=1

�D[
�S0(x

(i))]�D[1 −
�S1(x

(i))] + covD(
�S0(x

(i)), 1 − �S1(x
(i)))

=
1

N

N
∑

i=1

S0(x
(i))(1 − S1(x

(i))) − covD(
�S0(x

(i)),�S1(x
(i))).

�D[𝛽] = �X[S0(X)(1 − S1(X))] − �X[covD(
�S0(X),

�S1(X)].

�[S0(X)(1 − S1(X))] = �[S0(X)]�[1 − S1(X)] + covX(S0(X), 1 − S1(X))

= S0(1 − S1) − covX(S0(X), S1(X))

= (� + �)(� + �) − covX(S0(X), S1(X))

= �(� + � + �) + �� − covX(S0(X), S1(X))

= �(1 − �) + �� − covX(S0(X), S1(X))

= �� − �� + � − covX(S0(X), S1(X)).

�D[𝛽] = 𝛼𝛿 − 𝛽𝛾 + 𝛽 − covX(S0(X), S1(X)) − �X[covD(
�S0(X),

�S1(X)].
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Which proves Equation (44). Equation (45) is derived from

And then

	�  ◻

While the three first terms in Equation (44) are inherent to the customer population, 
the last term depends also on the estimators Ŝ0(x) and Ŝ1(x) , and the data distribution 
D. Without assumptions about these processes, the last term cannot be further reduced.

The proposed procedure to compute 𝛽  as well as the two uplift bounds on � pre-
sented in Sect. 4 is described in Algorithm 1, where we assume we have two unbiased 
estimators of the scores S0(x) and S1(x).

6 � Bounds assessment by simulation

In this section, we assess the bounds and estimators presented in Sects.  4 and 5 by 
setting up a specific simulation environment. The simulated nature of the experiment 
allows us to compare the estimated bounds to the ground truth.

Bias[𝛽] = �D[𝛽] − 𝛽

= 𝛼𝛿 − 𝛽𝛾 − covX(S0(X), S1(X)) − �X[covD(
�S0(X),

�S1(X)]

�[S0(X)(1 − S1(X))] = �[�(x) + �(x)] = � + �

Bias[𝛽] = �D[𝛽] − 𝛽

= �X[S0(X)(1 − S1(X))] − �X[covD(
�S0(X),

�S1(X)] − 𝛽

= 𝜙 − �X[covD(
�S0(X),

�S1(X)].
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6.1 � Methodology

Let �, �, � and � be the terms introduced in (4), (5), (6), (7). The aim of the simulation is 
to generate samples from a distribution where the scores S0(x) and S1(x) are conditional 
on a set of features X.

One possible approach is to model the X covariate distribution, the stochastic func-
tional dependency between Y, X and T, train an uplift model Ŝ0(x), Ŝ1(x) on a gener-
ated data set D = {(x(i), y(i), t(i))i=1,…,N} , and finally apply the estimators presented in the 
previous sections. We did not consider this approach since the results would heavily 
depend on the model choices (e.g. the distribution of X and the class of functions for Y) 
and the learning algorithm.

Our simulation setting consists in directly sampling the distributions of the estima-
tors Ŝ0 and Ŝ1 obtained as a noisy version of S0 and S1 which, according to (8) and (9), 
are functions of the terms �,… , � . Since we sample the distribution of scores Ŝ0 and 
Ŝ1 but we do not sample X directly, we will denote individual scores with superscript 
i rather than as functions of x. The sampling process of our simulation is detailed in 
Equations (46) to (49):

First, we generate N independent samples (�(i), �(i), � (i), �(i))i=1,…,N according to a Dir-
ichlet distribution Dir (a, b, c, d) . They represent the probabilities of counterfactuals at 
the individual level. The Dirichlet distribution is a natural candidate to sample numbers 
in a probability simplex (i.e. such that �(i), �(i), � (i) and �(i) are all positive and sum up to 
1), since it is the conjugate prior of the multinomial distribution  (Lin, 2016). Then, we 
derive the value of the scores S(i)

0
 and S(i)

1
 with the identities S(i)

0
= �(i) + �(i) (Equation (8)) 

and S(i)
1
= � (i) + �(i) (Equation (9)). To emulate imperfect estimators Ŝ(i)

0
 and Ŝ(i)

1
 , we draw 

Ŝ
(i)
t  (for t = 0, 1 ) according to a normalized binomial distribution 1

v
B(v, S

(i)
t ) , where v is 

the parameter controlling the variance of Ŝ(i)t  . Such estimator distribution guarantees that 
Ŝ
(i)
t  takes values inside [0,  1] and models the variability of Ŝ(i)t  due to a limited number 

of training examples of a binary outcome Yt . Finally, the counterfactual outcomes Y (i)

0
 

and Y (i)

1
 are sampled according to a categorical distribution Cat (�(i),… , �(i)) such that 

P(Y
(i)

0
= 0, Y

(i)

1
= 0) = �(i) , and similarly for �(i) , � (i) and �(i) , reflecting Equations (4) to (7). 

Once the sampling process is executed, the bounds and estimators from Sects. 4 and 5 can 
be evaluated from the set of scores {(Ŝ(i)

0
, Ŝ

(i)

1
)}i=1,…,N.

6.2 � Simulation parameters

The simulation setting is defined by six main parameters: N, v, a, b, c and d.

(46)(�(i),… , �(i)) ∼ Dir (a, b, c, d)

(47)S
(i)

0
= �(i) + �(i) S

(i)

1
= � (i) + �(i)

(48)Ŝ
(i)

0
∼

1

v
B (v, S

(i)

0
) Ŝ

(i)

1
∼

1

v
B (v, S

(i)

1
)

(49)(Y
(i)

0
, Y

(i)

1
) ∼ Cat (�(i),… , �(i))
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•	 The parameter N represents the size of the data set on which the bounds and estimators 
are evaluated.

•	 The parameter v emulates the variance of the simulated uplift model. Higher values of 
v induce a lower variance since we can show5 that Var (Ŝ(i)t ) = S

(i)
t (1 − S

(i)
t )∕v.

•	 The parameters a,  b,  c and d are proportional to the distribution of counterfactuals 
P(Y

(i)

0
= 0, Y

(i)

1
= 1),… ,P(Y

(i)

0
= 1, Y

(i)

1
= 1) . For example, using the moments of the 

Dirichlet distribution, we have 

 Where A = a + b + c + d.
•	 The value of A influences the distribution of �(i),… , �(i) . High values of A lead to sam-

ples �(i),… , �(i) concentrated around their expected values (which can be computed 
from Equation (50)), while low values of A lead to samples where one of �(i),… , �(i) 
is close to one while the three other values are close to zero. This has an impact on 
the scores S(i)

0
, S

(i)

1
 as well: they are close to their expected values when A is large, and 

close to either zero or one when A is low. In loose terms, the quantity A represents the 
amount of information that the covariates X brings about the outcomes Y0 and Y1 : when 
the features are uninformative, the scores S0(x), S1(x) are close to their prior probabili-
ties P(Y0 = 1) and P(Y1 = 1) , while when the features are highly informative, the scores 
are close to either zero or one.

Theorem 2 indicates that the bias of the points estimators 𝛼̂,… , 𝛿 (transposed to the nota-
tion of this section) is

The second term is null because we sample Ŝ(i)
0

 and Ŝ(i)
1

 independently, but we can show 
using the product moments of the Dirichlet distribution  (Lin, 2016) that the first term 
�[�(i)] is

Since the parameters a,  b,  c,  d are sampled uniformly, the expression in Equation  (51) 
will be different from zero. Therefore, the distribution of the bias of the point estimators 
𝛼̂,… , 𝛿 has a large variance. This is desirable to assess how violations of the hypothesis 
underlying our estimators affect the quality of the estimation.

6.3 � Assessment of the theoretical results

In this section, we assess the quality of the uplift bounds and the point estimator, dis-
cussed in Sects.  4 and   5 respectively, for different values of the simulation parame-
ters. The simulation process is repeated 5000 times with randomly chosen param-
eters. The size N of the evaluation set varies between 10 and 10000 and the variance 

(50)P(Y
(i)

0
= 1, Y

(i)

1
= 0) = �[�(i)] =

b

A

�[�(i)] − ��(i) ,…,�(i) [cov(Ŝ
(i)

0
, Ŝ

(i)

1
)].

(51)�[�(i)] = �[�(i)�(i) − �(i)� (i)] =
ad − bc

A(A + 1)
.

5  The variable Ŝ(i)t  is based on a Binomial distribution B (v, S
(i)
t ) , which has a variance vS(i)t (1 − S

(i)
t ) . We can 

develop the variance Var (Ŝ(i)t ) = vS
(i)
t (1 − S

(i)
t )∕v2 = S

(i)
t (1 − S

(i)
t )∕v.
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parameter v varies between 5 and 50. The Dirichlet parameters a, b, c, d are fixed as 
(a, b, c, d) = A(�, �, � , �) where A varies between 0.1 and 15, and the vector (�, �, � , �) is 
sampled uniformly over the probability simplex (i.e. such that the four terms are posi-
tive and sum up to one).

Figure 1 plots the estimator 𝛼̂ (cross), the uplift bounds (continuous line) and the Fré-
chet bounds (dashed lines) with respect to the true � (circle). Since the plots for �, � and 
� are quite similar, they are omitted for the sake of conciseness. The values for the 5000 
simulation runs are stratified according to the true value � in order to simplify the plot. 
For each stratum, the point reports the average of the estimated value and the horizontal 
bars report the average upper and lower bounds. The main conclusions of the simulation 
study are:

•	 The uplift bounds are significantly tighter than the Fréchet bounds, as shown in 
Fig. 1. The bounds span is typically reduced by half, as reported in Table 3.

•	 The point estimate provides a good approximation of the true counterfactual prob-
ability, with a root mean squared error (RMSE) of 6.4% (Table 3). In order to have 
a baseline for comparison, we also compute the RMSE of the bounds mid-point if 
those were taken as point estimators of the true counterfactual probability. We see 
that the Fréchet bounds mid-point has a larger error while the uplift bounds mid-
point has an error comparable to the point estimate.
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Fig. 1   The estimator 𝛼̂ , the true value of � , and the bounds on � , for different values of � . We take the aver-
age over all experiments where � falls into the relevant range. The graph is quite similar for �, � and �

Table 3   Identification error for � . 
We compare the Fréchet bounds 
and the uplift bounds, and we 
also compare the point estimators 
with the bounds mid-point. We 
observe that the uplift bounds 
provide a clear improvement over 
the Fréchet bounds

Bounds Mean width

Uplift bounds 12.6%
Fréchet bounds 24.9%
Estimator RMSE
Point estimator 𝛽 6.4%
Uplift bounds mid-point 5.9%
Fréchet bounds mid-point 8.0%
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•	 The distribution of the bias �[�(x)] of the point estimator, which is defined by Equa-
tion  (51), is shown in Fig. 2. The fact that most of the bias realizations are different 
from zero is an indication of the realism of the simulation setting and a positive sign 
about the robustness of the theoretical results.

6.4 � Sensitivity analysis of the simulation

In this section, we assess the influence of the training data (in terms of the number of 
samples or the information of the features) on the precision of the estimation. We plot 
the span of the uplift bounds and the error of the point estimator while varying one of 
the parameters A,  N and v and keeping the other parameters fixed. The values of the 
fixed parameters are selected to clearly show the influence of the varying parameters. In 
particular, we set (�, �, � , �) = (0.947, 0.020, 0.017, 0.017) based on the results of Sect. 7, 

0

200

400

600

−0.2 −0.1 0.0 0.1 0.2

E[φ(i)]

N
um

be
r o

f s
im

ua
tio

ns

Fig. 2   Distribution of the point estimator bias, �[�(i)
] , over 4000 simulation runs. Note that this is different 

from the distribution of �(i) in a given simulation run. Although the maximum is around zero, it is never 
exactly zero, indicating that the estimators are biased in our simulations. This is desirable to reflect viola-
tions of the hypotheses underlying our estimators in practical scenarios

0.000

0.005

0.010

0.015

0.10 0.15 0.20

H(Y0
(i), Y1

(i) | α(i), β(i), γ(i), δ(i))

U
pl

ift
 b

ou
nd

s s
pa

n

Fig. 3   The bounds span as a function of the conditional entropy of Y (i)

0
,Y
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1
 , which is directly influenced by 

the parameter A. We fixed (�, �, � , �) = (0.947, 0.020, 0.017, 0.017) , and v = 50 and N = 2000
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which represents the distribution of counterfactuals in a typical scenario of customer 
churn prevention in telecom. The main conclusions of this sensitivity analysis are:

•	 The uplift bounds span decreases as the conditional entropy of Y0, Y1 decreases 
(Fig. 3). This is an empirical illustration of Theorem 1. In the context of this simula-
tion, since we do not model the features X, we instead note the conditional entropy 
as H(Y

(i)

0
, Y

(i)

1
∣ �(i),… , �(i)) , and we compute its value as 

H(Y
(i)

0
, Y

(i)

1
∣ �(i),… , �(i))

=
1

N

N
∑

i=1

(−�(i) log �(i) − �(i) log �(i) − � (i) log � (i) − �(i) log �(i)).
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Fig. 4   The error of the point estimator as a function of the number of samples in the evaluation data set. We 
fixed (�, �, � , �) = (0.947, 0.020, 0.017, 0.017) , and v = 20 and A = 1
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Fig. 5   The error of the point estimator as a function of model variance Var (Ŝ
(i)
t ) . We fixed 

(�, �, � , �) = (0.947, 0.020, 0.017, 0.017) , and N = 1000 and A = 10 . As the variance decreases, the estima-
tor bias converges towards to its theoretical value
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 We see that as the conditional entropy approaches zero (which emulates very informa-
tive features), the bounds span converges towards zero as well.

•	 The variance of the point estimator decreases as the number of samples N increases 
(Fig. 4) or the model variance Var (Ŝ(i)t ) decreases (Fig. 5). In fact, the error converges 
towards the bias derived in Theorem 2. This demonstrates the convergence of our esti-
mator in the large sample scenario.

•	 The uplift bounds span increases with the decrease of the model variance 
Var (Ŝ

(i)
t ) (for t = 0, 1 ) (Fig.  6). This is because a model with a high variance pre-

dicts often lower or higher scores than the expected score. Since the bounds span is 
�[min{S

(i)

0
, S

(i)

1
, 1 − S

(i)

0
, 1 − S

(i)

1
}] (see Equation  (27)), this artificially reduces the 

bounds span.

7 � Evaluation with real data

This section applies the theoretical results discussed so far to a real-world data set provided 
by our industrial partner Orange Belgium that includes 6 churn prevention campaigns.

7.1 � Data set description

Churn prevention campaigns are used to mitigate customer churn by contacting custom-
ers at risk of leaving the company. They are offered an incentive to stay, such as a pro-
motional offer or a suggestion for a better tariff plan. The retention campaigns were per-
formed over 6 months in 2019 and 2020. Before each campaign, a churn prediction model 
(independent of the models evaluated in this section) was trained on the whole customer 
base to predict the churn risk. The riskiest customers were randomly split into target and 
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Fig. 6   The uplift bounds span as a function of the model variance Var (Ŝ
(i)
t ) . We fixed 

(�, �, � , �) = (0.947, 0.020, 0.017, 0.017) , and N = 1000 and A = 10 . A lower model variance is shown here 
to be associated with larger bounds. In fact, as the variance goes to zero (left side of the plot), the bounds 
span converges towards its theoretical value. A model with a high variance predicts more often low values, 
which artificially reduces the bounds span



1062	 Machine Learning (2024) 113:1043–1067

1 3

control groups. Customers in the target group were contacted by phone and were proposed 
a tariff plan adapted to the apparent root cause of potential churn. For example, if a large 
amount of mobile data was used, a tariff plan with a larger provision of mobile data was 
then suggested. The final data set used in this section comprises only customers selected 
in the target and control groups, all other customers that are not part of the campaign are 
discarded. The data set contains 11268 samples, for 145 features. Examples of features 
include the tariff plan of the customer, the number of calls over the last month, some socio-
demographic information, the number of calls to customer service, and so on. The churn 
rate in the control group is 4.85%, while in the target group it is 4.03%. The control group 
amounts to 33% of the data set. Note that the treatment indicator in this data set indicates 
whether a call attempt to the customer was made, and does not indicate whether the cus-
tomer answered the call or accepted the offer.

7.2 � Methodology

We train an uplift random forest model (Guelman et al., 2015) on the O. data set using the 
R package uplift (Guelman, 2014). Other uplift models have been shown to be superior in 
accuracy (e.g. the X-learner  (Künzel et  al., 2019)) but we need here separate estimators 
for S0(x) and S1(x) to compute the uplift bounds and the point estimator. This condition 
is satisfied by the uplift random forest, as well as the T-learner approach  (Künzel et  al., 
2019). The uplift random forest model is trained with 100 trees. Given the high imbalance 
of the data sets, we rely on the EasyEnsemble strategy (Liu et al., 2009) for class balanc-
ing. It consists in training k base learners ( k = 10 in our case) on the whole set of positive 
instances (churners) and an equally sized random set of negative instances. This choice 
is based on previous literature on similar tasks with high imbalance and large class over-
lap (Zhu et al., 2017; Dal Pozzolo et al., 2014). The predictions of all the base learners are 
averaged to obtain the final prediction. When a resampling strategy such as EasyEnsemble 
is used to obtain a balanced data set, the prior probability of churn is modified  (Batista 
et  al., 2004), and the scores predicted by the trained model are biased. This bias is cor-
rected with the calibration formula presented by Dal Pozzolo et al. (2015). To avoid over-
fitting on a specific train-test split, we repeat the experiment using a k-fold cross-validation 
scheme with k = 5.

γ δ

α β

0.00
0.01
0.02
0.03
0.04

0.00
0.01
0.02
0.03
0.04

0.91
0.92
0.93
0.94
0.95

0.00
0.01
0.02
0.03
0.04

Bounds type: Fréchet bounds Uplift bounds

Fig. 7   Point estimate and bounds on �,… , � . Note the different vertical axis for �
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7.3 � Results

The estimated distribution of counterfactuals is reported in Fig. 7 and Table 4. In Fig. 7, each 
of 𝛼̂ , 𝛽 , 𝛾̂ and 𝛿 is reported in a different sub-plot, together with the uplift and Fréchet bounds. 
We observe that the uplift bounds are consistently tighter than the Fréchet bounds, although 
not by a large margin. The value of 𝛽 and 𝛾̂ are very close, with point estimates at respectively 
4.29% and 4.39% . The value of 𝛼̂ is high, around 91.12% , as expected since most customers do 
not churn.

The proportion of persuadable customers is estimated as 𝛽 = 4.29% , with a lower bound 
of 0.52% and an upper bound of 4.49% . This amounts to 483 customers, bounded between 58 
and 505. This indicates that a maximum of 505 customers should have been called during the 
6-months campaign, while in practice 7500 customers have been called. We applied the same 
methodology separately for each month instead of on the whole campaign data, and the results 
are reported in Fig. 8. We observe that, although the value of 𝛽 seems to fluctuate from one 
month to the next, it tends to be close to the upper bound. This is because both Ŝ0(x) and Ŝ1(x) 
tend to be close to zero, and 𝛽(x) is estimated as Ŝ0(x)(1 − Ŝ1(x)) in Equation (41). Therefore 
𝛽(x) is typically close to Ŝ0(x) , and the upper bound min{Ŝ0(x), 1 − Ŝ1(x)} from Equation (21) 
is almost always equal to Ŝ0(x) as well.

7.4 � Profit analysis

To give some intuition about these results, we now conduct a simplistic profit analysis. Let us 
suppose that each call has a cost C = 1€, and that the average customer lifetime value is V = 
120€  (a customer pays on average 20€ per month and stays 6 months). The benefit due to the 
campaign as it actually happened can be computed as

(52)Profit = NUV − NC

Table 4   Numerical values of the estimated counterfactual distribution �,… , � on the O. data set. The uplift 
bounds and the Fréchet bounds show similar results

� � � �

Point estimate 91.12 4.29 4.39 0.20
Uplift bounds [90.91, 94.89] [0.52, 4.49] [0.62, 4.60] [0.00, 3.98]
Fréchet bounds [90.91, 95.40] [0.00, 4.49] [0.11, 4.60] [0.00, 4.49]

Fig. 8   Point estimate and uplift 
bounds on � , for each month of 
the campaign
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Where N is the number of contacted customers and U = S0 − S1 is the campaign uplift 
(approximately 0.8% in our case). The term NUV is the benefit generated by converting 
customers. The benefit of calling do-not-disturb customers cancels out the benefit of call-
ing persuadable customers, since U = � − �.6 The term NC in Equation (52) is the cost of 
calling N customers. By evaluating this expression on the O. data set, we obtain that the 
campaign incurred a net loss of 130€. However, if we suppose that we were able to call 
only the 483 persuadable customers, the campaign could generate a profit of up to 57477€. 
Note that this is a simplistic way to evaluate the profit generated by a campaign. For more 
detailed estimations of the profit, we refer the reader to (Li & Pearl, 2019; Verbraken et al., 
2013; Verbeke et al., 2012; Gubela & Lessmann, 2021).

7.5 � Discussion

The improvement of the uplift bounds with respect to the Fréchet bounds is directly related 
to the quantity of information between the features and the outcome (see Theorem 1). The 
small improvement observed in practice, as shown in Fig. 7, indicates that the uplift terms, 
and in turn counterfactual probabilities, are difficult to estimate in real-world settings such 
as customer churn prediction. A possible solution would be to add more informative fea-
tures or design a more powerful uplift model. The bounds can also be further refined when 
observational data is available (i.e. data where the treatment assignment is not randomized), 
as demonstrated in (Mueller & Pearl, 2022). The results of this section provide nonetheless 
very valuable insights for our industrial partner Orange Belgium on the potential value of 
past retention campaigns and on the distribution of the different customer categories.

The results of this section do not indicate which customers should be targeted in order to 
maximize the profit from the retention campaign. This is the objective of uplift modeling. 
There is some debate on whether uplift modeling is always the best approach for causal 
decision-making. Fernández-Loria and Provost (2022a, 2022b) show that uplift models are 
sub-optimal under some circumstances, and that proxy targets such as the probability of the 
outcome are sometimes more effective for accurate causal decision-making. This is in line 
with the abundant literature on churn management that use predictive models instead of 
uplift models, e.g. (Amin et al., 2019; Coussement et al., 2017; Óskarsdóttir et al., 2018) to 
cite a few. Li and Pearl (2019) consider the case where each of the four categories of cus-
tomers (persuadable, sure thing, lost cause and do-not-disturb, see Table 2) have arbitrary 
associated costs. In this case, counterfactual identification is essential for accurate causal 
decision-making.

8 � Conclusion

We have derived and empirically assessed new bounds and a point estimator on the prob-
ability of counterfactuals for binary outcomes under the assumption of unconfoundedness. 
Counterfactuals are essential for accurate decision-making for example in churn prevention 
in the telecom industry.

The proposed uplift bounds improve upon the classical Fréchet bounds by leverag-
ing the scores estimated by an uplift model. We have demonstrated theoretically that 

6  This can be shown by decomposing U = P(Y0 = 1) − P(Y1 = 1) in terms of �, � and �.
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the bounds improve as the quality of the uplift estimation increases. Simulated exam-
ples indicate that the uplift bounds typically provide a significant improvement over the 
Fréchet bounds. We have also derived a point estimator by assuming the conditional 
independence between the potential outcomes Y0 and Y1 . Simulated examples demon-
strate that the estimator is still close to the true value even when this condition is not 
respected.

Our estimators are limited by several factors. The most important is the choice of the 
underlying uplift model. The uplift model should be unbiased, and the quality of the esti-
mator depends on the quality of the uplift model. Since the two uplift terms S0(x) and S1(x) 
are used independently in our estimators, we are also limited to uplift estimators that can 
provide an estimation of these two terms separately.

Counterfactuals model individual behavior and as such can provide significant business 
insights about customers. In future work, we intend to explore the relationship between 
counterfactuals and customer features. This will allow describing the persuadable custom-
ers in terms of concrete characteristics, which very desirable from a business standpoint.
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