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Abstract
Existing explanation algorithms have found that, even if deep models make the same cor-
rect predictions on the same image, they might rely on different sets of input features for 
classification. However, among these features, some common features might be used by 
the majority of models. In this paper, we are wondering what the common features used by 
various models for classification are and whether the models with better performance may 
favor those common features. For this purpose, our work uses an explanation algorithm to 
attribute the importance of features (e.g., pixels or superpixels) as explanations and pro-
poses the cross-model consensus of explanations to capture the common features. Specifi-
cally, we first prepare a set of deep models as a committee, then deduce the explanation for 
every model, and obtain the consensus of explanations across the entire committee through 
voting. With the cross-model consensus of explanations, we conduct extensive experiments 
using 80+ models on five datasets/tasks. We find three interesting phenomena as follows: 
(1) the consensus obtained from image classification models is aligned with the ground 
truth of semantic segmentation; (2) we measure the similarity of the explanation result of 
each model in the committee to the consensus (namely consensus score), and find positive 
correlations between the consensus score and model performance; and (3) the consensus 
score potentially correlates to the interpretability.
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1  Introduction

Deep models are well-known for their excellent performance achieved in many chal-
lenging domains, as well as their black-box nature. To interpret the prediction of 
a deep model, a number of explanation algorithms (Bach et  al., 2015; Lundberg 
& Lee, 2017; Ribeiro et  al., 2016; Smilkov et  al., 2017; Sundararajan et  al., 2017; 
Zhou et al., 2016) have been recently proposed to attribute the importance of every 
input feature in a given sample with respect to the model’s output. For example, 
given an image classification model, LIME (Ribeiro et  al., 2016) and SmoothGrad 
(Smilkov et al., 2017) could attribute the importance score to every superpixel/pixel 
in an image with respect to the model’s prediction. In this way, one can gain insights 
into models’ behaviors by visualizing the important features used by the model for 
prediction.

We take image classification models as the research target. The use of interpre-
tation tools finds that, even though these deep models make the same and correct 
predictions on the same image, they may rely on different sets of input features to 
solve the task. Our work uses LIME (or SmoothGrad similarly) to explain a number 
of image classification models trained on the same set of images, all of which make 
the correct predictions. The explanation algorithm obtains (slightly to moderately) 
different explanations for these models, with examples latterly shown in Figs. 2 and 
3. While the features used by these models are not exactly the same, we can still find 
a set of features that the majority of models might use. We name them as common 
features. In this way, we are particularly interested in two research questions as fol-
lows: (1) What are the common features used by various models in an image? (2) 
Whether the models with better performance favor those common features?, to better 
understand the behaviors behind the black-box models.

To answer these two questions, we propose to study the common features across deep 
models and measure the similarity between the set of common features and the one used 
by individual models. Specifically, as illustrated in Fig.  1, we generalize an electoral 
system to first form a committee with a number of deep models, obtain the explanations 
for a given image based on one trustworthy explanation algorithm, then call for vot-
ing to get the cross-model consensus of explanations, or shortly consensus, and finally 

Fig. 1   Illustration of the proposed framework that consists of the three steps: (1) preparing a set of trained 
models as committee, (2) aggregating explanation results across the committee to get the consensus, and (3) 
computing the similarity score of each explanation to the consensus



1629Machine Learning (2023) 112:1627–1662	

1 3

compute a similarity score between the consensus and the explanation result for each 
deep model, denoted as consensus score. Through extensive experiments using 80+ 
models on five datasets/tasks, we find that (1) the consensus is aligned with the ground 
truth of image semantic segmentation; (2) a model in the committee with a higher con-
sensus score usually performs better in terms of testing accuracy; and (3) models’ con-
sensus scores potentially correlate to their interpretability.

The contributions of this paper can be summarized as follows. To the best of our 
knowledge, this work is the first to investigate the common features used and shared 
by a large number of deep models for image classification through incorporating trust-
worthy explanation algorithms. We propose the cross-model consensus of explanations 
to characterize the common features and connect the consensus score to the model 
performance and interpretability. Finally, we obtain the three observations from the 
experiments with thorough analyses and discussions.

Fig. 2   Visual comparisons between consensus and the interpretation results of CNNs using LIME (in the 
upper line) and SmoothGrad (in the lower line) based on an image from ImageNet, where the ground truth 
of segmentation is not available

Fig. 3   Visual comparisons between consensus and the explanation results of deep models using LIME (in 
the upper line) and SmoothGrad (in the lower line) based on an image from CUB-200-2011, where the 
ground truth of segmentation is available as pixel-wise annotations and the mean Average Precision (mAP) 
are measured
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2 � Related work

In this section, we first review the explanation algorithms and the approaches to evaluating 
their trustworthiness. Then we introduce some works related to our observations on the 
positive correlation between model performance and the proposed consensus score.

2.1 � Explanation algorithms and evaluations

Many algorithms have been proposed to visualize the activated regions of feature 
maps in the intermediate layers (Chattopadhay et  al., 2018; Selvaraju et  al., 2020; 
Wang et  al., 2020; Zhou et  al., 2016), to gain insights for understanding the inter-
nals of convolutional networks. Apart from investigating the inside of complex deep 
networks, simple linear or tree-based surrogate models have been used as “out-of-
box explainers” to explain the predictions made by the deep model over the data-
set through local or global approximations (Ahern et al., 2019; Ribeiro et al., 2016; 
van der Linden et al., 2019; Zhang et al., 2019). Instead of using surrogates for deep 
models, investigations on the gradients for differentiable models have also been 
proposed to estimate the input feature importance with respect to the model predic-
tions, such as SmoothGrad (Smilkov et al., 2017), Integrated Gradients (Sundarara-
jan et  al., 2017), DeepLIFT (Shrikumar et  al., 2017) etc. Note that there are many 
other explanation algorithms (Afrabandpey et al., 2020; Atanasova et al., 2020; Bach 
et al., 2015; Kim et al., 2018; Looveren & Janis, 2020) and we mainly focus on those 
that are related to feature attributions and suitable for image classification models in 
this work.

There are few works of analyzing the explanations across models. For example, 
Fisher et al. (2019) theoretically studied the variable importance for machine learning 
models of the same family. Agarwal et al. (2021) aggregates rankings from several clas-
sifiers for time series classification tasks, instead of averaging explanation results. In 
this work, we investigate the cross-model explanations for image classification models 
and relate the consensus to the ability of localizing visual objects, model performance 
and interpretability.

Evaluations on the trustworthiness of explanation algorithms are of objective 
to qualify their fidelity to the models and avoid the misunderstanding of models’ 
behaviors. For example, Adebayo et al. (2018) have found that some algorithms are 
independent both of the model and the data generating process, which should be 
avoided for not explaining the model, and thus proposed a sanity-check framework 
through perturbing parts parameters of models. Quantitative metrics for the trust-
worthiness evaluations include measuring the performance drop by perturbation of 
important features (Hooker et al., 2019; Petsiuk et al., 2018; Samek et al., 2016; Vu 
et al., 2019), model trojaning attacks (Chen et al., 2017; Gu et al., 2017; Lin et al., 
2020), infidelity and sensitivity (Ancona et  al., 2018; Yeh et  al., 2019) to similar-
ity samples in the neighborhood, through crafted datasets (Yang & Kim, 2019), and 
user-study experiments (Jeyakumar et al., 2020; Lage et al., 2019).

Towards building more interpretable and explainable AI systems, trustworthy expla-
nation algorithms are the first step. Evaluations on the model interpretability, indicating 
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which model is more interpretable, are also urged. However, such evaluations across 
deep models are scarce. Bau et al. (2017) proposed Network Dissection to build an addi-
tional dataset with dense annotations of a number of visual concepts for evaluating the 
interpretability of convolutional neural networks. Given a convolutional model, Net-
work Dissection recovers the intermediate-layer feature maps used by the model for the 
classification. It then measures the overlap between the activated regions in the feature 
maps with the densely human-labeled visual concepts to estimate the interpretability of 
the model. Note that elaborately designed user-study experiments are also a common 
solution to evaluating deep model interpretability.

In this work, we do not directly evaluate the interpretability across deep models. 
Instead, we experimentally show that the consensus score is positively correlated to the 
generalization performance of deep models and related to the interpretability. We will 
discuss more details with analyses later. Based on the explanations, our proposed frame-
work and the consensus score could help to understand the deep models better.

2.2 � Explanation and semantic segmentation

Explanations are also useful to improve model performance (Kim et al., 2020), robustness 
(Ross et al., 2018) or interpretability (Chen et al., 2019). One related direction is weakly 
supervised semantic segmentation, which trains a deep model with image-wise annotations 
and makes efforts to predict pixel-wise segmentation results. The explanation results are 
beneficial to connect the bridge between two levels of labels (Jo et al., 2021; Wang et al., 
2020). The proposed consensus, obtained across models from another aspect, confirms this 
connection as described in our first observation.

3 � Framework of cross‑model consensus of explanations

In this section, we first recall the two explanation algorithms that are used to validate our 
proposed framework, i.e., LIME (Ribeiro et  al., 2016) and SmoothGrad (Smilkov et  al., 
2017). Then we introduce the proposed approach that generalizes the electoral system to 
provide the consensus of explanations across various deep models.

3.1 � Recall LIME and SmoothGrad

Local Interpretable Model-agnostic Explanations (LIME) (Ribeiro et  al., 2016) 
searches an interpretable model, usually a linear one, to approximate the output of 
a deep model for an individual data point, such that LIME obtains a weighted lin-
ear combination of features including the importance of every feature for classifying 
the data point. To explain a deep model on vision tasks, LIME (Ribeiro et al., 2016) 
first performs a superpixel segmentation (Vedaldi et  al., 2008) for a given image to 
reduce the number of input features (pixels aggregated into superpixels), then gener-
ates interpolated samples by randomly masking some superpixels and computing the 
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prediction outputs of the generated samples through the original model, and finally 
uses a linear regression model to fit the outputs with the presence/absence of super-
pixels as inputs. The linear weights are then used to indicate the contributions of 
superpixels as the explanation results.

LIME is model-agnostic, without any requirement on the inside of models. 
Instead, another family of explanation algorithms is based on gradients, thus requires 
the models be differentiable. The gradients of model output w.r.t. input can partly 
identify influential pixels, but due to the saturation of activation functions in the 
deep networks, the vanilla gradient is usually noisy. SmoothGrad (Smilkov et  al., 
2017) reduces the visual noises by repeatedly adding small random noises on the 
image to get the gradients corresponding to the noised inputs, and then averages 
these gradients to smooth out noises for obtaining the final explanation result. In 
this work, based on LIME and SmoothGrad, we conduct experiments to validate our 
proposed approach. Note that other post-hoc explanation algorithms for interpreting 
individual samples are also available for our proposed framework.

3.2 � Steps to computing cross‑model consensus of explanations

Based on one of the explanation algorithms, our proposed framework computes the cross-
model consensus of explanations and the consensus score, with the three specific steps as 
follows.
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Step 1: Committee formation with deep models
Given m deep models that are trained for solving a target task (image classification task 

in our experiments) on a visual dataset where each image contains one primary object, the 
approach first forms the given deep models as a committee, noted as M , and then considers 
the variety of models in the committee that would establish the consensus for comparisons 
and evaluations.

Step 2: Committee voting for consensus achievement
With a committee of deep models for the image classification task, our proposed frame-

work leverages a trustworthy interpretation tool A , e.g. LIME (Ribeiro et  al., 2016) or 
SmoothGrad (Smilkov et al., 2017), to obtain the explanation on each image in the dataset. 
Given some sample, denoted as di , from the dataset, we note the obtained explanation 
results of all models in the committee as L . Specifically, Lj indicates the explanation given 
by the j-th model. Then, we propose a voting procedure that aggregates {Lj}j=1,…,m to reach 
the cross-model consensus of explanations, i.e., the consensus, c for di . Specifically, the k-
th element of the consensus c is ck =

1

m

∑m

j=1

L
2

jk

‖Lj‖
, ∀1 ≤ k ≤ K for LIME, where K refers to 

the dimension of an explanation result and ck =
1

m

∑m

j=1

Ljk−min(Lj)

max(Lj)−min(Lj)
, ∀1 ≤ k ≤ K for 

SmoothGrad, following the conventional normalization-averaging procedure (Ahern et al., 
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2019; Ribeiro et  al., 2016; Smilkov et  al., 2017). To the end, the consensus has been 
reached for every sample in the target dataset based on committee voting.

Step 3: Consensus-based similarity score
Given the reached consensus, our approach calculates the similarity score between the 

explanation result of every model in the committee and the consensus, as the consensus 
score. Specifically, for the explanations and the consensus based on LIME (visual feature 
importance in superpixel levels), cosine similarity between the flattened vector of explana-
tion of each model and the consensus is used. For the results based on SmoothGrad (visual 
feature importance in pixel levels), a similar procedure is followed, where the proposed 
algorithm uses Radial Basis Function (RBF, exp(− 1

2
(||a − b||∕�)2) ) for the similarity 

measurement. The difference in similarity computations is due to that (1) the dimensions 
vary across data samples for LIME explanations while do not change for SmoothGrad, and 
(2) the scales of LIME explanation results vary much larger than SmoothGrad. Thus cosine 
similarity is more suitable for LIME while RBF is for SmoothGrad. Eventually, the frame-
work computes a quantitative but relative score for each model in the committee using their 
similarity to the consensus.

In summary, the proposed method first selects a number of deep models as a committee. 
Then given a data sample from the dataset, the proposed method computes the explanation 
using one interpretation algorithm (e.g. LIME or SmoothGrad) for each deep model in the 
committee, and obtains the cross-model consensus of explanations through a voting pro-
cess. Finally, given the reached consensus, our approach calculates the similarity score for 
each model, as the consensus score, between the explanation result of that model and the 
consensus. For each data sample, we can compute such a consensus score and the final one 
is averaged across all data samples from the dataset. For further clarity, these three steps of 
the proposed framework are illustrated in Fig. 1 and formalized in Algorithm 1, while the 
definitions of elementary functions (i.e., the interpretation algorithm, the voting procedure, 
and the similarity score) are omitted in Algorithm 1 but given in Algorithm 2.

4 � Overall experiments and results

In this section, we start by introducing the experiment setups. We use the image classifica-
tion as the target task and follow the proposed framework to obtain the consensus and com-
pute the consensus scores. Through the experiments, we have found (1) the good alignment 
between the consensus and image semantic segmentation, (2) positive correlations between 
the consensus score and model performance, and (3) potential correlations between the 
consensus score and model interpretability. We end this section with robustness analyses of 
the framework.

4.1 � Evaluation setups

4.1.1 � Datasets

For overall evaluations and comparisons, we use ImageNet (Deng et al., 2009) for general 
visual object recognition and CUB-200-2011 (Welinder et al., 2010) for bird recognition 
respectively. Note that ImageNet provides the class label for every image, and the CUB-
200-2011 dataset includes the class label and pixel-level segmentation for the bird in every 
image, where the pixel annotations of visual objects are found to align with the consensus.
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4.1.2 � Committee formation with deep models

Our main experiments and results include models of the two committees based on Ima-
geNet and CUB-200-2011, respectively. Both of them target the image classification task, 
with each image being labeled to one category. For complete comparisons, we use more 
than 80 deep models trained on ImageNet that are publicly available.

There are over 100 deep models1 at the moment we initiate the experiments. We first 
exclude some very large models that take much more computation resources. Then for 
the consistency of computing superpixels, we include only the models that take images 
of size 224×224 as input, resulting 81 models for the committee based on ImageNet. Note 
that other models can be also included by an additional step of aligning the superpixels in 
images of different sizes. However, in our experiments, we choose to ignore this small set 
of models since a large number of models are available.

As for CUB-200-2011 (Welinder et al., 2010), similarly we first exclude the very large 
models. Then we follow the standard procedures (Sermanet et  al., 2014) for fine-tuning 
ImageNet-pretrained models on CUB-200-2011. We choose the default hyper-parameter 
setting to conduct the fine-tuning experiments on CUB-200-2011 for all models, i.e., learn-
ing rate 0.01, batch size 64, SGD optimizer with momentum 0.9, resize to 256 being the 
short edge, randomly cropping images to the size of 224×224, and obtain 85 models that 
are well trained. Different hyper-parameters may help to improve the performance of some 
specific networks, but for a fair comparison across model structures and economical rea-
sons, we choose not to do the hyper-parameter tuning.

4.1.3 � Explanation algorithms

As we previously introduced, we consider two explanation algorithms, LIME and Smooth-
Grad. Specifically, LIME surrogates the explanation as the assignment of visual feature 
importance to superpixels, and SmoothGrad outputs the explanations as the visual feature 
importance over pixels. In this way, we can validate the flexibility of the proposed frame-
work over explanation results from diverse sources (i.e., linear surrogates vs. input gradi-
ents) and in multiple granularities (i.e., feature importance in superpixel/pixel-levels).

4.1.4 � Computation costs

We here report the computation costs of preparing the committee and the explanation for 
reference, tested on one V100 GPU. Each fine-tuned model on CUB-200-2011 takes one 
hour more or less depending on the model size. LIME takes around 15 s in average (vari-
ant across models) per sample and SmoothGrad takes around 3 s per sample. For practi-
cal usages of cross-model consensus explanation, 15 models are suggested while a smaller 
scale of 5 may work as well.

1  https://​github.​com/​Paddl​ePadd​le/​models/​blob/​relea​se/1.​8/​Paddl​eCV/​image_​class​ifica​tion/​README_​en.​
md#​suppo​rted-​models-​and-​perfo​rmanc​es.

https://github.com/PaddlePaddle/models/blob/release/1.8/PaddleCV/image_classification/README_en.md#supported-models-and-performances
https://github.com/PaddlePaddle/models/blob/release/1.8/PaddleCV/image_classification/README_en.md#supported-models-and-performances
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4.2 � Alignment between the consensus and image segmentation

The image segmentation task searches the pixel-wise classifications of images. The cross-
model consensus of explanations for image classification are well aligned to image seg-
mentation, especially when only one object is contained in the image. This observation 
partially demonstrates the effectiveness of most deep models in extracting visual objects 
from input images. We show two examples using both LIME and SmoothGrad in Figs. 2 
and 3 from ImageNet and CUB-200-2011 respectively. For both examples, we can find that 
the explanation algorithms reveal the models’ predictions by highlighting some parts of the 
target objects, while the cross-model consensus shows a much better alignment with the 
objects than individual models. This observation can be found in more examples, as shown 
in the Appendix.

We confirm this alignment using the Average Precision (AP) score between the cross-
model consensus of explanations and the image segmentation ground truth, where the lat-
ter is available on CUB-200-2011. We take the mean of AP scores (mAP) over the dataset 
to compare with the overall consensus scores. Higher mAP scores indicate better align-
ment between the explanations and the image segmentation ground truth. The quantitative 
results are shown in Fig.  4, where the consensus achieves higher mAP scores than any 
individual network. Both visual comparisons and quantitative results validate the closeness 
of consensus to the ground truth of image segmentation.

4.3 � Positive correlations between consensus scores and model performance

Raw input features are not always useful. Some are discriminative while others are not. We 
use discriminative features to indicate those that can be used by models to well separate 

Fig. 4   Correlation between model performance and mAP scores to the segmentation ground truth using 
LIME (left) and SmoothGrad (right) on CUB-200-2011 over 85 models. Pearson correlation coefficients 
are 0.927 (with p value 4e−37) for LIME and 0.916 (p value 9e−35) for SmoothGrad. Take the “AlexNet” 
as example, this model gets 0.507 accuracy score on CUB-200-2011, and the alignment between its LIME 
explanations and the ground truth of semantic segmentation is measured by the mAP score of 0.343 (and 
0.571 for SmoothGrad). These numeric results are reported in the Appendix. Moreover, the points “Consen-
sus” here refer to the testing accuracy of the ensemble of networks in the committee by probabilities averag-
ing and voting (in y-axis), as well as the mAP between the consensus and the ground truth (in x-axis). For 
the concise purpose, models in the same family are represented by the same symbol. Best viewed in color 
and with zoom-in (Color figure online)
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samples from different categories. Usually they are the important features for solving the 
learning task. Based on this, we could reasonably assume that (1) for classification tasks 
of single-object images, the discriminative features are the pixels/superpixels of the target 
object in the image, and (2) if the key features used by the deep model (that can be revealed 
by trustworthy explanation algorithms) are aligned with the discriminative ones, the model 
is more likely to produce correct predictions and thus better performance. We presented 
previously that the cross-model consensus of explanations is aligned with object segmenta-
tion, implicitly indicating that the common features may be aligned with the discrimina-
tive ones. Here we show the positive correlations between the consensus score and model 
performance.

Specifically, in Fig. 5, we present the consensus scores (in x-axis) using LIME (left) and 
SmoothGrad (right) on ImageNet (a) and CUB-200-2011 (b), against model performance 
(in y-axis). High correlation coefficients are observed across the dataset-explanation com-
binations, though in some local areas of Fig. 5 (a, right), the correlation between the con-
sensus score and model performance is weaker. In this way, we could conclude that, in an 
overall manner, the evaluation results based on the consensus score using both LIME and 
SmoothGrad over the two datasets are correlated to model performance with significance. 

Fig. 5   Model performance vs. consensus scores using LIME (a, left) and SmoothGrad (a, right) over 81 
models on ImageNet (b, left) and 85 models on CUB-200-2011 (b, right). Pearson correlation coefficients 
are a 0.809 and 0.783, b 0.908 and 0.880. For concise purposes, networks in the same family are repre-
sented by the same symbol. Best viewed in color and with zoom-in (Color figure online)
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This can further be supported by experiments on other datasets with random subsets of 
deep models, as shown in Fig. 11 (Appendix 2).

4.4 � Potential correlations between consensus scores and model interpretability

Deep model interpretability measures the ability to present in understandable terms to a 
human (Doshi-Velez & Kim, 2017). Network Dissection (Bau et al., 2017) and user-study 
experiments are two possible methods to measure the interpretability of deep models quan-
titatively. Network Dissection (Bau et al., 2017) provided a dataset named Broden, which 
pre-defines a set of semantics, including colors, patterns, materials, textures, object parts 
etc, and provides the manually annotated pixel-wise labels in each image. Network Dis-
section benefits this dataset to count the number of semantic neurons in the intermediate 
layers of deep models as the interpretability. User-study evaluations measure the interpret-
ability through designed experiments with humans’ interactions and the collected statistics.

This subsection shows that the consensus scores are correlated with interpretability 
scores, measured by Network Dissection and user-study evaluations. Note that the consen-
sus scores are computed based on explanation results, but they are not a direct estimator or 
metric of the model interpretability.

4.4.1 � Consensus versus network dissection

We compare the results of the proposed framework with the ones from Network Dissec-
tion (Bau et al., 2017). Based on the Broden dataset, Network Dissection reported a rank-
ing list of five models (w.r.t. the model interpretability), shown in Table 1, through count-
ing the semantic neurons, where a neuron is defined as semantic if its activated feature 
maps overlap with human-annotated visual concepts. With our proposed framework, we 
report the consensus scores using LIME and SmoothGrad in Table 1, which are consist-
ent to Fig. 5 (a, LIME) and (a, SmoothGrad). The three ranking lists are almost identical, 
except the comparisons between DenseNet161 and ResNet152, and in both lists based on 
the consensus scores, DenseNet161 is similar to ResNet152 with marginally elevated con-
sensus scores, while Network Dissection considers ResNet152 is more interpretable than 
DenseNet161.

We believe the results from our proposed framework and Network Dissection are close 
enough from the perspectives of ranking lists. The difference may be caused by the differ-
ent ways that our framework and Network Dissection perform the evaluations. The con-
sensus score measures the similarity to the consensus on images, while Network Dissec-
tion counts the number of neurons in the intermediate layers activated by all the visual 

Table 1   Rankings (and scores) of five deep models, evaluated by Network Dissection Bau et  al. (2017) 
(Net.Dis.), user-study evaluations (User-Study), and Consensus with LIME and SmoothGrad (C.LIME and 
C.SG respectively).

DenseNet161 ResNet152 VGG16 GoogleNet AlexNet

Net.Dis. 2 1 3 4 5
User-Study 1 (1.715) 2 (1.625) 3 (1.585) 4 (1.170) 5 (0.840)
C.LIME 1 (0.849) 2 (0.846) 3 (0.821) 4 (0.734) 5 (0.594)
C.SG. 1 (0.038) 2 (0.037) 3 (0.030) 4 (0.026) 5 (0.021)
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concepts, including objects, object parts, colors, materials, textures, and scenes. Further-
more, Network Dissection evaluates the interpretability of deep models using the Broden 
dataset with densely labeled visual objects and patterns (Bau et al., 2017), while the con-
sensus score does not need additional datasets or the ground truth of semantics. In this way, 
the results of our proposed framework and Network Dissection might be slightly different.

4.4.2 � Consensus versus user‑study evaluations

In order to further validate the effectiveness of the proposed framework, we have also con-
ducted user-study experiments on these five models and report the results on the second 
row of Table 1. The experimental settings of the user-study evaluations are as followed. For 
each image, we randomly choose two models from the five models and present the LIME 
(or SmoothGrad respectively) explanations of the two models, without giving the model 
information to users. Users are then requested to choose which one helps better to reveal 
the model’s reasoning of making predictions according to their understanding, or equal if 
the two interpretations are equally bad or good. Each pair of models is repeated three times 
and represented to different users. The better one in each pair will get three points and the 
other one will get zero; in the equal case, both get one point. Finally, a normalization of 
dividing the number of images and the number of repeats (i.e. 3) is performed for each 
model. The user-study evaluations yield the scores indicating the model interpretability, as 
shown in Table 1. The results confirm that our proposed framework is capable of approxi-
mating the model interpretability.

We note that it is a small-scale user study with around thirty users. Since there is a 
ranking list of only five models available in Network Dissection which we can compare 
with, our experiments here aim to validate the effectiveness of the proposed framework by 
approximately evaluating model interpretability. The scores obtained in the user study may 
not be such accurate but the ranking list is roughly valid.

4.5 � Robustness analyses of consensus

In this subsection, we investigate several factors that might affect the evaluation results 
with consensus, including basic explanation algorithms (e.g., LIME and SmoothGrad), the 
size of the committee, and the candidate pool for models in the committee.

4.5.1 � Consistency between LIME and SmoothGrad

Even though the granularity of explanation results from LIME and SmoothGrad are differ-
ent, which causes mismatching in mAP scores to segmentation ground truth, the consen-
sus scores based on the two algorithms are generally consistent. The consistency has been 
confirmed by Fig. 6, which shows the consensus scores based on LIME and those based on 
SmoothGrad. The correlation coefficients are 0.825 and 0.854 respectively, indicating the 
strong correlations over all models on both datasets. This shows that the proposed frame-
work can work well with a broad spectrum of basic explanation algorithms.



1640	 Machine Learning (2023) 112:1627–1662

1 3

4.5.2 � Consistency across committees

In real-world applications, the committee-based estimations and evaluations may make 
inconsistent results in a committee-by-committee manner. In this work, we are interested 
in whether the consensus score estimations are consistent against the change of committee. 
Given 16 ResNet models as the targets, we form 20 independent committees by combining 
the 16 ResNet models with 10–20 models randomly drawn from the rest networks. In each 
of these 20 independent committees, we compute the consensus scores of the 16 ResNet 
models. We then estimate the Pearson correlation coefficients between any of these 20 
results and the one in Fig. 5 (a, LIME), where the mean correlation coefficient is 0.96 with 
the standard deviation of 0.04. To visually show the low variance, we present the consen-
sus scores and performance2 of these 16 ResNet models based on the complete committee 
(81 models) and themselves (16 ResNet models) in Fig. 7. No large difference is observed 

Fig. 6   Consistency between LIME and SmoothGrad. This figure shows the similarity to the consensus of 
SmoothGrad interpretations vs. the similarity to the consensus of LIME interpretations on the ImageNet 
committee (a) and CUB-200-2011 committee (b). Pearson correlation coefficients are a 0.825 and b 0.854. 
For concise purposes, networks in the same family are represented by the same symbol. Best viewed in 
color and with zoom-in (Color figure online)

Fig. 7   Model performance vs. similarity to the consensus of LIME on ResNet family. The consensus in the 
left plot is voted by the ResNet family (16 models) while the right is by complete committee on ImageNet 
(81 models). Best viewed in color and with zoom-in (Color figure online)

2  The positive correlation between the model performance and the consensus scores does not exist in the 
ResNet family, as we explained before that in some local areas, especially when models are extremely large, 
the correlation is not always positive.
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for these two extreme cases. Thus, we can say the consensus score evaluation would be 
consistent against randomly picked committees.

4.5.3 � Convergence over committee sizes

To understand the effect of the committee size on the consensus score estimation, we run 
the proposed framework using committees of various sizes formed by deep models that 
are randomly picked up from the pools. In Fig. 8, we plot and compare the performance of 
the consensus with increasing committee sizes, where we estimate the mAP between the 
ground truth and the consensus reached by the random committees of different sizes and 20 
random trials have been done for every single size independently. It shows that the curve of 
mAP would quickly converge to the complete committee, while the consensus based on a 
small proportion of committee (e.g., 15 networks) works well enough even compared to the 
complete committee of 85 networks.

5 � Discussions: limitations and strengths with future works

In this section, we discuss several limitations and strengths in our studies, with interesting 
directions for future works.

5.1 � Limitations

First of all, our studies are based on the explanation algorithms. We propose to study the 
features used by deep models using the explanation results (i.e., the importance of super-
pixels/pixels in the image for prediction). The correctness of these explanation algorithms 
might affect our results. However, we use two independent algorithms, including LIME 
(Ribeiro et  al., 2016) and SmoothGrad (Smilkov et  al., 2017), which attribute feature 
importance in two different scales i.e., superpixels and pixels. Both algorithms lead to the 
same observations and conclusive results (see Sect. 4.5 for the consistency between results 

Fig. 8   Convergence of mAP between the ground truth and the consensus results based on committees of 
increasing sizes, using LIME on CUB-200-2011. The green lines and orange triangles are, respectively, the 
mean values and the median values of 20 random trials. The red dashed line is the mAP of the consensus 
reached by the complete committee of the original 85 models



1642	 Machine Learning (2023) 112:1627–1662

1 3

obtained by LIME and SmoothGrad). Thus, we believe the explanation algorithms here are 
(almost) trustworthy and it is appropriate to use explanation results as a proxy to analyze 
features. For future research, we would include more advanced explanation algorithms to 
confirm our observations.

We obtain some interesting observations from our experiments and make conclusions 
using multiple datasets. However, the image classification datasets used in our experiments 
have some limitations—every image in the dataset only consists of one visual object for 
classification. It is reasonable to doubt that when multiple visual objects (rather than the 
target for classification) and complicated visual patterns for background (Chen et al., 2017; 
Koh & Liang, 2017) co-exist in an image, the cross-model consensus of explanations may 
no longer overlap to the ground truth semantic segmentation. To showcase our approach, 
we include an example from the COCO dataset (Lin et al., 2014) in Fig. 9, where multi-
ple objects co-exist in the image and the consensus partly matches the segmentation. To 
address this issue, our future work would focus on the datasets with multiple visual objects 
and complicated background for object detection, segmentation, and multi-label classifica-
tion tasks.

Finally, only well-known models with good performance have been included in the 
committee. It would probably bring some bias in our analysis, but it would not cause many 
problems in practice because these models would be one of the first choices or frequently 
used in many applications for relevance. Moreover, if the committee consists of a large 
number of random-guess models, the consensus would become a constant matrix. To avoid 
this case and simplify the analyses, we consider well-known models with good perfor-
mance in this work. In our future work, we would include more models with diverse per-
formances to seek more observations and will try to explain more complicated models such 
as Transformers (Yuan et al., 2021).

5.2 � Strengths

In addition to the limitations, we demonstrate several strengths of cross-model consensus 
of explanations for further studies.

As was shown in Fig. 8, with a larger committee, the consensus would slowly converge 
to a stable set of common features that aligns with the segmentation ground truth of the 
dataset. This experiment further demonstrates the capacity of consensus to precisely posi-
tion the visual objects for classification. Thus, in our future work, we would like to use 

Fig. 9   Visualization of an image from the MS-COCO dataset (Lin et al., 2014) for showing the strengths of 
cross-model consensus of explanations, where the predicted label with probability is noted. Models are not 
adapted to the COCO dataset
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consensus based on a committee of image classification models to detect the visual objects 
in the image.

Model performance is one of the most critical metrics in most practical scenarios. Esti-
mations of model performance are needed in these situations, especially when there are no 
(or few) validation samples. Our second observation that a model in the committee with a 
higher consensus score usually performs better in terms of testing accuracy, would be help-
ful to relatively estimate the performance of models.

We believe that the cross-model consensus of explanations, or the common features, is 
an explanation of data, instead of explanations for individual models, that aim to explain 
the model. Informally, we consider the explanations as a conditional probability (of impor-
tance) of features f given a trained deep model M , denoted as p(f |M) . Higher values of 
p(f |M) indicate that the features f are (supposed to be) more important to solve the task, 
from the view of the given model M . Then intuitively, the cross-model consensus of expla-
nations is to marginalize out the variable of models, i.e., p(f ) = ∫

M
p(f |M)p(M)dM , to 

indicate the feature importance from the view of data. In practice, the intractable integra-
tion is approximated by the discrete summation (15 models approximate well, cf Sect. 4.5). 
The common features found by the consensus are approximately equivalent to the features 
that are discriminative for solving the task, which resides in data. Therefore, the cross-
model consensus of explanations would be capable of identifying the discriminative 
features.

Following the previous notations, individual models are supposed to use them to 
achieve good performance and thus the consensus score measures the quantity of discrimi-
native features that the model uses to make predictions. A higher consensus score indicates 
that the model is more likely to achieve good performance. More investigations on this may 
lead to theoretical proofs of our second observation.

Furthermore, our experiments with both explanation algorithms on all datasets have 
found that consensus scores are correlated to the interpretability scores of the models, 
even though interpretability scores were evaluated through totally different ways—network 
dissections (Bau et al., 2017) and user studies. Actually, network dissections evaluate the 
interpretability of a model through matching its activation maps in intermediate layers 
with the ground truth segmentation of visual concepts in the image. A model with higher 

Fig. 10   Correlation between mAP scores to the segmentation ground truth and the consensus scores using a 
LIME and b SmoothGrad with the CUB-200-2011 dataset over 85 models (of the committee). Pearson cor-
relation coefficients are 0.885 (p value 3e−29) for LIME and 0.906 (p value 8e−33) for SmoothGrad. For 
concise purposes, networks in the same family are represented by the same symbol. Best viewed in color 
and with zoom-in (Color figure online)
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interpretability should have more convolutional filters activated at the visual patterns/
objects for classification. In this way, we particularly measure the similarity between the 
explanation results obtained for every model and the segmentation ground truth of images. 
We found that the models’ segmentation-explanation similarity significantly correlates to 
their consensus scores (see Fig. 10). This observation might encourage us to further study 
the connections between interpretability and consensus scores in the future work.

6 � Conclusion

In this paper, we study the common features shared by various deep models for image clas-
sification. Specifically, given the explanation results obtained by explanation algorithms, 
we propose to aggregate the explanation results from different models and obtain the cross-
model consensus of explanations through voting. To understand features used by every 
model and the common ones, we measure the consensus scores as the similarity between 
the consensus and the explanation of individual models.

Our empirical studies based on comprehensive experiments using 80+ deep models on 
five datasets/tasks find that (i) the consensus aligns with the ground truth semantic seg-
mentation of the visual objects for classification; (ii) models with higher consensus scores 
would enjoy better testing accuracy; and (iii) the consensus scores correlate to the inter-
pretability scores. In addition to the main claims, we also include additional experiments to 
demonstrate robustness and consistency of the proposed cross-model consensus of expla-
nations in explanation algorithms, formed committees, the committee size, and random 
selections on various datasets. All these studies confirm the applicability of consensus as a 
proxy to study and analyze the common features shared by different models in our research. 
Furthermore, several open issues and strengths have been discussed, with future directions 
introduced. Hereby, we are encouraged to adopt the consensus and consensus scores for 
better understanding the behaviors of deep models.

Appendix 1: Definitions of metrics

Average precision

Average Precision (AP)3 computes the area under the precision-recall curve:

where Rn and Pn are the recall and precision values at the nth threshold.

Pearson correlation coefficient

The Pearson correlation coefficient4 measures the linear relationship between two variables 
by

(1)AP =
∑

n

(Rn − Rn−1)Pn,

3  https://​scikit-​learn.​org/​stable/​modul​es/​gener​ated/​sklea​rn.​metri​cs.​avera​ge_​preci​sion_​score.​html.
4  https://​docs.​scipy.​org/​doc/​scipy/​refer​ence/​gener​ated/​scipy.​stats.​pears​onr.​html.

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html


1645Machine Learning (2023) 112:1627–1662	

1 3

where x̄ is the mean of x, ȳ is the mean of y.

Spearman rank‑order correlation coefficient

The Spearman rank-order correlation coefficient5 is a nonparametric measure of the mono-
tonicity of the relationship between two variables by

where X and Y are two variables, R(X) and R(Y) are the ranking variables related to X and Y 
respectively, �R(X) and �R(Y) are the standard deviations of the rank variables.

Appendix 2: Applicability with random committees over more datasets

To demonstrate the applicability of the proposed framework, we extend our experiments 
using networks randomly picked up from the pool to other datasets, including Stanford 
Cars 196 (Krause et  al., 2013), Oxford Flowers 102 (Nilsback & Zisserman, 2008) and 
Foods 101 (Bossard et al., 2014). These datasets respectively contain 196 types of auto-
mobiles, 102 categories of flowers and 101 kinds of foods, with 8144, 1030, 75,750 train-
ing samples. The fine-tuning procedure on these three datasets is the same as on CUB-
200-2011, to prepare the committee. However, given the convergence over committee size 
(Fig. 8), which suggests a committee of more than 15 models, we randomly train 20 mod-
els for each of the three datasets. The results in Fig. 11 confirm that the positive correla-
tions between the consensus score and model performance exist for a wide range of models 
on ubiquitous datasets/tasks.

Appendix 3: References of network structures

Most frequently-used structures of deep models have been evaluated in this paper, 
including AlexNet (Krizhevsky et  al., 2012), ResNet (He et  al., 2016), ResNeXt (Xie 
et  al., 2017), SEResNet (Hu et  al., 2018), ShuffleNet (Zhang et  al., 2018; Ma et  al., 
2018), MobileNet (Howard et al., 2017; Sandler et al., 2018; Howard et al., 2019), VGG 
(Simonyan & Zisserman, 2015), GoogleNet (Szegedy et al., 2015), Inception (Szegedy 
et al., 2015), Xception (Chollet, 2017), DarkNet (Redmon et al., 2016, 2018), DenseNet 
(Huang et al., 2017), DPN (Chen et al., 2017), SqueezeNet (Iandola et al., 2016), Effi-
cientNet (Tan & Le, 2019), Res2Net (Gao et  al., 2019), HRNet (Wang et  al., 2020), 
Darts (Liu et al., 2018), AcNet (Ding et al., 2019) and their variants.

(2)r =

∑
(x − x̄)(y − ȳ)

√
(x − x̄)2(y − ȳ)2

,

(3)r =
Cov(R(X),R(Y))

�R(X)�R(Y)

,

5  https://​docs.​scipy.​org/​doc/​scipy/​refer​ence/​gener​ated/​scipy.​stats.​spear​manr.​html.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html
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Appendix 4: Numerical report of main plots

Fig. 11   Model performance vs. 
the consensus scores using LIME 
on Stanford Cars 196 (Krause 
et al., 2013), Oxford Flowers 
102 (Nilsback & Zisserman, 
2008) and Foods 101 (Bossard 
et al., 2014). Pearson correlation 
coefficients are 0.952, 0.879 and 
0.913 respectively. Best viewed 
in color and with zoom-in (Color 
figure online)
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Fig. 12   More visual comparisons between the consensus and the explanations of deep models with LIME 
on samples from ImageNet. Note that the consensus (last column) is the cross-model consensus of explana-
tions
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Fig. 13   More visual comparisons between the consensus and the explanations of deep models with 
SmoothGrad on samples from ImageNet. Note that the consensus (last column) is the cross-model consen-
sus of explanations
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Due to the large number of deep models evaluated, Figs. 4,  5,  6 and  10 grouped some 
that are of the same architecture. Here, we report all of the corresponding numerical 
results in Table 2 with a smaller scale.

Fig. 14   More visual comparisons between the consensus and the explanations of deep models with LIME 
on samples from CUB-200-2011, where the pixel-wise annotations of image segmentation are available and 
the mAPs are measured for the similarity to the segmentation ground truth. Note that the consensus (second 
last column) is the cross-model consensus of explanations
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Appendix 5: More visualization results

We present more visualization results of cross-model consensus of explanations obtained 
from LIME and SmoothGrad in Figs. 12, 13, 14 and 15, where the samples are from Ima-
geNet and CUB-200-2011.

Fig. 15   More visual comparisons between the consensus and the explanations of deep models with 
SmoothGrad on samples from CUB-200-2011, where the pixel-wise annotations of image segmentation are 
available and the mAPs are measured for the similarity to the segmentation ground truth. Note that the con-
sensus (second last column) is the cross-model consensus of explanations
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