
Vol.:(0123456789)

Machine Learning (2023) 112:3293–3331
https://doi.org/10.1007/s10994-023-06310-3

1 3

Refining neural network predictions using background
knowledge

Alessandro Daniele1 · Emile van Krieken2 · Luciano Serafini1 · Frank van Harmelen2

Received: 8 June 2022 / Revised: 23 January 2023 / Accepted: 27 January 2023 /
Published online: 14 March 2023
© The Author(s) 2023

Abstract
Recent work has shown learning systems can use logical background knowledge to com-
pensate for a lack of labeled training data. Many methods work by creating a loss function
that encodes this knowledge. However, often the logic is discarded after training, even if it
is still helpful at test time. Instead, we ensure neural network predictions satisfy the knowl-
edge by refining the predictions with an extra computation step. We introduce differenti-
able refinement functions that find a corrected prediction close to the original prediction.
We study how to effectively and efficiently compute these refinement functions. Using a
new algorithm called iterative local refinement (ILR), we combine refinement functions
to find refined predictions for logical formulas of any complexity. ILR finds refinements
on complex SAT formulas in significantly fewer iterations and frequently finds solutions
where gradient descent can not. Finally, ILR produces competitive results in the MNIST
addition task.

Keywords Neurosymbolic AI · Fuzzy logic · Optimization

Alessandro Daniele and Emile van Krieken have contributed equally to this work.

Editors: Alireza Tamaddoni-Nezhad, Alan Bundy, Luc De Raedt, Artur d’Avila Garcez, Sebastijan
Dumancić, Cèsar Ferri, Pascal Hitzler, Nikos Katzouris, Denis Mareschal, Stephen Muggleton, Ute
Schmid.

 * Emile van Krieken
 e.van.krieken@vu.nl

 Alessandro Daniele
 daniele@fbk.eu

1 Data and Knowledge Management unit, Fondazione Bruno Kessler, via Sommarive 18,
38123 Trento, Italy

2 Department of Computer Science, Vrije Universiteit Amsterdam, de Boelelaan 1081a,
1081HV Amsterdam, Netherlands

http://orcid.org/0000-0001-5502-4817
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-023-06310-3&domain=pdf

3294 Machine Learning (2023) 112:3293–3331

1 3

1 Introduction

Recent years have shown promising examples of using symbolic background knowledge
in learning systems: From training classifiers with weak supervision signals (Manhaeve
et al., 2018), generalizing learned classifiers to new tasks (Roychowdhury et al., 2021),
compensating for a lack of good supervised data (Diligenti et al., 2017; Donadello
et al., 2017), to enforcing the structure of outputs through a logical specification (Xu
et al., 2018). The main idea underlying these integrations of learning and reasoning,
often called neurosymbolic integration, is that background knowledge can complement
the neural network when one lacks high-quality labeled data (Giunchiglia et al., 2022).
Although pure deep learning approaches excel when learning over vast quantities of
data with gigantic amounts of compute (Chowdhery et al., 2022; Ramesh et al., 2022),
we cannot afford this luxury for most tasks.

Many neurosymbolic methods work by creating a differentiable loss function that
encodes the background knowledge (Fig. 1a). However, often the logic is discarded
after training, even though this background knowledge could still be helpful at test time
(Roychowdhury et al., 2021; Giunchiglia et al., 2022a). Instead, we ensure we constrain
the neural network with the background knowledge, both during train time and test time,
by correcting its output to satisfy the background knowledge (Fig. 1b). In particular, we
consider how to make such corrections while being as close as possible to the original
predictions of the neural network.

We study how to effectively and efficiently correct the neural network by ensuring
its predictions satisfy the symbolic background knowledge. In particular, we consider
fuzzy logics formed using functions called t-norms (Klement et al., 2000; Ross, 2010).
Prior work has shown how to use a gradient ascent-based optimization procedure to find
a prediction that satisfies this fuzzy background knowledge (Diligenti et al., 2017; Roy-
chowdhury et al., 2021). However, a recent model called KENN (Clarke et al., 1993;
Daniele & Serafini, 2019) shows how to compute the correction analytically for a frag-
ment of the Gödel logic.

To extend this line of work, we introduce the concept of refinement functions and
derive refinement functions for many fuzzy logic operators. Refinement functions are
functions that find a prediction that satisfies the background knowledge while staying
close to the neural network’s original prediction. Using a new algorithm called Iterative
Local Refinement (ILR), we can combine refinement functions for different fuzzy logic
operators to efficiently find refinements for logical formulas of any complexity. Since

Fig. 1 Comparing different approaches for constraining neural networks with background knowledge. Loss-
based approaches include LTN, SBR, and Semantic Loss, while KENN, CCN(h), and SBR-CC are repre-
sentatives for refinement functions. x represents a high-dimensional input for a neural network, t represents
the initial predictions of this neural network and t̂ represents the refined prediction that incorporates the
background knowledge

3295Machine Learning (2023) 112:3293–3331

1 3

refinement functions are differentiable, we can easily integrate them as a neural network
layer. In our experiments, we compare ILR with an approach using gradient ascent. We
find that ILR finds optimal refinements in significantly fewer iterations. Moreover, ILR
often produces results that stay closer to the original predictions or better satisfy the
background knowledge. Finally, we evaluate ILR on the MNIST Addition task (Man-
haeve et al., 2018) and show how to combine ILR with neural networks to solve neuro-
symbolic tasks.

In summary, our contributions are:

1. We formalize the concept of minimal refinement functions in Sect. 4.
2. We introduce the ILR algorithm in Sect. 5, which uses the minimal refinement functions

for individual fuzzy operators to find refinements for general logical formulas.
3. We discuss how to use ILR for neurosymbolic AI in Sect. 6, where we exploit the fact

that ILR is a differentiable algorithm.
4. We analytically derive minimal refinement functions for individual fuzzy operators

constructed from the Gödel, Łukasiewicz, and product t-norms in Sect. 7.2.
5. We discuss a large class of t-norms for which we can analytically derive minimal refine-

ment functions in Sect. 7.
6. We compare ILR to gradient descent approaches and show it finds refinements on com-

plex SAT formulas in significantly fewer iterations and frequently finds solutions where
gradient descent can not.

7. We apply ILR to the MNIST Addition task (Manhaeve et al., 2018) to test how ILR
behaves when injecting knowledge into neural network models.

2 Related work

ILR falls into a larger body of work that attempts to integrate background knowledge
expressed as logical formulas into neural networks. For an overview, see (Giunchiglia
et al., 2022). Figure 1 shows two categories that most methods fall in. The first only use
background knowledge during training in the form of a loss function (Badreddine et al.,
2022; Xu et al., 2018; Diligenti et al., 2017; Fischer et al., 2019; Yang et al., 2022; van
Krieken et al., 2022). The second considers the background knowledge as part of the model
and enforces the knowledge at test time (Daniele & Serafini, 2019; Wang et al., 2019;
Giunchiglia & Lukasiewicz, 2021; Ahmed et al., 2022; Hoernle et al., 2022; Dragone et al.,
2021). ILR is a method in the second category. We note that these approaches can be com-
bined (Giunchiglia et al., 2022a; Roychowdhury et al., 2021).

First, we discuss approaches that construct loss functions from the logical formu-
las (Fig. 1a). These loss functions measure when the deep learning model violates the
background knowledge, such that minimizing the loss function amounts to “correcting”
such violations (van Krieken et al., 2022). While these methods show significant empiri-
cal improvement, they do not guarantee that the neural network will satisfy the formulas
outside the training data. LTN and SBR (Badreddine et al., 2022; Diligenti et al., 2017)
use fuzzy logic to provide compatibility with neural network learning, while Semantic
Loss (Xu et al., 2018) uses probabilistic logics. It is possible to extend the formalization
of refinement functions to probabilistic logics by defining a suitable notion of minimal-
ity. One example is the KL-divergence between the original and refined distributions over
ground atoms.

3296 Machine Learning (2023) 112:3293–3331

1 3

Among the methods where knowledge is part of the model, KENN inspired ILR (Dan-
iele & Serafini, 2019, 2022). KENN is a framework that injects knowledge into neural net-
works by iteratively refining its predictions. It uses a relaxed version of the Gödel t-conorm
obtained through a relaxation of the argmax function, which it applies in logit space. Closely
related to both ILR and KENN is CCN(h) (Giunchiglia & Lukasiewicz, 2021), which we see
as computing the minimal refinement function for stratified normal logic programs under
Gödel t-norm semantics. We discuss this connection in more detail in Sect. 7.2.1.

The loss-function-based method SBR also introduces a procedure for using the logical
formulas at test time in the context of collective classification (Diligenti et al., 2017; Roy-
chowdhury et al., 2021). Unlike KENN (Daniele & Serafini, 2019), these approaches do not
enforce the background knowledge during training but only use it as a test time procedure.
In particular, (Roychowdhury et al., 2021) shows that doing these corrections at test time
improves upon just using the loss-function approach. Unlike our analytic approach to refine-
ment functions, SBR finds new predictions using a gradient descent procedure very similar
to the algorithm we discuss in Sect. 9.1.2. We show it is much slower to compute than ILR.

Another method closely related to ILR is the neural network layer SATNet (Wang et al.,
2019), which has a setup closely related to ours. However, SATNet does not have a notion
of minimality and uses a different underlying logic constructed from a semidefinite relaxa-
tion. DeepProbLog (Manhaeve et al., 2018) also is a probabilistic logic, but unlike Seman-
tic Loss is used to derive new statements through proofs and cannot directly be used to
correct the neural network on predictions that do not satisfy the background knowledge.
Instead, ILR can be used to inject constraints on the output of a neural network, and to
prove new statements starting from the neural network predictions.

Finally, some methods are limited to equality and inequality constraints rather than general
symbolic background knowledge (Fischer et al., 2019; Hoernle et al., 2022). DL2 (Fischer
et al., 2019) combines these constraints into a real-valued loss function, while MultiplexNet
(Hoernle et al., 2022) adds the knowledge as part of the model. However, MultiplexNet
requires expressing the logical formulas as a DNF formula, which is hard to scale.

3 Fuzzy operators

We will first provide the necessary background knowledge for defining and analyzing
minimal refinement functions. In particular, we will consider fuzzy operators, which gen-
eralize the connectives of classical boolean logic. For formal treatments of the study of
fuzzy operators, we refer the reader to (Klement et al., 2000), which discusses t-norms and
t-conorms, to Jayaram and Baczynski (2008) for fuzzy implications, to Calvo et al. (2002)
for aggregation functions, and to van Krieken et al. (2022) for an analysis of the derivatives
of these operators.

Definition 1 A function T ∶ [0, 1]2 → [0, 1] is a t-norm (triangular norm) if it is commuta-
tive, associative, increasing in both arguments, and if for all t ∈ [0, 1] , T(1, t) = t.

Similarly, a function S ∶ [0, 1]2 → [0, 1] is a t-conorm if the last condition instead is that
for all t ∈ [0, 1] , S(0, t) = t.

Dual t-conorms are formed from a t-norm T using S(t1, t2) = 1 − T(1 − t1, 1 − t2) . We
list the n-arity extensions, constructed using T(t) = T(t1, T(t2∶n)) , T(ti) = ti of three basic
t-norms in Table 1. Here t = [t1, ..., tn]

⊤ ∈ [0, 1]n is a vector of fuzzy truth values, which

3297Machine Learning (2023) 112:3293–3331

1 3

we will often refer to as (truth) vectors. These n-arity extensions are examples of fuzzy
aggregation operators (Calvo et al., 2002).

Definition 2 A function I ∶ [0, 1]2 → [0, 1] is a fuzzy implication if for all t1, t2 ∈ [0, 1] ,
I(⋅, t2) is decreasing, I(t1, ⋅) is increasing and if I(0, 0) = 1 , I(1, 1) = 1 and I(1, 0) = 0.

Note that fuzzy implications do not have n-ary extensions as they are not associative. The
so-called S-implications are formed from the t-conorm by generalizing the material impli-
cation using I(a, c) = S(1 − a, c) . Furthermore, every t-norm induces a unique residuum or
R-implication (Jayaram & Baczynski, 2008) RT (a, c) = sup{z|T(z, a) ≤ c}.

Logical formulas � can be evaluated using compositions of fuzzy operators. We assume
� is a propositional logic formula, but we note the evaluation procedure can be extended to
grounded first-order logical formulas on finite domains. For instance, (Daniele & Serafini,
2022) introduced a technique for propositionalizing universally quantified formulas of predi-
cate logic in the context of KENN. Moreover, this technique can be extended to existential
quantification by treating it as a disjunction. We assume a set of propositions P = {P1, ...,Pn}
and constants C = {C1, ...,Cm} , where each constant has a fixed value Ci ∈ [0, 1].

Definition 3 If T is a t-norm, S a t-conorm and I a fuzzy implication, then the fuzzy evalua-
tion operator f� ∶ [0, 1]n → [0, 1] of the formula � with propositions P and constants C is a
function of truth vectors t and given as

where we match the structure of the formula � in the subscript f�.

(1)fPi
(t) = ti

(2)fCj
(t) = Cj

(3)f¬�(t) = 1 − f�(t)

(4)f⋀m

j=1
�j
(t) = T(f�1

(t), ..., f�m
(t))

(5)f⋁m

j=1
�j
(t) = S(f�1

(t), ..., f�m
(t))

(6)f�→� (t) = I(f�(t), f� (t)),

Table 1 Some common t-norms
extended to n-arity aggregation
operators

Name T-norm

Minimum T
G
(t) = min

n

i=1
t
i

Product T
P
(t) =

∏n

i=1
t
i

Łukasiewicz T
L
(t) = max(

∑n

i=1
t
i
− (n − 1), 0)

3298 Machine Learning (2023) 112:3293–3331

1 3

4 Minimal fuzzy Refinement functions

We will next define (fuzzy) refinement functions, which consider how to change the input
arguments of fuzzy operators such that the output of the operators is a given truth value.
refinement functions prefer changes to the input arguments that are as small as possible.
We will introduce several definitions to facilitate studying this concept. The first is an opti-
mality criterion.

Definition 4 (Fuzzy refinement function)
Let f� ∶ [0, 1]n → [0, 1] be a fuzzy evaluation operator. Then t̂ ∶ [0, 1]n is called a

refined (truth) vector for the refinement value t̂𝜑 ∈ [0, 1] if f𝜑(t̂) = t̂𝜑.
Furthermore, let min𝜑 = min

t̂∈[0,1]n f𝜑(t̂) and max𝜑 = max
t̂∈[0,1]n f𝜑(t̂) . Then

� ∶ [0, 1]n × [0, 1] → [0, 1]n is a (fuzzy) refinement function1

for f� if for all t ∈ [0, 1]n ,

1. for all t̂𝜑 ∈ [min𝜑, max𝜑] , 𝜌(t, t̂𝜑) is a refined vector for t̂𝜑;
2. for all t̂𝜑 < min𝜑 , 𝜌(t, t̂𝜑) = 𝜌(t, min𝜑);
3. for all t̂𝜑 > max𝜑 , 𝜌(t, t̂𝜑) = 𝜌(t, max𝜑).

A refinement function for f� changes the input truth vector in such a way that the new
output of f� will be t̂𝜑 . Whenever t̂𝜑 is high, we want the refined vector to satisfy the for-
mula � , while if t̂𝜑 is low, we want it to satisfy its negation. When t̂𝜑 = 1 , the constraint
created by the formula is a hard constraint, while if it is in (0, 1), this constraint is soft. We
require bounding the set of possible t̂𝜑 by min� and max� since if there are constants Ci , or
if � has no satisfying (discrete) solutions, there can be formulas such that there can be no
refined vectors t̂ for which f𝜑(t̂) equals 1.

Next, we introduce a notion of minimality of refinement functions. The intuition behind
this concept is that we prefer the new output, the refined vector t̂ , to stay as close as pos-
sible to the original truth vector t . Therefore, we assume we want to find a truth vector near
the neural network’s output that satisfies the background knowledge.

Definition 5 (Minimal refinement function) Let �∗ be a refinement function for operator
f� . �∗ is a minimal refinement function with respect to some norm ‖ ⋅ ‖ if for each t ∈ [0, 1]n
and t̂𝜑 ∈ [min𝜑, max𝜑] , there is no refined vector t̂′ for t̂𝜑 such that ‖𝜌∗(t, t̂𝜑) − t‖ > ‖t̂

�
− t‖.

For a particular fuzzy evaluation operator f� , finding the minimal refinement function
corresponds to solving the following optimization problem:

(7)

For all t ∈ [0, 1]n, t̂𝜑 ∈ [min
𝜑

, max
𝜑

]

min
t̂

‖t̂ − t‖

such that f𝜑(t̂) = t̂𝜑,

0 ≤ t̂i ≤ 1

1 The concept of refinement functions is closely related to the concept of Fuzzy boost function in the
KENN paper (Daniele & Serafini, 2019).

3299Machine Learning (2023) 112:3293–3331

1 3

For some f� we can solve this problem analytically using the Karush-Kuhn-Tucker (KKT)
conditions. However, while ‖ ⋅ ‖ is convex, f� (usually) is not. Therefore, we can not rely
on efficient convex solvers. Furthermore, for strict t-norms, finding exact solutions to this
problem is equivalent to solving PMaxSAT when t̂𝜑 = 1 (Diligenti et al., 2017; Giunchiglia
et al., 2022a), hence this problem is NP-complete. In Sects. 7 and 8, we will derive mini-
mal refinement functions for a large amount of individual fuzzy operators analytically.
These results are the theoretical contribution of this paper. We first discuss in Sect. 5 a
method called ILR for finding general solutions to the problem of finding minimal refine-
ment functions. ILR uses the analytical minimal refinement functions of individual fuzzy
operators in a forward-backward algorithm. Then, in Sect. 6, we discuss how to use this
algorithm for neurosymbolic AI.

5 Iterative local refinement

We introduce a fast, iterative, differentiable but approximate algorithm called Iterative
local refinement (ILR) that finds minimal refinement functions for general formulas. ILR is
a forward-backward algorithm acting on the computation graph of formulas. First, it trav-
erses the graph from its leaves to its root to compute the current truth values of subformu-
las. Then, it traverses the graph back from its root to the leaves to compute new truth values
for the subformulas. ILR makes use of analytical minimal refinement functions to perform
this backward pass. ILR is a differentiable algorithm if the fuzzy operators and their cor-
responding minimal refinement functions are differentiable as it computes compositions of
these functions.

Algorithm 1 contains the pseudocode of ILR, and Fig. 2 presents an example of a sin-
gle step (lines 3 to 7 of the algorithm) for the formula � = ¬A ∧ (B ∨ C) under the Gödel
semantics.

First, ILR computes the truth value of the formula in the forward pass, as shown on
the left side of Fig. 2. ILR saves the truth vectors of intermediate subformulas in t��� ,

Fig. 2 Visualization of one step of ILR for the Gödel logic and formula � = ¬A ∧ (B ∨ C) . In the forward
pass (left), ILR computes the truth value of � . In the backward pass (right), ILR traverses the computational
graph of the forward step in reverse to calculate the refined vector t̂ . ILR substitutes each fuzzy operator of
the forward pass with the corresponding refinement function. Each refinement function receives as input the
initial truth values used by the fuzzy operator in the forward step (purple lines) and the target value for the
corresponding subformula. The scheduler calculates the target value t̂�

¬A∧(B∨C)
 for the entire formula, which

ILR calls between the forward and backward steps (Color figure online)

3300 Machine Learning (2023) 112:3293–3331

1 3

which are presented in Fig. 2 as the numbers inside the purple shapes. Then, ILR calls
a scheduler to determine the right target value for the formula � . The target value is
t̂�
𝜑
= 𝛼 ⋅ (1 − 0.6) = 0.9 for our example. The scheduling mechanism smooths the updates

ILR makes. We implement this in line 6 of Algorithm 1. It works by choosing a differ-
ent refined value at each iteration: The difference between the current truth value and the
refined value is multiplied by a scheduling parameter � , which we choose to be either 0.1 or
1 (no scheduling). While usually not necessary, for some formulas, the scheduling mecha-
nism allowed for finding better solutions.

Following the scheduler, ILR computes the backward step in rows from 13 to 19 in
Algorithm 1. It changes the input truth vector t based on the formula � . Note that the
formula � in Fig. 2 is a conjunction of two subformulas (�1 = ¬A and �2 = B ∨ C). ILR
applies refinement functions recursively by treating the subformulas as literals: We give the
truth values of �1 and �2 we saved in the forward pass, as inputs to the refinement function.
In the example, we use the refinement function for the Gödel t-norm.

The refinement function updates the truth values of �1 and �2 . Then, we interpret these
new values as the target truth values for the formulas �1 and �2 . This allows us to apply
the refinement proccedure recursively. For instance, in Fig. 2, the refined truth values t̂¬A
and t̂B∨C can be interpreted as the target truth values for ¬A and B ∨ C , respectively. Then,
by applying the refinement functions for negation2 and t-conorm, we can obtain the truth
values of A, B and C.

One choice in ILR is how to combine the results from different subformulas. Indeed,
when a proposition appears in multiple subformulas, it can be assigned multiple differ-
ent refined values. As an example, suppose the formula of Fig. 2 was � = ¬A ∧ (B ∨ A) ,
with the proposition C replaced by A. While similar to the previous formula, A is repeated
twice. Consequently, the algorithm produces two different refined values for A. We found
the heuristic in line 18 generally works well, which takes the t̂j with the largest absolute
value. We also explored two other heuristics. In the first, we averaged the different refined
values, but this took significantly longer to converge. The second heuristic we explored was
the smallest absolute value, which frequently did not find solutions. Another choice is the
convergence criterion. A simple option is to stop running the algorithm whenever it has
stopped getting closer to the refined value for a couple of iterations. In our experiments, we
observed that ILR monotonically decreases the distance to the refined value, after which it
gets stuck on a single local optimum or oscillates between two local minima.

ILR is not guaranteed to find a refined vector t̂ such that f𝜑(t̂) = t̂𝜑 . This is easy to see
theoretically because, for many fuzzy logics like the product and Gödel logics, t̂𝜑 = 1
corresponds to the PMaxSAT problem, which is NP-complete (Diligenti et al., 2017;
Giunchiglia et al., 2022a), while ILR has linear time complexity. However, this is traded
off by 1) being highly efficient, usually requiring only a couple of iterations for conver-
gence, and 2) not having any hyperparameters to tune, except arguably for the combina-
tion function. Furthermore, ILR usually converges quickly in neurosymbolic settings since
background knowledge is very structured, and the solution space is relatively dense. These
settings are unlike the randomly generated SAT problems we study in Sect. 9.1.3. These
contain little structure the ILR algorithm can exploit.

2 Note that the minimal refinement function for the negation is trivial since there is only a feasible solution.
For this reason, we omitted it from our analysis.

3301Machine Learning (2023) 112:3293–3331

1 3

6 Neuro‑symbolic AI using ILR

The ILR algorithm can be added as a module after a neural network g to create a neuro-
symbolic AI model. The neural network predicts (possibly some of) the initial truth val-
ues t . Since both the forward and backward passes of ILR are differentiable computations,
we can treat ILR as a constrained output layer (Giunchiglia et al., 2022). For instance, in
Fig. 2, the input t could be generated by the neural network, and we provide supervision
directly on the predictions t̂ . With ILR, the predictions, i.e., the refined vector t̂ , take the
background knowledge into account while staying close to the original predictions made by
the neural network. Loss functions like cross-entropy can use t̂ as the prediction. We train
the neural network g by minimizing the loss function with gradient descent and backpropa-
gating through the ILR layer.

One strength of ILR is the flexibility of the refinement values t̂𝜑i
 for each formula �i .

These can be set to 1 to treat �i as a hard constraint that always needs to be satisfied. Alter-
natively, refinement values can be trained as part of a larger deep learning model. Since
ILR is a differentiable layer, we can compute gradients of the refinement values. This pro-
cedure allows ILR to learn what formulas are useful for prediction. For instance, in Fig. 2,
t̂¬A∧(B∨C) can either be given or act as a parameter of the model that is learned together with
the neural network parameters.

3302 Machine Learning (2023) 112:3293–3331

1 3

We give an example of the integration of ILR with a neural network in Fig. 3, where
we use ILR for the MNIST Addition task proposed by Manhaeve et al. (2018). In this task,
we have access to a training set composed of triplets (x, y, z), where x and y are images of
MNIST (LeCun, 2010) handwritten digits, and z is a label representing an integer in the
range {0, ..., 18} , corresponding to the sum of the digits represented by x and y. The task
consists of learning the addition function and a classifier for the MNIST digits, with super-
vision only on the sums. To achieve this, knowledge consisting of the rules of addition is
given. For instance, the rule Is(x, 3) ∧ Is(y, 2) → Is(x + y, 5) states that the sum of 3 and 2
is 5.

The architecture of the model presented in Fig. 3 consists of a neural network (a CNN)
that performs digit recognition on the inputs x and y. After this step, ILR predicts a truth
value for each possible sum. Notice that we define the CNN outputs Cx,Cy ∈ [0, 1]10 as
constants, i.e., ILR does not change the predictions of the digits. Moreover, the initial pre-
diction for the truth vector of possible sums tx+y ∈ [0, 1]19 is the zero vector. This allows
ILR to act as a proof-based method. Indeed, similarly to DeepProbLog (Manhaeve et al.,
2018), the architecture proposed in Fig. 3 uses the knowledge in combination with the pre-
dictions of the neural network to derive truth values for new statements (the sum of the two
digits). We apply the loss function to the final predictions t̂x+y . During learning, the error is
back-propagated through the entire model, reaching the CNN, which learns to classify the
MNIST images from indirect supervision.

We present the results obtained by ILR in Sect. 9.2, and compare its performance with
other neurosymbolic AI frameworks.

7 Analytical minimal refinement functions

Having introduced the ILR algorithm, we next study the problem of finding minimal refine-
ment functions for individual fuzzy operators. We need these in closed form to compute
the ILR algorithm, as ILR uses them during the backward pass. This section first discusses
several transformations of minimal refinement functions and gives the minimal refinement
functions of the basic t-norms Gödel, Łukasiewicz and product. In Sect. 8, we investigate
a large class of t-norms for which we have closed-form formulas for the minimal refine-
ment functions.

Fig. 3 Neurosymbolic architecture based on ILR for the MNIST Addition task. A CNN takes two images of
MNIST digits, returning their classification. The CNN predictions are concatenated with a vector of zeros,
representing the initial prediction for the Addition task. We perform an ILR step to update the sum of the
two numbers, which is the final output of the model

3303Machine Learning (2023) 112:3293–3331

1 3

7.1 General results

We first provide several basic results on minimal refinement functions for fuzzy opera-
tors. In particular, we will consider formulas such as � =

⋀n

i=1
Pi

⋀m

i=1
Ci , that is, conjunc-

tions of propositions and constants. As an abuse of notation, from here on, we will refer to
min� and max� when evaluated by the t-norm T as minT and maxT and will do so also for
other fuzzy operators. We find using Definition 1 that for some t-norm T, minT = 0 and
maxT = T(c) , where c is the values of the constants C1, ...,Cm as a truth vector, while for
some t-conorm S, minS = S(c) and maxS = 1 . Note that for m = 0 , maxT = 1 and minS = 0 .
Next, we find some useful transformations of minimal refinement functions to derive new
results:

Proposition 1 Consider the formulas � =
⋀n

i=1
Pi

⋀m

i=1
Ci and � = ¬(

⋁n

i=1
Pi

⋁m

i=1
Ci) .

Assume �∗
�
 is a minimal refinement function for f� evaluated using t-norm T. Consider

f� (t) evaluated using dual t-conorm S of T. Then 𝜌∗
𝜓
(t, t̂𝜓) = 1 − 𝜌∗

𝜙
(1 − t, t̂𝜓) is a minimal

refinement function for f�.

Proof First, note f� (t) = 1 − S(t, c) = 1 − (1 − T(1 − t, 1 − c)) = T(1 − t, 1 − c) . Consider
t
� = 1 − t . By the assumption of the proposition, 𝜌∗

𝜙
(t�, t̂𝜙) is a minimal refinement function

for T(t�, 1 − c) = T(1 − t, 1 − c) = f� (t) . Furthermore, note that

 ◻

An analogous argument can be made for �� =
⋁n

i=1
Pi

⋁m

i=1
Ci and

� = ¬(
⋀n

i=1
Pi

⋀m

i=1
Ci) to show that, given minimal refinement function �∗

�� of dual
t-conorm S, the minimal refinement function for f� (t) is 𝜌∗

𝜓
(t, t̂𝜓) = 1 − 𝜌∗

𝜙
(1 − t, t̂𝜓).

We will use this result to simplify the process of finding minimal refinement functions
for the t-norms and dual t-conorms. For example, assume we have a minimal refinement
function �∗

T
 for t̂T ∈ [T(t), maxT] . Let S be the corresponding dual t-conorm. Then, we can

change the constraint S(t̂, c) = t̂S in Eq. 7 to the equivalent constraint 1 − S(t̂, c) = 1 − t̂S .
We then use Proposition 1 to find the minimal refined vector for t̂S ∈ [minS, S(t)] as
1 − 𝜌∗

T
(1 − t, 1 − t̂S).

Proposition 2 Consider the formulas � = P1 ∨ P2 and � = ¬P1 ∨ P2 . Assume �∗
�
 is a mini-

mal refinement function for f� evaluated using the t-conorm S, and define t� = [1 − t1, t2] .

Then 𝜌∗
𝜓
(t, t̂𝜓) =

[

1 − 𝜌∗
𝜙
(t�, t̂𝜓)1, 𝜌

∗
𝜙
(t�, t̂𝜓)2

]⊤

 is a minimal refinement function for f�.

Proof First, note f� (t) = S(1 − t1, t2) . By the assumption of the proposition, 𝜌∗
𝜙
(t�, t̂𝜓) is a

minimal refinement function for S(t�) = f� (t) . Furthermore, note that

 ◻

f𝜓 (𝜌
∗
𝜓
(t, t̂𝜓)) = T(1 − 𝜌∗

𝜓
(t, t̂𝜓), 1 − c) = T(𝜌∗

𝜙
(t�, t̂𝜓), 1 − c) = t̂𝜓

f𝜓 (𝜌
∗
𝜓
(t, t̂𝜓)) = S(1 − 𝜌∗

𝜓
(t�, t̂𝜓)1, 𝜌

∗
𝜓
(t�, t̂𝜓)2)

= S(1 − (1 − 𝜌∗
𝜙
(t�, t̂𝜓)1), 𝜌

∗
𝜙
(t�, t̂𝜓)2) = S(𝜌∗

𝜙
(t�, t̂𝜓)) = t̂𝜓 .

3304 Machine Learning (2023) 112:3293–3331

1 3

Similar to the previous proposition, this proposition gives us a simple procedure for
finding the minimal refinement functions for the S-implication of some t-conorm.

7.2 Basic T‑norms

In this section, we introduce the minimal refinement functions for the t-norms and
t-conorms of the three main fuzzy logics (Gödel, Łukasiewicz, and Product). In particular,
we consider when these t-norms and t-conorms can act on both propositions and constants,
that is, � =

⋀n

i=1
ti
⋀m

i=1
Ci , which is evaluated with T(t, c) . We present the main results

with simple examples.

7.2.1 Gödel t‑norm

In this section, we derive minimal refinement functions for the Gödel t-norm and t-conorm
for the family of p-norms.

Proposition 3 The minimal refinement function of the Gödel t-norm for t̂TG ∈ [0,minm
i=1

Ci]
is

The minimal refinement function of the Gödel t-conorm and t̂SG ∈ [maxm
i=1

Ci, 1] is

Proof Follows from Propositions 1, 10 and 11, see Appendix A.1.1 and 1. ◻

Proposition 4 A minimal refinement function of the Gödel implication

RG(t1, t2) =

{

t2 if t1 > t2,

1 otherwise.
 for t̂RG

∈ [minRG
, maxRG

] is

where � is an arbitrarily small positive number.

The proof is in Appendix A.1.3.
The bar plot in Fig. 4a shows an example for the Gödel t-conorm with four literals. The

minimal refined vector is represented with the orange boxes, while the initial and refine-
ment values of the entire formula are represented as a blue and purple line respectively.
Here, our goal is to increase the value of the t-conorm, i.e., the maximum value. Increasing
other literals up to t̂𝜑 would require longer orange bars and bigger values for the L p norm.
Figure 4b represents when multiple literals have the largest truth value. Here, only one

(8)𝜌∗
TG
(t, t̂TG)i =

⎧

⎪

⎨

⎪

⎩

t̂TG if t̂TG ≥ TG(t) and ti < t̂TG ,

t̂TG if t̂TG < TG(t) and i = argminn
j=1

tj,

ti otherwise,

(9)𝜌∗
SG
(t, t̂SG)i =

⎧

⎪

⎨

⎪

⎩

t̂SG if t̂SG ≥ SG(t) and i = argmaxm
j=1

tj,

t̂SG if t̂SG < SG(t) and ti > t̂SG ,

0 otherwise.

(10)𝜌∗
RG
(t1, t2, t̂RG

) =

{

[max(t̂RG
+ 𝜖, t1), t̂RG

]⊤ if t̂RG
< 1

[t1, max(t1, t2)]
⊤ otherwise.

3305Machine Learning (2023) 112:3293–3331

1 3

should be increased3. Finally, Fig. 4c shows the refined vector for the Gödel t-norm. Since
the smallest truth value should be at least t̂𝜑 , we simply ensure all truth values are at least
t̂𝜑.

Our results are closely related to that of Giunchiglia and Lukasiewicz (2021), which
considers hard constraints, i.e., t̂𝜑 = 1 . In the hierarchical multi-label classification setting,
the authors introduce an output layer that ensures predictions satisfy a set of hierarchy con-
straints. This layer corresponds to applications of the minimal refinement function for the
Gödel implication with t̂RG

= 1 . Furthermore, (Giunchiglia & Lukasiewicz, 2021) intro-
duces CCN(h). This method considers an output layer that ensures predictions satisfy back-
ground knowledge expressed in a stratified normal logic program. The authors introduce an
iterative algorithm that computes the minimal solution for such programs. This algorithm
is related to that of ILR in Sect. 5. However, their formalization differs somewhat from
ours, and future work could study whether these results also hold for our formalization
of minimal refinement functions and if they can be extended to any value of t̂𝜑 . Finally,
(Giunchiglia & Lukasiewicz, 2021) introduces a loss function compensating for gradient
bias introduced by the constrained output layer.

7.2.2 Łukasiewicz t‑norm

In this section, we derive minimal refinement functions for the Łukasiewicz t-norm and
t-conorm, for the family of p-norms. We will start using the following notation here: t↑
refers to the truth values ti sorted in ascending order, while t↓ refers to the truth values
sorted in descending order.

Proposition 5 Let t̂TL ∈ [0,max(‖c‖1 − (m − 1), 0)] and define 𝜆K =
t̂TL

+m+K−1−‖c‖1−
∑K

i=1
t
↑

i

K
 .

Let K∗ be the largest integer 1 ≤ K ≤ n such that 𝜆K < 1 − t
↑

K
 . Then the minimal refinement

vector of the Łukasiewicz t-norm is

Fig. 4 Gödel minimal refinement functions. The grey bars represent the initial truth vectors t ; the light blue
and purple lines indicate the initial truth value of the formula and the revision value t̂𝜑 , and the orange bars
are the corresponding minimal refined vectors. a t-conorm; b t-conorm with two literals with same truth
value; c t-norm (Color figure online)

3 In our experiments, we choose randomly.

3306 Machine Learning (2023) 112:3293–3331

1 3

Let t̂SL ∈ [min(‖c‖1, 1), 1] and define 𝜆K =
‖t‖1+‖c‖1−t̂SL

K
 . Let K∗ be the largest integer

1 ≤ K ≤ n such that 𝜆K < t
↓

K
 . Then the minimal refinement function of the Łukasiewicz

t-conorm is

Proof This follows from Propositions 1, 12 and 13, see Appendix A.2.1 and A.2.2. ◻

Although slightly obfuscated, these refinement functions simply increase each of the
literals equally, while properly dealing with constraints on the truth values. We explain
this using Fig. 5, where the optimal solution corresponds to a vector that, from the original
truth values t , is perpendicular to the contour line of the operator at the value t̂𝜑 . Moreover,
the figure also provides some intuition for our proofs. The stationary points of the Lagran-
gian correspond to the points where the constraint function (blue circumference) tangen-
tially touches the contour line of the refined value (orange line).

The change applied by the refinement function is proportional to the refinement value t̂ .
Computing these refinement functions requires finding K∗ , which can be done efficiently in
log-linear time using a sort on the input truth values and a binary search.

The residuum of the Łukasiewicz t-norm is equal to its S-implication formed using
SL(1 − a, c) , and so its minimal refinement function can be found using Proposition 2.

The Łukasiewicz logic is unique in containing large convex and concave fragments
(Giannini et al., 2019). In particular, any CNF formula interpreted using the weak con-
junction (Godel t-norm) and Łukasiewicz t-conorm is concave, allowing for efficient

(11)𝜌∗
TL
(t, t̂TL)i =

⎧

⎪

⎨

⎪

⎩

ti + 𝜆K∗ if t̂TL > TL(t) and ti ≤ t
↑

K∗ ,

1 if t̂TL > TL(t) and ti > t
↑

K∗ ,

ti −
max(‖t‖1+‖c‖1+1−n−t̂TL

,0)

n
otherwise.

(12)𝜌∗
SL
(t, t̂SL)i =

⎧

⎪

⎨

⎪

⎩

ti +
max(t̂SL

−‖t‖1−‖c‖1,0)

n
if t̂SL > SL(t),

ti − 𝜆K∗ if t̂SL < SL(t) and ti ≥ t
↓

K∗ ,

0 otherwise.

Fig. 5 Łukasiewicz minimal refinement functions. The orange line corresponds to the contour line of the
S
L
 and T

L
 at the value t̂𝜑 . The dotted blue circumference corresponds to a set of points at an equal distance

from t . a t-conorm; b t-norm; c t-norm in the limit case

3307Machine Learning (2023) 112:3293–3331

1 3

maximization using a quadratic program of a slightly relaxed variant of the problem in
Eq. 7. (Giannini et al., 2019) studies this property in a setting similar to ours in the con-
text of collective classification. Future work could study using this convex fragment to find
minimal refinement functions for more complex formulas.

7.2.3 Product t‑norm

To present the three basic t-norms together, we give the closed-form refinement function
for the product t-norm with the L1 norm. Our proof is a special case of the general results
on a large class of t-norms we will discuss in Sect. 7. In particular, the product t-norm is
a strict, Schur-concave t-norm with an additive generator. It is an example of a t-norm for
which we can find a closed-form refinement function for the L1 norm using Propositions 15
and 1. First, we show the minimal refinement function for the product t-norm.

Next, we present the result for the product t-conorm:

This refined function increases all the literals smaller than a certain threshold up to the thresh-
old itself, where we assume t̂TP is greater than the initial truth value. In fact, like the other
t-norms in the class discussed in Sect. 8, it is similar to the Gödel t-norm in that it increases
all literals above some threshold to the same value. Similarly, the refinement function for the
t-conorm increases the highest literal. Figure 6 gives an intuition behind this behavior.

Finally, the residuum minimal refinement function can be found with
𝜌∗
IP
(t1, t2, t̂IP) = [t1,

t̂IP

t1
]⊤.

We also studied the minimal refinement function for the L2-norm, but concluded that the
result is a 2nth degree polynomial with no simple closed-form solutions. For details, see
Appendix D

8 A general class of t‑norms with analytical minimal refinement
functions

In this section, we will introduce and discuss a general class of t-norms that have analytic
solutions to the problem in Eq. 7 to find their corresponding minimal refinement functions.
We can find those for the t-norm, the t-conorm, and the residuum.

(13)𝜌∗
TP
(t, t̂TP)i =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

n−K∗

�

t̂TP
∏K∗

j=1
t
↓

j

∏m

j=1
Cj

if TP(t, c) > t̂TP and ti ≤ t
↓

K∗+1
,

�

t̂TP
∏

j≠i t
↓

i

∏m

i=1
Ci

if TP(t, c) < t̂TP and i = argminn
j=1

tj,

ti otherwise.

(14)𝜌∗
SP
(t, t̂SP)i =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 −

�

1−t̂SP
∏

j≠i 1−t
↓

i

∏m

i=1
1−Ci

if SP(t, c) < t̂SP and i = argminn
j=1

tj,

1 − n−K∗

�

1−t̂SP
∏K∗

j=1
1−t

↓

j

∏m

j=1
1−Cj

if SP(t, c) > t̂SP and ti ≤ t
↓

K∗+1
,

ti otherwise.

3308 Machine Learning (2023) 112:3293–3331

1 3

8.1 Background on t‑norms

To be able to adequately discuss this class of t-norms, we first have to provide some more
background on the theory of t-norms.

Definition 6 A t-norm T is Archimedean if for all x, y ∈ (0, 1) , there is an n such that
T(x,… , x
���

n×

) < y.

A continuous t-norm T is strict if, in addition, for all x ∈ (0, 1) , 0 < T(x, x) < x.

8.1.1 Additive generators

The study of t-norms frequently involves the study of their additive generator (Klement
et al., 2000, 2004), which are univariate functions that construct t-norms, t-conorms, and
residuums.

Definition 7 A function g ∶ [0, 1] → [0,∞] such that g(1) = 0 is an additive generator if it
is strictly decreasing, right-continuous at 0, and if for all t1, t2 ∈ [0, 1] , g(t1) + g(t2) is either
in the range of g or in [g(0+),∞].

Theorem 1 If g is an additive generator, then the function T ∶ [0, 1]n → [0, 1] defined as

is a t-norm.

Using Eq. 15, the function g acts like an invertible function. It transforms truth values
into a new space that can be seen as measuring ‘untruthfulness’.

∑n

i=1
g(ti) can be seen as

(15)T(t) = g−1(min(g(0+),

n
∑

i=1

g(ti)))

Fig. 6 Product minimal refinement functions. The grey areas represent the truth value of the operator asso-
ciated with the initial vector t . Red and blue areas represent the refined values when increasing a single
literal. a t-conorm; b t-norm; c t-norm when multiple literals have the same truth value. The green area rep-
resents the improvement obtained by increasing both literals equally (Color figure online)

3309Machine Learning (2023) 112:3293–3331

1 3

a measure of the ‘untruth’ of the conjunction. T-norms constructed in this way are neces-
sarily Archimedean, and each continuous Archimedean t-norm has an additive generator.
TP , TL and TD have an additive generator, but TG and TN do not. Furthermore, if g(0+) = ∞ ,
T is strict and we find T(t) = g−1(

∑n

i=1
g(ti)) . The residuum constructed from continu-

ous t-norms with an additive generator can be computed using g−1(max(g(c) − g(a), 0))
(Jayaram & Baczynski, 2008).

8.1.2 Schur‑concave t‑norms

We will frequently consider the class of Schur-concave t-norms, with their dual t-conorms
and residuums formed from these Schur-concave t-norms. We denote with t↓ the truth vec-
tor t sorted in descending order, and with t↑ as t sorted in ascending order.

Definition 8 A vector t ∈ ℝ
n is said to majorize another vector u ∈ ℝ

n , denoted t ≻ u , if
∑n

i=1
ti =

∑n

i=1
ui and if for each i ∈ {1, ..., n} it holds that

∑i

j=1
t
↓

j
≥
∑i

j=1
u
↓

j
.

Definition 9 A function [0, 1]n → [0, 1] is called Schur-convex if for all t, u ∈ [0, 1]n , t ≻ u
implies that f (t) ≥ f (u) . Similarly, a Schur-concave function has that t ≻ u implies that
f (t) ≤ f (u).

The dual t-conorm of a Schur-concave t-norm is Schur-convex. The three basic and con-
tinuous t-norms TG , TP and TL are Schur-concave. There are also non-continuous Schur-
concave t-norms, such as the Nilpotent minimum (Takači, 2005; van Krieken et al., 2022).
The drastic t-norm is an example of a t-norm that is not Schur-concave (Takači, 2005).
This class includes all quasiconcave t-norms since all symmetric quasiconcave functions
are also Schur-concave (Schur-concave 2011, see p98, Prop.C.3). Therefore, this class
constitutes a significant class of relevant t-norms. For a more precise characterization of
Schur-concave t-norms, see (Takači, 2005; Alsina, 1984).

8.2 Minimal refinement functions for Schur‑concave t‑norms

We now have the background to discuss several useful and interesting results on Schur-
concave t-norms. First, we present two results that characterize Schur-concave minimal
refinement functions. We use the notion of “strictly cone-increasing” functions here that is
discussed in Appendix B.1.

Theorem 2 Let T be a Schur-concave t-norm that is strictly cone-increasing at t̂T and let
‖ ⋅ ‖ be a strict norm. Then there is a minimal refined vector t∗ for t and t̂T such that when-
ever ti > tj , then t∗i − ti ≤ t∗j − tj.

For proof, see Appendix C.1. We note that we can make this argument in the other
direction to show that any Schur-convex t-conorm will have a minimal refined vector such
that ti > tj implies t∗i ≥ t∗j . Furthermore, if we know that a t-norm has a unique minimal
refinement function, we can use this theorem to infer a useful ordering on how it changes
the truth values.

Next, we will consider the L1 norm
∑n

i=1
�t̂i − ti� , for which we can find general solutions

for the t-norm, t-conorm and R-implication when the t-norm is Schur-concave.

3310 Machine Learning (2023) 112:3293–3331

1 3

Proposition 6 Let t ∈ [0, 1]n and let T be a Schur-concave t-norm that is strictly cone-
increasing at t̂T ∈ [T(t, c), maxT] . Then there is a value � ∈ [0, 1] such that the vector t∗,

is a minimal refined vector for T and the L1 norm at t and t̂T.

For proof, see Appendix C.2. We found this result rather surprising: It is optimal for a
large class of t-norms and the L1 norm to increase the lower truth values to some value � .
In this sense, these solutions are very similar to that of the Gödel refinement functions. The
value of � depends on the choice of t-norm and T(t∗, c) is a non-decreasing function of � .
We show in Sect. 8.3 how to compute these.

We have a similar result, proof in the end of Appendix C.2, for the refinement functions
of Schur-convex t-conorms. This proposition shows that, under the L1 norm, it is optimal to
increase only the largest literal, just like with the Gödel t-norm.

Proposition 7 Let t ∈ [0, 1]n and let S be a Schur-convex t-conorm that is strictly cone-
increasing at t̂S ∈ [S(t, c), 1] . Then there is a value � ∈ [0, 1] such that the vector t∗,

is a minimal refined vector for S and the L1 norm at t and t̂S.

8.3 Closed forms using additive generators

Where the previous section gives general results on the form or “shape” of minimal refine-
ment functions for t-norms and t-conorms under the L1 norm, we still need to figure out
what the value of � is for a particular t̂𝜑 . Luckily, additive generators will do the job here.

Proposition 8 Let T be a Schur-concave t-norm with additive generator g and let
0 < t̂T ∈ [T(t, c), maxT] . Let K ∈ {0, ..., n − 1} denote the number of truth values such that
t∗i = ti in Eq. 28.

Then using

in Eq. 28 gives T(t∗, c) = t̂T if t∗ ∈ [0, 1]n.

See Appendix C.2 for a proof. g(t̂T) can be seen as the ‘untruth’-value in g-space that t∗
should attain. Since we have n − K truth values that we can move freely, we need to make
sure that their ‘untruth’-value in g-space is g(t̂T)∕(n − K) . However, we also need to handle
the truth values we cannot change freely, which is why those are subtracted from g(t̂T).

We should note that this does not yet give a procedure for computing the correct
K ∈ {0, ..., n − 1} . The intuition here is that we should find an K such that ti ≥ �K for the

(16)t∗i =

{

𝜆, if ti < 𝜆,

ti, otherwise,

(17)t∗i =

{

� if i = argmaxi∈Dti,

ti, otherwise,

(18)𝜆K = g−1

(

1

n − K

(

g(t̂T) −

K
∑

i=1

g(t
↓

i
) −

m
∑

i=1

g(Ci)

))

3311Machine Learning (2023) 112:3293–3331

1 3

K largest values, and ti < 𝜆K for the remaining n − K . Like with computing the K∗ for the
refinement function for the Łukasiewicz t-norm (Sect. 7.2.2), we can do this in logarithmic
time after sorting t , but we choose to compute �K for each K ∈ {0, n − 1} in parallel.

We can similarly find a closed form for the t-conorms:

Proposition 9 Let t1, t2 ∈ [0, 1] and let T be a strict Schur-concave t-norm with addi-
tive generator g. Consider its residuum R(t1, t2) = sup{z|T(t1, z) ≤ t2} that is strictly
cone-increasing at 0 < t̂R ∈ [R(t1, t2), maxR] . Then there is a value � ∈ [0, 1] such that
t
∗ = [t1, g

−1(g(t̂R) + g(t1))]
⊤ is a minimal refined vector for R and the L1 norm at t and t.

Here, we find that for this class of residuums, increasing the consequent (the second
argument of the implication) is minimal for the L1 norm. This update reflects modus pon-
ens reasoning: When the antecedent is true, increase the consequent. As we have argued in
van Krieken et al. (2022), this could cause issues in many machine learning setups: Con-
sider the modus tollens correction instead decreases the antecedent. For common-sense
knowledge, this is more likely to reflect the true state of the world.

9 Experiments

We performed experiments on two tasks. The first one does not involve learning. Instead,
we aim to solve SAT problems. This experiment allows assessing whether ILR can enforce
complex and unstructured knowledge. The second experiment is on the MNIST Addition
task (Manhaeve et al., 2018) to test ILR in a neurosymbolic setting and assess its ability to
learn from data.

9.1 Experiments on 3SAT problems

With this experiment, we aim to determine how quickly ILR finds a refined vector and how
minimal this vector is. We test this on formulas of varying complexity to analyze for what
problems each algorithm performs well.4

9.1.1 Setup

We perform experiments on SATLIB (Hoos, 2000), a library of randomly generated
3SAT problems. 3SAT problems are formulas in the form

⋀c

i=1

⋁3

j=1
lij , where lij is a lit-

eral that is either Pk or ¬Pk and where Pk ∈ {P1, ...,Pn} is an input proposition. In par-
ticular, we consider uf20-91 of satisfiable 3SAT problems with n = 20 propositions and
c = 91 disjunctive clauses. For this, we select the refined value t̂𝜑 to be 1. We also experi-
ment with t̂𝜑 ∈ {0.3, 0.5} in Appendix E . We uniformly generate initial truth values for the

(19)𝜆 = 1 − g−1

(

g(1 − t̂S) −
∑

i≠j

g(1 − ti) −

m
∑

i=1

g(1 − Ci)

)

4 Code available at https:// github. com/ Danie leAle ssand ro/ Itera tiveL ocalR efine ment.

https://github.com/DanieleAlessandro/IterativeLocalRefinement

3312 Machine Learning (2023) 112:3293–3331

1 3

propositions t ∈ [0, 1]d.5 To allow experimenting with formulas of varying complexity, we
introduce a simplified version of the task which uses only the first 20 clauses.

We use three metrics to compare ILR with a gradient descent baseline described in
Sect. 9.1.2. The first is speed: How many iterations does it take for each algorithm to con-
verge? Since both algorithms have similar computational complexities, we will use the
number of iterations for this. The second is satisfaction: Is the algorithm able to find a
solution with truth value t̂𝜑 ? Finally, we consider minimality: How close to the original
prediction is the refined vector t̂ ? Note that the refinement function for the product logic is
only optimal for the L1 norm, while for Gödel and Łukasiewicz, the refinement function is
optimal for all L p norms, including L1 . Moreover, the results of L1 and L2 are very similar.
Therefore, we use the L1 as a metric for minimality for each t-norm.

9.1.2 Gradient descent baseline

We compare ILR to gradient descent with the following loss function

Here t̂ = 𝜎(ẑ) is a real-valued vector ẑ ∈ ℝ
n transformed to t̂ ∈ [0, 1]n using the sigmoid

function � to ensure the values of t̂ remain in [0, 1]n during gradient descent. The first term
minimizes the distance between the current truth value of the formula � and the refinement
value. In contrast, the second term is a regularization term that minimizes the distance
between the refined vector and the original truth value t in the Lp norm. � is a hyperparam-
eter that trades off the importance of this regularization term.

This method for finding refined vectors is very similar to the collective classification
method introduced in SBR (Diligenti et al., 2017; Roychowdhury et al., 2021). The main
difference is in the Lp norms chosen, as we use squared error for the first term instead of
the L1 norm. Gradient descent is a steepest descent method that takes steps minimizing the
L2 norm. Therefore, it can also be seen as a method for finding minimal refinement func-
tions given the L2 norm. The coordinate descent algorithm is the corresponding steepest
descent method for the L1 norm. Future work could compare how coordinate descent per-
forms for finding minimal refinement functions for the L1 norm. We suspect it will be much
slower than gradient descent-based methods as it can only change a single truth value each
iteration.

We found that ADAM (Kingma & Ba, 2015) significantly outperformed standard gradi-
ent descent in all metrics, and we chose to use it throughout our experiments. Furthermore,
inspired by the analysis of the derivatives of aggregation operators in van Krieken et al.
(2022), we slightly change the formulation of the loss function for the Łukasiewicz t-norm
and product t-norm. The Łukasiewicz t-norm will have precisely zero gradients for most of
its domain. Therefore, we remove the max operator when evaluating the

⋀

 in the SAT for-
mula, so it has nonzero gradients. For the product t-norm, the gradient will also approach
0 because of the large set of numbers between [0, 1] that it multiplies. As suggested by van
Krieken et al. (2022), we instead optimize the logarithm of the product t-norm:

(20)L(ẑ, t, t̂𝜑) = ‖f𝜑(𝜎(ẑ)) − t̂𝜑‖2 + 𝛽‖𝜎(ẑ) − t‖p.

5 Each run used the same initial value for each algorithm to have a fair comparison.

3313Machine Learning (2023) 112:3293–3331

1 3

9.1.3 Results

In Fig. 7, we show the results obtained by ILR and ADAM on the three t-norms (one for
each grid column). We observe that ILR with schedule parameter � = 0.1 has a smoother
plot than ILR with � = 1.0 , which converges faster: In our experiments, the number of
steps until convergence was always between 2 and 5. For both values of the scheduling
parameters, ILR outperforms ADAM in terms of convergence speed.

When comparing satisfaction and minimality, the behaviour differs based on the t-norm.
In the case of Łukasiewicz, all methods find feasible solutions to the optimization problem.
Furthermore, in terms of minimality (i.e., L1 norm), ILR finds better solutions than ADAM.

For the Gödel logic, no method can reach a feasible solution. Here, ILR with schedule
parameter � = 1 performs very poorly, obtaining worse solutions than the original truth
values. On the other hand, with � = 0.1 , it performs as well as ADAM for both metrics but
with faster convergence.

Finally, for the product logic, ILR fails to increase the satisfaction of the formula to the
refined value. However, ADAM can find much better solutions, getting the average truth
value to around 0.5. Still, it is far from reaching a feasible solution. Nonetheless, we rec-
ommend using ADAM for complicated formulas in the product logic.

However, we argue that in the context of Neural-Symbolic Integration, the provided
knowledge is usually relatively easy to satisfy. With 91 clauses, there are few satisfying
solutions in this space of 221 possible binary solutions. However, background knowledge
usually does not constrain the space of possible solutions as heavily as this. For this reason,

LP(ẑ, t, t̂𝜑) = ‖

c
�

i=1

log f⋁3

j=1
(𝜎(t)) − log t̂𝜑‖2 + 𝛽‖𝜎(ẑ) − t‖1.

Fig. 7 Comparison of ILR with ADAM on uf20-91 in SATLIB. The target Refined value is 1.0. The x-axis
corresponds to the number of iterations, while the y-axis is the value of t̂𝜑 in the first row of the grid and the
L
1
 norm in the second row. The number in parentheses represents the schedule parameter for ILR and the

regularization parameter � for ADAM. Note that ADAM’s plots often almost perfectly overlap

3314 Machine Learning (2023) 112:3293–3331

1 3

we propose a simplified formula, where we only use 20 out of 91 clauses. Figure 8 shows
the results for this setting. We see that ILR with no scheduling (� = 1) finds feasible solu-
tions for all t-norms. ILR finds solutions for the Gödel t-norm where ADAM cannot find
any, while for Łukasiewicz and product, it finds solutions in much fewer iterations and with
a lower L1 norm. Hence, we argue that for knowledge bases that are less constraining, ILR
without scheduling is the best choice.

9.2 Experiments on MNIST addition

The experiments on the SATLIB benchmark show how well ILR can enforce knowledge
in highly constrained settings. However, as already mentioned, in neurosymbolic AI, the
background knowledge is typically much simpler. SAT benchmarks often only have a few
solutions, heavily limiting what predictions the neural network can make. Moreover, pre-
vious experiments only tested ILR where initial truth vectors are random, and we did not
have any neural networks or learning.

To evaluate the performance of ILR in neurosymbolic settings, we implemented the
architecture of Fig. 3. Here, the task is to learn a classifier for handwritten digits while only
receiving supervision on the sums of pairs of digits.

9.2.1 Setup

We follow the architecture of Fig. 3. We use the neural network proposed by Manhaeve
et al. (2018), which is a network composed of two convolutional layers, followed by a Max-
Pool layer, followed by a fully connected layer with ReLU activation function and a fully
connected layer with softmax activation. We use the Gödel t-norm and corresponding min-
imal refinement functions. Note that Gödel implication can only increase the consequent
and can never decrease the antecedents. For this reason, ILR converges in a single step.

Fig. 8 Comparison of ILR with ADAM on the uf20-91 with 20 clauses. Target value 1.0

3315Machine Learning (2023) 112:3293–3331

1 3

We set both � and target value t̂ to one, meaning that we ask ILR to satisfy the entire
formula in one step. We use the ADAM optimizer and a learning rate of 0.01, with the
cross-entropy loss function. However, since the outputs of the ILR step do not sum to one,
we cannot directly apply it to the refined vector ILR computes. To overcome this issue,
we add a logarithm followed by a softmax as the last layers of the model. If the sum of the
refined vector is one, the composition of the logarithm and softmax functions corresponds
to the identity function. Moreover, these two layers are monotonic increasing functions and
preserve the order of the refined vector.

We use the dataset defined in Manhaeve et al. (2018) with 30000 samples, and also run
the experiment using only 10% of the dataset (3000 samples). We run ILR for 5 epochs on
the complete dataset, and 30 epochs on the small one. We repeat this experiment 10 times.
We are interested in the accuracy obtained in the test set for the addition task. We ran the
experiments on a MacBook Pro (2016) with a 3,3 GHz Dual-Core Intel Core i7.

9.2.2 Results

ILR can efficiently learn to predict the sum, reaching results similar to state of the art, requiring,
on average, 30 s per epoch. However, sometimes ILR got stuck in a local minimum during train-
ing, where the accuracy reached was close to 50%. It is worth noticing that LTN suffers from

Table 2 Results on the MNIST addition task.

We report the accuracy of predicting the sum (in %) on the test set with 30000 and 3000 samples. Deep-
ProbLog results are taken from Badreddine et al. (2022). LTN results have been obtained by replicating the
experiments of Badreddine et al. (2022)

30000 3000

DeepProblog (Manhaeve et al., 2018) 97.20 ± 0.45 92.18 ± 1.57
LTN (Badreddine et al., 2022) 96.78 ± 0.5 92.15 ± 0.75
ILR 96.67 ± 0.45 93.38 ± 1.70

Fig. 9 Confusion matrix on the
MNIST classification for a local
minimum

3316 Machine Learning (2023) 112:3293–3331

1 3

the same problem (Badreddine et al., 2022), with results strongly dependent on the initialization
of the parameters. To better understand this local minimum, we analyzed the confusion matrix.
Figure 9 shows one of the confusion matrices for a model stuck in the local minimum: the CNN
recognizes each digit either as the correct digit minus one or plus one. Then, our model obtains
the correct prediction in close to 50% of the cases. For example, suppose the digits are a 3 and
a 5. The 3 is classified as a 2 or a 4, while the 5 is classified as a 4 or a 6. If the model predicts 2
and 6 or 4 and 4, it returns the correct sum (8). Otherwise, it does not. We believe that in these
local minima, there is no way for the model to change the digit predictions without increasing
the loss, and the model remains stuck in the local minimum.

Table 2 shows the results in terms of accuracy of ILR, LTN (Badreddine et al., 2022)
and DeepProblog (Manhaeve et al., 2018). To calculate the accuracy, we follow (Badred-
dine et al., 2022) and select only the models that do not stop in a local minimum. Notice
that this problem is rare for ILR (once every 30 runs) and happens more frequently with
LTN (once every 5 runs).

10 Conclusion and future work

We analytically studied a large class of minimal fuzzy refinement functions. We used
refinement functions to construct ILR, an efficient algorithm for general formulas. Another
benefit of these analytical results is to get a good intuition into what kind of corrections are
done by each t-norm. In our experimental evaluation of this algorithm, we found that our
algorithm converges much faster and often finds better solutions than the baseline ADAM,
especially for less constraining problems. However, we conclude that for complicated for-
mulas and product logic, ADAM finds better results. Finally, we assess ILR on the MNIST
Addition task and show it can be combined with a neural network, providing results similar
to two of the most prominent methods for neurosymbolic AI.

There is a lot of opportunity for future work on refinement functions. We will study how
the refinement functions induced by different t-norms perform in practical neurosymbolic
integration settings. On the theoretical side, possible future work could be considering ana-
lytical refinement functions for certain classes of complex formulas. Furthermore, there
are many classes of t-norms and norms for which finding analytical refinement functions
is an open problem. Another promising avenue for research is designing specialized loss
functions that handle biases in the gradients arising from combining constrained output
layers with cross-entropy loss functions (Giunchiglia & Lukasiewicz, 2021). We also want
to highlight the possibility of extending the work on fuzzy refinement functions to proba-
bilistic refinement functions, using a notion of minimality such as the KL-divergence.

A Basic T‑norms (Proofs)

A.1 Gödel t‑norm minimal refined function proofs

A.1.1 Gödel t‑norm

Proposition 10 The minimal refinement function of the Gödel t-norm for
t̂TG ∈ [TG(t, c), minm

i=1
Ci] is

3317Machine Learning (2023) 112:3293–3331

1 3

Proof Assume otherwise. Then there is a refined vector t̂ for TG , t ∈ [0, 1]n and
t̂TG ∈ [TG(t), minm

i=1
] such that t̂ ≠ t

∗ while ‖t̂ − t‖p < ‖t
∗ − t‖p , where t∗ = 𝜌∗

TG
(t, t̂TG) . Since

TG(t̂) = t̂TG , for all i ∈ {1, ..., n} , t̂i ≥ t̂TG and so necessarily for all i such that ti < t̂TG ,
t̂i ≥ t̂TG . Since there is some i such that t̂i ≠ t∗i , either ti < t̂TG and then necessarily t̂i > t∗i ,
or t̂i ≥ t̂TG but t̂i ≠ t∗i = ti . In either case, since ‖ ⋅ ‖p is strictly convex in each argument
with minimum at t , ‖t̂ − t‖p > ‖t

∗ − t‖p , hence t̂ could not have smaller norm. ◻

A.1.2 Gödel t‑conorm

A derivation for increasing the Gödel t-conorm was first presented in Daniele and Serafini
(2019) and is adapted to our notation here:

Proposition 11 The minimal refinement function of the Gödel t-conorm for ̂tSG ∈ [SG(t, c), 1]
is

A.1.3 Gödel Implication

We next present a proof for Proposition 4.

Proof First, assume t̂RG
< 1 . To ensure RG(t1, t2) = t̂RG

 , we require t2 = t̂RG
 as is clear from

the definition. However, we also require t1 > t̂RG
 . If t1 is already larger, we can leave it to

ensure minimality. Otherwise, we require it to be at least infinitesimally bigger, that is
t̂RG

+ 𝜖.
Next, assume t̂RG

= 1 . If t1 ≤ t2 , then the implication is already 1 and we do not need to
revise anything. Otherwise, setting it equal to any value between t2 and t1 is minimal. ◻

A.2 Łukasiewicz t‑norm minimal refined function proofs

A.2.1 Łukasiewicz t‑norm

Proposition 12 Let t̂TL ∈ [TL(t, c), max(‖c‖1 − (m − 1), 0)] and define

𝜆K =
t̂TL

+m+K−1−‖c‖1−
∑K

i=1
t
↑

i

K
 . Let K∗ be the largest integer 1 ≤ K ≤ |D| such that 𝜆K < 1 − t

↑

K
 .

Then the minimal refinement vector of the Łukasiewicz t-norm is

Proof We will prove this using the KKT conditions, which are both necessary and suf-
ficient for minimality for the Łukasiewicz t-norm since it is affine when the max constraint

(21)𝜌∗
TG
(t, t̂TG)i =

{

t̂TG if ti < t̂TG ,

ti otherwise

(22)𝜌∗
SG
(t, t̂SG)i =

{

t̂SG if i = argmaxn
j=1

tj

ti otherwise.

(23)𝜌∗
TL
(t, t̂TL)i =

{

ti + 𝜆K∗ if ti ≤ t
↑

K
,

1 otherwise

3318 Machine Learning (2023) 112:3293–3331

1 3

is not active. We drop the p-root in the norm since it is a strictly monotonically increasing
function. The Lagrangian and corresponding derivative is

We note that we drop the absolute signs since TL is strictly monotonically increasing func-
tion and t̂TL ≥ TL(t, c) . Assuming t̂TL > 0 , TL(t̂, c) = t̂TL can only be true if the first argument
of max is chosen. Then for all i, j ∈ {1, ..., n} , p(t̂i − ti)

p−1 + 𝛾i = p(t̂j − tj)
p−1 + 𝛾j . Define I

as the set of K∗ smallest ti.

• Primal feasibility: For all i ∈ I , 𝜌∗
TL
(t, t̂TL)i = 𝜆K∗ ≤ 1 by definition. For all

i ∈ {1, ..., n} ⧵ I , 𝜌∗
TL
(t, t̂TL)i = 1 − ti . Furthermore,

• Complementary Slackness: Clearly, for all i ∈ I , we require �i = 0 . For all
i ∈ {1, ..., n} ⧵ I , 𝜌∗

TL
(t, t̂TL t)i − 1 = 1 − 1 = 0.

• Dual feasibility: For all i ∈ I , �i = 0 . For i ∈ {1, ..., n} ⧵ I , consider some
j ∈ I and note that p(t̂i − ti)

p−1 + 𝛾i = p(t̂j − tj)
p−1 + 𝛾j . Filling in t̂ , we find

�i = p�
p−1

K∗ − p(1 − ti)
p−1 . This is nonnegative if �K∗ ≥ 1 − ti . First, we show

�K∗ ≥ �K∗+1 . Write out their definitions, multiply by K∗(K∗ + 1) and remove common
terms. Then,

�K∗+1 ≥ 1 − t
↑

K∗+1
 is true by the construction in the proposition. Therefore,

 proving dual feasibility.
 ◻

� =

n
�

i=1

�t̂i − ti�
p + 𝜆(max(‖t̂‖1 + ‖c‖1 − (m + n − 1), 0) − t̂TL) +

n
�

i=1

𝛾i(t̂i − 1)

𝜕�

𝜕t̂i
= p(t̂i − ti)

p−1 + 𝜆
𝜕

𝜕t̂i
max(‖t̂‖1 + ‖c‖1 − (m + n − 1), 0) + 𝛾i = 0.

TL(𝜌
∗
TL
(t, t̂TL), c) = max(

K∗

�

i=1

(t
↑

i
+ 𝜆K∗) +

n
�

i=K∗+1

1 + ‖c‖1 − n − m + 1, 0)

= max(

K∗

�

i=1

t
↑

i
+ K∗𝜆K∗ + n − K∗ + ‖c‖1 − n − m + 1, 0)

= max(

K∗

�

i=1

t
↑

i
+ t̂TL + m + K∗ − 1 − ‖c‖1 −

K∗

�

i=1

t
↑

i

− K∗ + ‖c‖1 − m + 1, 0) = t̂TL

t̂TL + m − 1 − ‖c‖1 −

K∗

�

i=1

t
↑

i
≥ −K∗t

↑

K∗+1

t̂TL + m + K∗ + 1 − ‖c‖1 −

K∗+1
�

i=1

t
↑

i
≥ (K∗ + 1)(1 − t

↑

K∗+1
)

𝜆K∗+1 ≥ 1 − t
↑

K∗+1
.

�K∗ ≥ �K∗+1 ≥ 1 − t
↑

K∗+1
≥ 1 − ti,

3319Machine Learning (2023) 112:3293–3331

1 3

A.2.2 Łukasiewicz t‑conorm

Proposition 13 The minimal refinement function of the Łukasiewicz t-conorm for
t̂SL ∈ [SL(t, c), t̂SL] is

Proof We do not add multipliers for the constraints on t̂i , and show critical points adhere to
these constraints. The Lagrangian is

Note that maxSL = 1 . Taking the derivative to t̂i , we find

Assume t̂SL ≠ SL(t) , this gives three cases for all i ∈ {1, ..., n} :

1. If ‖t‖1 + ‖c‖ ≥ 1 and t̂SL = 1 , then since t̂i ≥ ti ,
𝜕

𝜕t̂i
min(‖t̂‖1 + ‖c‖1, 1) =

𝜕

𝜕t̂i
1 = 0 , and

so t̂i = ti.
2. If ‖t‖1 + ‖c‖ ≥ 1 , then minSL = maxSL = 1 , and again t̂i = ti.
3. Otherwise, it must be that ‖t̂‖1 + ‖c‖1 ≤ 1 and so 𝜕

𝜕t̂i
min(‖t̂‖1 + ‖c‖1, 1) =

𝜕

𝜕t̂i
‖t̂‖1 = 1 ,

and therefore p ⋅ (t̂i − ti)
p−1 = −𝜆 . Since the equality holds for all i ∈ {1, ..., n} , we find

p ⋅ (t̂i − ti)
p−1 = p ⋅ (t̂j − tj)

p−1 for all i, j ∈ {1, ..., n} . As we are only interested in real
n o n n e g a t i ve s o l u t i o n s , w e f i n d t h a t t̂i − ti = t̂j − tj = 𝛿 . S i n c e
‖t̂‖1 + ‖c‖1 = ‖t‖1 + ‖c‖1 + n𝛿 = t̂SL , we find

 Note that t̂i ≥ ti , since by assumption t̂SL ≥ SL(t, c) , and t̂i ≤ 1 since by t̂SL ≤ maxSL ≤ 1 ,

𝛿 =
t̂SL

−‖t‖1−‖c‖1

n
≤

1−‖t‖1−‖c‖1

n
≤

1−ti

n
≤ 1 − ti , that is, the constraints of Eq. 7 are

satisfied.
 ◻

B Dual problem

This section introduces a dual problem to Eq. 7. This is used extensively in several proofs.

(24)𝜌∗
SL
(t, t̂SL)i = ti +

max(t̂SL − ‖t‖1 − ‖c‖1, 0)

n

(25)� =

n
�

i=1

(t̂i − ti)
p + 𝜆(min(‖t̂‖1 + ‖c‖1, 1) − t̂SL)

𝜕𝓁

𝜕t̂i
= p ⋅ (t̂i − ti)

p−1 + 𝜆
𝜕

𝜕t̂i
min(min(‖t̂‖1 + ‖c‖1, 1) = 0

𝛿 =
t̂SL − ‖t‖1 − ‖c‖1

n
, t̂i = ti + 𝛿.

3320 Machine Learning (2023) 112:3293–3331

1 3

B.1 Strict cone monotonicity

Definition 10 A set K ⊂ [0, 1]n is a (convex) cone if for every s > 0 and t ∈ K such that
st ∈ [0, 1]n , also st ∈ K.

A fuzzy evaluation operator f� is strictly cone-increasing at t ∈ [0, 1]n if there is a non-
empty cone K(t) such that t� − t ∈ K implies f𝜑(t) < f𝜑(t

�).

Strict cone-monotonicity is a weak notion of monotonicity in the sense that all t-norms that are
strictly increasing in each argument are strictly cone-increasing, but the reverse need not be true.

Proposition 14 If f� is non-decreasing and strictly cone-increasing at t ∈ [0, 1]n , there exist
a nonempty cone K�(t) ⊆ K(t) such that t� − t ∈ K�(t) implies t′

i
≥ ti for all i ∈ {0, ..., n}.

Proof Assume otherwise. Consider some t′ such that s(t� − t) ∈ K(t) for s > 0 . By assump-
tion, there is some i ∈ {0, ..., n} such that t′

i
< ti . Consider t̂ equal to t′ except that t̂i = ti

for such i. Since f� is non-decreasing in each argument, f𝜑(t̂) ≥ f𝜑(t
�) > f𝜑(t) , then clearly

s(t̂ − t) for s > 0 forms the cone K�(t) . ◻

B.2 Dual problem

Next, we will investigate a dual problem for the problem in Eq. 7 that will allow us to prove
multiple useful theorems:

That is, instead of finding the t̂ closest to t with refinement value t̂𝜑 , we find the largest
refined value attainable with a fixed budget u. We need to be precise when solutions of this
dual problem coincide with the problem in Eq. 7. We consider strict cone-monotonicity
(Van Dyke et al., 2013; Clarke et al., 1993), which is a weak notion of strict monotonicity
for higher dimensions. This intuitively means that there is always some direction we can
move in to increase the value of the t-norm. Since t-norms are already non-decreasing in
each argument, this implies there is no point where the t-norm is “flat” in all directions.
The precise definition is given in Definition 10.

Theorem 3 A solution t∗ for some f� , t and u ≥ 0 of Eq. 26 is also a solution to Eq. 7 for t
and t̂𝜑 = f𝜑(t

∗) ≥ f𝜑(t) if f� is non-decreasing in all arguments and strictly cone-increasing
at each t� ∈ [0, 1]n such that f𝜑(t�) = t̂𝜑 , and if ‖ ⋅ ‖ is strictly increasing in all arguments.

Proof Assume otherwise, and suppose a solution t̂ for Eq. 7 exists such that f𝜑(t̂) = t̂𝜑
while ‖t̂ − t‖ < ‖t

∗ − t‖ = u . Since f� is non-decreasing in all arguments and t̂𝜑 ≥ f𝜑(t) ,
t̂ − t and t∗ − t are nonnegative. By Proposition 14 there is some cone K(t̂) that con-
tains a line segment �(s) = s(t� − t̂) such that for all s > 0 , f𝜑(t̂) < f𝜑(t̂ + �(s)) and for all
i ∈ {0, ..., n} , 0 ≤ �(s)i . Therefore, necessarily there is some i such that 0 < �(s)i . Since ‖ ⋅ ‖

(26)

For all t ∈ [0, 1]n, u ∈ [0,∞) ∶

max
t̂

f𝜑(t̂)

such that ‖t̂ − t‖ = u,

0 ≤ t̂i ≤ 1.

3321Machine Learning (2023) 112:3293–3331

1 3

is strictly increasing on nonnegative vectors and continuous (since it is a norm), necessar-
ily, there are some s > 0 such that ‖t̂ + �(s)‖ = u . However, this is in contradiction with the
premise that t∗ is a solution of Eq. 26, as f𝜑(t̂ + 𝜖(s)) > f𝜑(t

∗) . ◻

Since f� ∈ [0, 1]n → [0, 1] , f� cannot satisfy the conditions of Theorem 3 when t̂𝜑 = 1 .
For all t̂𝜑 ∈ [0, 1) , however, both the Gödel and product t-norms and t-conorms are strictly
cone-increasing. The Łukasiewicz t-norm satisfies the conditions for t̂𝜑 ∈ (0, 1) , since it
has flat regions for t̂𝜑 = 0 . The same reasoning can be made for the nilpotent minimum and
drastic t-norms (van Krieken et al., 2022). Furthermore, all t-norms with an additive gen-
erator are strictly cone-increasing on t̂𝜑 ∈ (0, 1) , as are all strict t-norms.

C Schur‑concave t‑norms (Proofs)

C.1 Minimal refinement function for t‑norms

Theorem 4 Let T be a Schur-concave t-norm that is strictly cone-increasing at t̂T and let
‖ ⋅ ‖ be a strict norm. Then there is a minimal refined vector t∗ for t and t̂T such that when-
ever ti > tj , then t∗i − ti ≤ t∗j − tj.

Proof Assume there is a minimal refined vector t̂ ≠ t
∗ which has some t̂i − ti > t̂j − tj

while ti > tj . Consider t̂′ equal to t̂ except that t̂�
i
= t̂j − tj + ti and t̂�

j
= t̂i − ti + tj such that

by symmetry ‖t̂ − t‖ = ‖t̂
�
− t‖ . Define t̂�

max
= max(t̂�

i
, t̂�
j
) and t̂�

min
= min(t̂�

i
, t̂�
j
) . Clearly,

t̂i > t̂′
max

≥ t̂′
min

> t̂j.
We will show t̂ majorizes t̂′ by checking the condition of Definition 8 for any

k ∈ {1, ..., n} .

1. If t̂↓
k
> t̂i , then all elements are equal and

∑k

l=1
t̂
↓

l
=
∑k

l=1
t̂
�↓

l
.

2. If t̂i ≥ t̂
↓

k
> t̂′

max
 , then

∑k

l=1
t̂
↓

l
=
∑k−1

l=1
t̂
�↓

l
+ t̂i ≥

∑k

l=1
t̂
�↓

l
.

3. If t̂′
max

≥ t̂
↓

k
> t̂′

min
 , then

∑k

l=1
t̂
↓

l
>
∑k

l=1
t̂
�↓

l
 , since by removing common terms we get

t̂i > t̂′
max

.
4. If t̂′

min
≥ t̂

↓

k
> t̂j , then removing all common terms in the sums, we are left with

t̂i + t̂
↓

k
> t̂�

min
+ t̂�

max
 . Note t̂�

min
+ t̂�

max
= t̂j + ti − tj + t̂i + tj − ti = t̂i + t̂j . Subtracting t̂i

from both sides, we are left with t̂↓
k
> t̂j , which is true by assumption.

5. If t̂min ≥ t̂
↓

k
 , then removing common terms, we are left with t̂max + t̂min = t̂i + t̂j.

Therefore, t̂ majorizes t̂′ , and so by Schur concavity, T(t̂, c) ≤ T(t̂
�
, c) , noting that the addi-

tional truth vector c will not influence the majorization result since it is applied at both
sides. By Theorem 3, either 1) T(t̂, c) < T(t̂

�
, c) , so t̂ could not have been minimal, leading

to a contradiction, or 2) T(t̂, c) = T(t̂
�
, c) and both t̂ and t̂′ are minimal. ◻

C.2 Closed‑form refinement function using additive generators

Proposition 15 Let T be a Schur-concave t-norm with additive generator g and let
0 < t̂T ∈ [T(t, c), maxT] . Let K ∈ {0, ..., n − 1} denote the number of truth values such that
t∗i = ti in Eq. 28.

3322 Machine Learning (2023) 112:3293–3331

1 3

Then using

in Eq. 28 gives T(t∗, c) = t̂T if t∗ ∈ [0, 1]n.

Proof Using Eqs. 15 and 28, we find that

Since t̂T > 0 , we can remove the min , since t̂T > 0 will require that
∑K

i=1
g(t

↓

i
) + (n − K)g(𝜆K) +

∑m

i=1
g(Ci) > g(0+) . We apply g to both sides of the equation,

which is allowed since g is a bijection. Thus

where in the last step we apply g−1 . ◻

In a similar manner, we can find the � for the t-conorm. Let j = argmaxn
i=1

ti.

If t̂S < 1 , or if g(0) is well defined, then we can ignore the min:

C.3 L
1
 minimal refinement function for t‑norms

Proposition 16 Let t ∈ [0, 1]n and let T be a Schur-concave t-norm that is strictly cone-
increasing at t̂T ∈ [T(t, c), maxT] . Then there is a value � ∈ [0, 1] such that the vector t∗,

(27)𝜆K = g−1

(

1

n − K

(

g(t̂T) −

K
∑

i=1

g(t
↓

i
) −

m
∑

i=1

g(Ci)

))

T(t∗, c) = g−1

(

min

(

g(0+),

K
∑

i=1

g(t
↓

i
) +

n
∑

i=K+1

g(𝜆K) +

m
∑

i=1

g(Ci)

))

= t̂T

g(t̂T) =

K
∑

i=1

g(t
↓

i
) + (n − K)g(𝜆K) +

m
∑

i=1

g(Ci)

g(𝜆K) =
1

n − K

(

g(t̂T) −

K
∑

i=1

g(t
↓

i
) −

m
∑

i=1

g(Ci)

)

𝜆K = g−1

(

1

n − K

(

g(t̂T) −

K
∑

i=1

g(t
↓

i
) −

m
∑

i=1

g(Ci)

))

,

S(t∗) = 1 − g−1(min(g(0+),

n
∑

i=1

g(1 − t∗i) +

m
∑

i=1

g(1 − Ci))) = t̂S

min(g(0+), g(1 − 𝜆) +
∑

i≠j

g(1 − ti) +

m
∑

i=1

g(1 − Ci)) = g(1 − t̂S)

g(1 − 𝜆) = g(1 − t̂S) −
∑

i≠j

g(1 − ti)) −

m
∑

i=1

g(1 − Ci)

𝜆 = 1 − g−1

(

g(1 − t̂S) −
∑

i≠j

g(1 − ti) −

m
∑

i=1

g(1 − Ci)

)

3323Machine Learning (2023) 112:3293–3331

1 3

is a minimal refined vector for T and the L1 norm at t and t̂T.

Proof Assume otherwise. Then, using Theorem 3, there must be a refined vector t̂ such that
‖t̂ − t‖1 = ‖t

∗ − t‖1 but T(t̂, c) > T(t∗, c) . Since t̂T ∈ [T(t, c), maxT] , we can assume t̂i ≥ ti.
We define �∗(i) as the permutation in descending order of t∗ . Furthermore, let k be the

smallest j such that t↓
j
< 𝜆.

Since ‖t̂‖1 = ‖t
∗
‖1 , by assumption of equal L1 norms of t̂ and t∗ , we will prove for all

i ∈ {1, ..., n} that t̂ majorizes t∗.

• If i < k , then
∑i

j=1
t̂
↓

j
≥
∑i

j=1
t̂𝜋∗(j) ≥

∑i

j=1
t𝜋∗(j) =

∑i

j=1
t∗

↓

j
 . The first inequality fol-

lows from the fact that there is no ordering of t̂ that will have a higher sum than in
descending order.

• If i ≥ k , then clearly t∗↓
i
= � . Furthermore,

∑i

j=1
t∗

↓

j
=
∑k

j=1
t
↓

j
+ (i − k)� . We will dis-

tinguish two cases:

1. t̂
↓

i
≥ 𝜆 . Then for all j ∈ {k, ..., i} , t̂↓

j
≥ 𝜆 . Furthermore, from the previous result,

∑k−1

j=1
t̂
↓

j
≥
∑k−1

j=1
t∗

↓

j
 and so clearly

∑i

j=1
t̂
↓

j
≥
∑i

j=1
t∗

↓

i
.

2. t̂
↓

i
< 𝜆 . T h e n f o r a l l j > i , t̂

↓

j
≤ t̂

↓

i
< 𝜆 , a n d s o

∑n

j=i+1
t̂
↓

j
≤
∑n

j=i+1
t̂
↓

i
= (n − i)t̂

↓

i
< (n − i)𝜆 . Using this, we note that

 Then, subtracting (n − i)� from the inequality, we find

And so, t̂ majorizes t∗ , and by Schur concavity of T, T(t̂, c) ≤ T(t∗, c) leading to a contra-
diction. ◻

C.4 L
1
 minimal refinement function for t‑conorms

Proposition 17 Let t ∈ [0, 1]n and let S be a Schur-convex t-conorm that is strictly cone-
increasing at t̂S ∈ [S(t, c), 1] . Then there is a value � ∈ [0, 1] such that the vector t∗,

is a minimal refined vector for S and the L1 norm at t and t̂S.

Proposition 18 Let t ∈ [0, 1]n and let S be a Schur-convex t-conorm that is strictly cone-
increasing at t̂S ∈ [S(t, c), 1] . Then there is a value � ∈ [0, 1] such that the vector t∗ with
i ∈ D,

(28)t∗i =

{

𝜆, if ti < 𝜆,

ti, otherwise,

‖t
∗
‖1 =

k
�

j=1

t
↓

j
+ (n − k)𝜆 = ‖t̂‖1 =

i
�

j=1

t̂
↓

j
+

n
�

j=i+1

t̂
↓

j
<

i
�

j=1

t̂
↓

j
+ (n − i)𝜆.

i
∑

j=1

t̂
↓

j
>

k
∑

j=1

t
↓

j
+ (n − k)𝜆 − (n − i)𝜆 =

k
∑

j=1

t
↓

j
+ (i − k)𝜆 =

i
∑

j=1

t∗
↓

j

(29)t∗i =

{

� if i = argmaxi∈Dti,

ti, otherwise,

3324 Machine Learning (2023) 112:3293–3331

1 3

is a minimal refined vector for S and the L1 norm at t and t̂S.

Proof Assume otherwise. Then, using Theorem 3, there must be a refined vector t̂ ≠ t
∗

such that ‖t̂ − t‖1 = ‖t
∗ − t‖1 = 𝜆 − t

↓

1
 but S(t̂, c) > S(t∗, c) . Let �(i) be the permutation in

descending order of t̂.
Consider any k ∈ {1, ..., n} . Then

∑k

i=1
t∗

↓

i
=
∑k

i=1
t
↓

i
+ (� − t

↓

1
) , while

∑k

i=1
t̂
↓

j
=
∑k

i=1
t𝜋(i) +

∑k

i=1
(t̂i − t𝜋(i)) . There is no permutation with higher sum than

in descending order, so
∑k

i=1
t�(i) ≤

∑k

i=1
t
↓

i
 . Furthermore, since ‖t̂ − t‖1 = 𝜆 − t

↓

1
 ,

∑k

i=1
(t̂i − t𝜋(i)) ≤ 𝜆 − t

↓

1
 . Therefore,

∑k

i=1
t̂
↓

i
≤
∑k

i=1
t∗

↓

i
 , that is, t∗ majorizes t̂ , and by Schur

convexity of S, S(t∗, c) ≥ S(t̂, c) . ◻

C.5 L
1
 minimal refinement function for residuums

Proposition 19 Let t1, t2 ∈ [0, 1] and let T be a strict Schur-concave t-norm with addi-
tive generator g. Consider its residuum R(t1, t2) = sup{z|T(t1, z) ≤ t2} that is strictly
cone-increasing at 0 < t̂R ∈ [R(t1, t2), maxR] . Then there is a value � ∈ [0, 1] such that
t
∗ = [t1, 𝜆]

⊤ is a minimal refined vector for R and the L1 norm at t and t.

Proof We will assume t1 > t2 , as otherwise R(t1, t2) = 1 for any residuum, which necessar-
ily means t̂R = 1 and so t∗ = t . Assume t∗ is not minimal. Since R is strictly cone increas-
ing at t̂R , by Theorem 36 there must be some t̂ such that ‖t̂ − t‖ = ‖t

∗ − t‖ = 𝜆 − t2 but
R(t̂1, t̂2) > R(t∗1, t

∗
2) . Since R is non-decreasing in the first argument and non-increasing in

the second, we consider t̂ = [t1 − 𝜖, 𝜆 − 𝜖]⊤ for 𝜖 > 0.
The residuum constructed from continuous t-norms with an additive generator can be

computed as R(t1, t2) = g−1(max(g(t2) − g(t1), 0)) . Since we assumed R(t∗1, t∗2) < R(t̂1, t̂2) ,
applying g to both sides,

where in the second step we assume � ≤ t1 , that is, we are not setting new consequent
larger than the antecedent, as otherwise we could find a smaller refined vector by setting it
to exactly t1 . In the last step we use that T is strict, as then T(t1, t2) = g−1(g(t1) + t2)) . We
now use the majorization as � + t1 − � = � − � + t.

Since � ≤ t1 , surely t1 > 𝜆 − 𝜖 . Then there are two cases:

1. � ≥ t1 − � . Then t1 ≥ � as assumed.
2. t1 − � ≥ � . Then clearly t ≥ t1 − � as 𝜖 > 0.

(30)t∗i =

{

� if i = argmaxi∈Dti,

ti, otherwise,

max(g(𝜆) − g(t1), 0) > max(g(𝜆 − 𝜖) − g(t1 − 𝜖), 0)

g−1(g(𝜆) + g(t1 − 𝜖)) < g−1(g(𝜆 − 𝜖) + g(t1))

T(𝜆, t1 − 𝜖) < T(𝜆 − 𝜖, t1)

6 This theorem has to be adjusted for the fact that fuzzy implications are non-increasing in the first argu-
ment. It can be applied by considering 1 − t

1
.

3325Machine Learning (2023) 112:3293–3331

1 3

Therefore [𝜆 − 𝜖, t1]
⊤ majorizes [𝜆, t − 𝜖]⊤ , and by Schur concavity T(�, t − �) ≥ T(� − �, t1)

which is a contradiction. ◻

D Product t‑norm with L
2
 norm

In this appendix, we consider the refinement functions for the product t-norm under the
L2-norm. We find that there is no simple closed-form parameterization in terms of t̂𝜑 ,
but we can find approximations in linear time. These are satisfactory to reliably find the
minimal refinement function.

In the following, we wil ignore constants and consider formulas
⋀n

i=1
Pi , and con-

sider the problem in Eq. 7. We consider the logarithm of the product as its optimum
coincides.

With Lagrangian L =
∑

i(t̂i − ti)
2 + 𝜆(

∑

i log t̂i − log t̂TP) − 𝛾i(t̂i − 1) , and so

Since this holds for all i, we find that for all i, j, (𝛾 + 2ti − 2t̂i)t̂i = (𝛾 + 2tj − 2t̂j)t̂j = 𝜆 . We
partition {1, ..., n} into sets I and M, where I contains all i such that t̂i < 1 , and M those
where t̂i = 1 . For i ∈ I , by noting that using the complementary slackness condition �i = 0 ,
this induces a quadratic equation in t̂i with solutions

Since we assume t̂i ≥ ti , we have to take the solution that adds the root of the determinant,
that is, t̂i =

1

2
(
√

t2
i
− 2𝜆 + ti) . Furthermore, since we constrain for i ∈ I that t̂i < 1 , we find

that

Therefore, given some chosen value of c, we require for all i ∈ I that 𝜆 > 2ti − 2 , and so,

(31)

For all t ∈ [0, 1]n, t̂TP ∈ [TP(t), 1]

min
t̂

n
∑

i=1

(t̂i − ti)
2

such that

n
∑

i=1

log t̂i = log t̂TP

t̂i − 1 ≤ 0

𝜕L

𝜕t̂i
= 2(t̂i − ti) − 𝛾i +

𝜆

t̂i
= 0

𝜆 = (𝛾 + 2ti − 2t̂i)t̂i

(32)t̂i =
1

2
(ti ±

√

t2
i
− 2𝜆).

1 >
1

2
(ti +

√

t2
i
− 2𝜆)

2 − ti >

√

t2
i
− 2𝜆

𝜆 > 2ti − 2.

min
i∈I

2ti − 2 > 𝜆

3326 Machine Learning (2023) 112:3293–3331

1 3

Unfortunately, finding the exact value of � such that TP(t̂) = t̂TP is a challenge. Filling in t̂i ,
we find

This is a 2n-th degree polynomial in � , and we were not able to find an obvious, general
closed form solution to it. Mathematica (Inc, 2019) finds a complicated closed form for-
mula for n = 2 , but cannot find closed form formulas for n > 2.

We also still need to figure out how to partition i = {1, ..., n} into I and M. Since t̂i as
computed by Eq. 32 is a strictly decreasing function in � for all i ∈ I , we have the following
unproven proposition. It supports the result given in Theorem 4.

Proposition 20 For all � ∈ [minn
i=1

2ti − 2, 0] , the function

has the following properties:

1. �∗
TP
(t, �) is a minimal refinement vector for the product t-norm, the L2 norm and

t̂TP = TP(𝜌
∗
TP
(t, 𝜆));

2. t̂TP = TP(𝜌
∗
TP
(t, 𝜆)) is a strictly decreasing function in c on (minn

i=1
2ti − 2, 0] , and so there

is a bijection between � and t ∈ [TP(t), 1] on this interval.

The second property is easy to see by noting the derivative of �∗
TP
(t, �) is negative on

� ∈ (minn
i=1

2ti − 2] , but for the first we do not have a direct proof as of yet and leave this for
future work.

Although �∗
TP
(t, �) is not parameterized in terms of t̂TP , it can still be used in practical sce-

narios where � can be seen as the negative “confidence” in the clause. A practical implementa-
tion could learn a weight for the clause between 0 and 1, and then transform it to the domain
of � by dividing by minn

i=1
2ti − 2 . Alternatively, ‖TP(t + 𝜌∗

TP
(t, 𝜆)) − t̂TP‖2 can be minimized

with respect to � using mathematical optimization methods like gradient descent or Newton’s
method to find answers in terms of t̂TP.

E Additional experiments

This Appendix presents additional experiments when t̂𝜑 is not 1.

E.1 Results ‑ Refined value 0.3

Figures 10 and 11 present the results when the refined value t̂𝜑 = 0.3.

(33)TP(t̂) =

n
∏

i=1

(t̂i) =
∏

i∈I

1

2
(ti +

√

t2
i
− 2𝜆) = t̂TP .

(34)𝜌∗
TP
(t, 𝜆)i =

{

1

2
(ti +

√

t2
i
− 2𝜆) if 2ti − 2 > 𝜆,

1 − ti otherwise.

3327Machine Learning (2023) 112:3293–3331

1 3

E.2 Results ‑ Refined value 0.5

Figures 12 and 13 present the results when the refined value t̂𝜑 = 0.5 . We note that the
satisfaction for ADAM in Łukasiewicz converges above 0.5 in Fig. 12. This means the final
truth value is too high, and it has not found a proper solution here.

Fig. 10 Comparison of ILR with ADAM on uf20-91 of SATLIB. Refined value 0.3. The x-axis corresponds
to the number of iterations, while the y-axis is the value of t̂𝜑 in the first row of the grid and the L

1
 norm in

the second row

Fig. 11 Comparison of ILR with ADAM on the uf20-91 with 20 clauses. Refined value 0.3

3328 Machine Learning (2023) 112:3293–3331

1 3

Acknowledgements Alessandro Daniele and Emile van Krieken are involved in a HumaneAI Microproject.
HumaneAI received funding from the European Union’s Horizon 2020 research and innovation program
under Grant Agreement No 761758.

Author Contributions AD and EK: formal proofs, experiments, writing; FH and LS: supervision, writing.

Funding Alessandro Daniele and Emile van Krieken are involved in a HumaneAI Microproject. HumaneAI
received funding from the European Union’s Horizon 2020 research and innovation program under Grant
Agreement No 761758.

Fig. 12 Comparison of ILR with ADAM on the uf20-91 of SATLIB. Refined value 0.5

Fig. 13 Comparison of ILR with ADAM on the uf20-91 with 20 clauses. Refined value 0.5

3329Machine Learning (2023) 112:3293–3331

1 3

Availability of data and material Data used in this work can be downloaded from https:// www. cs. ubc.
ca/ hoos/ SATLIB/ benchm. html

Code Availability The code is available as an open-source project on GitHub.https:// github. com/ Danie leAle
ssand ro/ Itera tiveL ocalR efine ment

Declarations

Conflict of interest The authors have no conflicts of interest to declare that are relevant to the content of this
article

Ethical approval We declare that our manuscript follows the ethics rules provided in https:// www. sprin ger.
com/ gp/ edito rial- polic ies/ ethic al- respo nsibi lities- of- autho rs.

Consent to participate Not applicable

Consent for publication Not applicable

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Ahmed, K., Teso, S., Chang, K.-W., den Broeck, G. V., & Vergari, A. (2022) Semantic probabilistic lay-
ers for neuro-symbolic learning. CoRR, arXiv: 2206. 00426.

Alsina, C. (1984) On Schur-Concave t-norms and triangle functions. In: W. Walter, editor, General Ine-
qualities 4: In Memoriam Edwin F. Beckenbach 4th International Conference on General Inequali-
ties, Oberwolfach, May 8–14, 1983, pages 241–248. Birkhäuser, Basel, ISBN 978-3-0348-6259-2.
https:// doi. org/ 10. 1007/ 978-3- 0348- 6259-2_ 22.

Badreddine, S., d’Avila Garcez, A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artificial
Intelligence, 303, 103649.

Calvo, T., Kolesárová, A., Komorníková, M., & Mesiar, R. (2002) Aggregation operators: Properties,
classes and construction methods. In T. Calvo, G. Mayor, and R. Mesiar, editors, Aggregation
Operators: New Trends and Applications, pages 3–104. Physica-Verlag HD, Heidelberg, ISBN
978-3-7908-1787-4.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., Barham, P., Chung, H. W., Sut-
ton, C., Gehrmann, S., Schuh, P., Shi, K., Tsvyashchenko, S., Maynez, J., Rao, A., Barnes, P., Tay, Y.,
Shazeer, N., Prabhakaran, V., Reif, E., Du, N., Hutchinson, B., Pope, R., Bradbury, J., Austin, J., Isard,
M., Gur-Ari, G., Yin, P., Duke, T., Levskaya, A., Ghemawat, S., Dev, S., Michalewski, H., Garcia, X.,
Misra, V., Robinson, K., Fedus, L., Zhou, D., Ippolito, D., Luan, D., Lim, H., Zoph, B., Spiridonov, A.,
Sepassi, R., Dohan, D., Agrawal, S., Omernick, M., Dai, A. M., Pillai, T. S., Pellat, M., Lewkowycz,
A., Moreira, E., Child, R., Polozov, O., Lee, K., Zhou, Z., Wang, X., Saeta, B., Diaz, M., Firat, O.,
Catasta, M., Wei, J., Meier-Hellstern, K., Eck, D., Dean, J., Petrov, S., & Fiedel, N. (2022) PaLM:
Scaling Language modeling with pathways. arXiv: 2204. 02311.

Clarke, F. H., Stern, R. J., & Wolenski, P. R. (1993) Subgradient Criteria for Monotonicity, The Lipschitz
Condition, and Convexity. Canadian Journal of Mathematics, 45(6):1167–1183, Dec. 1993. ISSN
0008-414X, 1496-4279. https:// doi. org/ 10. 4153/ CJM- 1993- 065-x.

Daniele, A., & Serafini, L. (2019) Knowledge enhanced neural networks. In A. C. Nayak and A. Sharma,
editors, PRICAI 2019: Trends in Artificial Intelligence, pages 542–554, Cham. Springer International
Publishing. ISBN 978-3-030-29908-8.

https://www.cs.ubc.ca/%7ehoos/SATLIB/benchm.html
https://www.cs.ubc.ca/%7ehoos/SATLIB/benchm.html
https://github.com/DanieleAlessandro/IterativeLocalRefinement
https://github.com/DanieleAlessandro/IterativeLocalRefinement
https://www.springer.com/gp/editorial-policies/ethical-responsibilities-of-authors
https://www.springer.com/gp/editorial-policies/ethical-responsibilities-of-authors
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2206.00426
https://doi.org/10.1007/978-3-0348-6259-2_22
http://arxiv.org/abs/2204.02311
https://doi.org/10.4153/CJM-1993-065-x

3330 Machine Learning (2023) 112:3293–3331

1 3

Daniele, A., & Serafini, L. (2022) Knowledge enhanced neural networks for relational domains. arXiv pre-
print arXiv: 2205. 15762.

Diligenti, M., Gori, M., & Sacca, C. (2017). Semantic-based regularization for learning and inference. Arti-
ficial Intelligence, 244, 143–165.

Donadello, I., Serafini, L., & d’Avila Garcez, A. (2017) Logic tensor networks for semantic image interpre-
tation. In IJCAI International joint conference on artificial intelligence, pp. 1596—1602.

Dragone, P., Teso, S., & Passerini, A. (2021) Neuro-symbolic constraint programming for structured pre-
diction. In: A. S. d’Avila Garcez and E. Jiménez-Ruiz, editors, Proceedings of the 15th international
workshop on neural-symbolic learning and reasoning as part of the 1st international joint conference
on learning & reasoning (IJCLR 2021), Virtual conference, October 25-27, 2021, volume 2986 of
CEUR workshop proceedings, pages 6–14. CEUR-WS.org.

Fischer, M., Balunovic, M., Drachsler-Cohen, D., Gehr, T., Zhang, C., & Vechev, M. T.(2019) DL2: Train-
ing and querying neural networks with logic. In: K. Chaudhuri and R. Salakhutdinov, editors, Proceed-
ings of the 36th international conference on machine learning, ICML 2019, 9-15, Long Beach, Califor-
nia, USA, volume 97 of Proceedings of machine learning research, pp. 1931–1941. PMLR.

Giannini, F., Diligenti, M., Gori, M., & Maggini, M. (2019). On a convex logic fragment for learning
and reasoning. IEEE Transactions on Fuzzy Systems, 27(7), 1407–1416. https:// doi. org/ 10. 1109/
TFUZZ. 2018. 28796 27

Giunchiglia, E., & Lukasiewicz, T. (2021). Multi-label classification neural networks with hard logical
constraints. Journal of Artificial Intelligence Research, 72, 759–818. https:// doi. org/ 10. 1613/ jair.1.
12850

Giunchiglia, E., Stoian, M., Khan, S., Cuzzolin, F., & Lukasiewicz, T. (2022a) ROAD-R: The autono-
mous driving dataset with logical requirements. June 2022a.

Giunchiglia, E., Stoian, M. C., & Lukasiewicz, T. (2022) Deep learning with logical constraints. In L. D.
Raedt, editor, Proceedings of the thirty-first international joint conference on artificial intelligence,
IJCAI 2022, Vienna, Austria, 23-29 , pp. 5478–5485. ijcai.org, 2022b. https:// doi. org/ 10. 24963/
ijcai. 2022/ 767.

Hoernle, N., Karampatsis, R. M., Belle, V., & Gal, K. (2022) MultiplexNet: Towards fully satisfied logi-
cal constraints in neural networks. In: Proceedings of the AAAI conference on artificial intelli-
gence, 36(5):5700–5709. ISSN 2374-3468, 2159-5399. https:// doi. org/ 10. 1609/ aaai. v36i5. 20512.

Hoos, H. H.(2000) SATLIB : An online resource for research on SAT. pp. 1–12.
Inc, W. R. (2019) Mathematica, Version 12.0. 2019. Champaign, IL.
Jayaram, B., & Baczynski, M. (2008). Fuzzy Implications (Vol. 231). Berlin: Springer.
Kingma, D. P., & Ba, J. (2015) Adam: A method for stochastic optimization. arXiv: 1412. 6980 [cs], Jan.

2017. Comment: Published as a conference paper at the 3rd International Conference for Learning
Representations, San Diego.

Klement, E.-P, Mesiar, R., & Pap, E. (2000) Triangular Norms, volume 8 of Trends in Logic. Springer.
ISBN 978-90-481-5507-1. https:// doi. org/ 10. 1007/ 978- 94- 015- 9540-7.

Klement, E. P, Mesiar, R., & Pap, E. (2004) Triangular norms. Position paper II: General constructions
and parameterized families. Fuzzy Sets and Systems, 145(3):411–438. ISSN 01650114. https:// doi.
org/ 10. 1016/ S0165- 0114(03) 00327-0.

LeCun, Y., & Cortes, C. (2010) MNIST handwritten digit database.
Manhaeve, R., Dumančić, S., Kimmig, A., Demeester, T., & De Raedt, L. (2018). DeepProbLog: Neu-

ral probabilistic logic programming. In S. Bengio, H. M. Wallach, H. Larochelle, K. Grauman, N.
Cesa-Bianchi, & R. Garnett (Eds.), Advances in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems 2018, NeurIPS 2018, 3–8 December 2018.
Canada: Montréal.

Marshall, A. W., Olkin, I., & Arnold, B. C. (2011) Schur-convex functions. In A. W. Marshall, I. Olkin,
and B. C. Arnold, editors, Inequalities: Theory of majorization and its applications, pp. 79–154.
Springer, New York, NY. ISBN 978-0-387-68276-1. https:// doi. org/ 10. 1007/ 978-0- 387- 68276-1_3.

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., & Chen, M. (2022) Hierarchical text-conditional image
generation with CLIP Latents. arXiv: 2204. 06125.

T. J. U. o. N. M. Ross. Fuzzy logic with engineering applications. 2010. ISBN 978-0-470-74376-8.
https:// doi. org/ 10. 1002/ 97811 19994 374.

Roychowdhury, S., Diligenti, M., & Gori, M. (2021) Regularizing deep networks with prior knowledge:
A constraint-based approach. Knowledge-Based Systems, 222:106989. ISSN 0950-7051. https://
doi. org/ 10. 1016/j. knosys. 2021. 106989.

Takači, A. (2005). Schur-concave triangular norms: Characterization and application in pFCSP. Fuzzy
Sets and Systems. An International Journal in Information Science and Engineering, 155(1), 50–64.

http://arxiv.org/abs/2205.15762
https://doi.org/10.1109/TFUZZ.2018.2879627
https://doi.org/10.1109/TFUZZ.2018.2879627
https://doi.org/10.1613/jair.1.12850
https://doi.org/10.1613/jair.1.12850
https://doi.org/10.24963/ijcai.2022/767
https://doi.org/10.24963/ijcai.2022/767
https://doi.org/10.1609/aaai.v36i5.20512
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-94-015-9540-7
https://doi.org/10.1016/S0165-0114(03)00327-0
https://doi.org/10.1016/S0165-0114(03)00327-0
https://doi.org/10.1007/978-0-387-68276-1_3
http://arxiv.org/abs/2204.06125
https://doi.org/10.1002/9781119994374
https://doi.org/10.1016/j.knosys.2021.106989
https://doi.org/10.1016/j.knosys.2021.106989

3331Machine Learning (2023) 112:3293–3331

1 3

Van Dyke, H. A., Vixie, K. R., & Asaki, T. J. (2013) Cone Monotonicity: Structure Theorem, Proper-
ties, and Comparisons to Other Notions of Monotonicity. Abstract and Applied Analysis, 2013:1–8,
2013. ISSN 1085-3375, 1687-0409. https:// doi. org/ 10. 1155/ 2013/ 134751.

van Krieken, E., Acar, E., & van Harmelen, F. (2022) Analyzing differentiable fuzzy logic operators.
Artificial Intelligence, 302:103602. ISSN 0004-3702. https:// doi. org/ 10. 1016/j. artint. 2021. 103602.

Wang, P.-W., Donti, P. L., Wilder, B., & Kolter, J. Z. (2019) SATNet: Bridging deep learning and logical
reasoning using a differentiable satisfiability solver. In K. Chaudhuri and R. Salakhutdinov, edi-
tors, Proceedings of the 36th international conference on machine learning, ICML 2019, 9-15 June
2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learning Research,
pages 6545–6554. PMLR.

Xu, J., Zhang, Z., Friedman, T., Liang, Y., & den Broeck, G. (2018) A semantic loss function for deep
learning with symbolic knowledge. In J. Dy and A. Krause, editors, Proceedings of the 35th inter-
national conference on machine learning, volume 80, pages 5502–5511, Stockholmsmässan, Stock-
holm Sweden, PMLR.

Yang, Z., Lee, J., & Park, C. (2022) Injecting Logical Constraints into Neural Networks via Straight-
Through Estimators. In K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvári, G. Niu, and S. Sabato,
editors, International conference on machine learning, ICML 2022, 17-23 , Baltimore, Maryland,
USA, volume 162 of Proceedings of machine learning research, pp. 25096–25122. PMLR, (2022).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1155/2013/134751
https://doi.org/10.1016/j.artint.2021.103602

	Refining neural network predictions using background knowledge
	Abstract
	1 Introduction
	2 Related work
	3 Fuzzy operators
	4 Minimal fuzzy Refinement functions
	5 Iterative local refinement
	6 Neuro-symbolic AI using ILR
	7 Analytical minimal refinement functions
	7.1 General results
	7.2 Basic T-norms
	7.2.1 Gödel t-norm
	7.2.2 Łukasiewicz t-norm
	7.2.3 Product t-norm

	8 A general class of t-norms with analytical minimal refinement functions
	8.1 Background on t-norms
	8.1.1 Additive generators
	8.1.2 Schur-concave t-norms

	8.2 Minimal refinement functions for Schur-concave t-norms
	8.3 Closed forms using additive generators

	9 Experiments
	9.1 Experiments on 3SAT problems
	9.1.1 Setup
	9.1.2 Gradient descent baseline
	9.1.3 Results

	9.2 Experiments on MNIST addition
	9.2.1 Setup
	9.2.2 Results

	10 Conclusion and future work
	A Basic T-norms (Proofs)
	A.1 Gödel t-norm minimal refined function proofs
	A.1.1 Gödel t-norm
	A.1.2 Gödel t-conorm
	A.1.3 Gödel Implication

	A.2 Łukasiewicz t-norm minimal refined function proofs
	A.2.1 Łukasiewicz t-norm
	A.2.2 Łukasiewicz t-conorm

	B Dual problem
	B.1 Strict cone monotonicity
	B.2 Dual problem

	C Schur-concave t-norms (Proofs)
	C.1 Minimal refinement function for t-norms
	C.2 Closed-form refinement function using additive generators
	C.3 minimal refinement function for t-norms
	C.4 minimal refinement function for t-conorms
	C.5 minimal refinement function for residuums

	D Product t-norm with norm
	E Additional experiments
	E.1 Results - Refined value 0.3
	E.2 Results - Refined value 0.5

	Acknowledgements
	References

