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Abstract
The early detection of anomalous events in time series data is essential in many domains 
of application. In this paper we deal with critical health events, which represent a signifi-
cant cause of mortality in intensive care units of hospitals. The timely prediction of these 
events is crucial for mitigating their consequences and improving healthcare. One of the 
most common approaches to tackle early anomaly detection problems is through standard 
classification methods. In this paper we propose a novel method that uses a layered learn-
ing architecture to address these tasks. One key contribution of our work is the idea of 
pre-conditional events, which denote arbitrary but computable relaxed versions of the event 
of interest. We leverage this idea to break the original problem into two hierarchical layers, 
which we hypothesize are easier to solve. The results suggest that the proposed approach 
leads to a better performance relative to state of the art approaches for critical health epi-
sode prediction.
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1 Introduction

1.1  Motivation for early anomaly detection in healthcare

Healthcare is one of the domains which has witnessed significant growth in the application 
of machine learning approaches (Bellazzi & Zupan, 2008). For instance, ICUs (Intensive 
Care Units) evolved considerably in recent years due to technological advances such as the 
widespread adoption of bio-sensors (Saeed et al., 2002). This lead to new opportunities for 
predictive modelling in clinical medicine. One of these opportunities is the early detection 
of critical health episodes (CHE), such as acute hypotensive episode (Ghosh et al., 2016) 
or tachycardia episode (Forkan et al., 2017) prediction problems. CHEs such as these rep-
resent a significant mortality risk factor in ICUs (Ghosh et  al., 2016), and their timely 
anticipation is fundamental for improving healthcare.

CHE prediction can be regarded as a particular instance of early anomaly detection in 
time series data, also known as activity monitoring (Fawcett & Provost, 1999). The goal 
behind these problems is to issue accurate and timely alarms about interesting but rare 
events requiring action. In the case of CHE, a system should signal physicians about any 
impending health crisis.

One of the most common ways to address activity monitoring problems is to view 
them as conditional probability estimation problems (Fawcett & Provost, 1999; Tsur et al., 
2018). Standard supervised learning classification methods can be used to tackle them. The 
idea is to approximate a function f that maps a set of input observations X to a binary vari-
able y, which represents whether an anomaly occurs or not. In the context of CHE predic-
tion, the predictor variables (X) summarise the recent physiological signals of a patient 
assigned to the ICU, while the target (y) represents whether or not there is an impending 
event in the near future.

1.2  Working hypothesis and approach

In many domains of application, the anomaly or event of interest is defined according 
to some rule derived from the data by professionals. In the case of healthcare, CHEs are 
often defined as events where the value of some physiological signal exceeds a pre-defined 
threshold for a prolonged period. Similar approaches for formalising anomalies can be 
found in predictive maintenance (Ribeiro et al., 2016), or wind power prediction (Ferreira 
et al., 2011). In these scenarios, we can also define pre-conditional events, which are arbi-
trary but computable relaxed versions of the event of interest. These pre-conditional events 
co-occur with the anomaly one is trying to model, but are more frequent and, in principle, 
a good indication for these. To be more precise, a pre-conditional event (i) represents a less 
extreme version of the anomalies we are trying to detect (main events); and (ii) co-occur 
with anomalies (i.e. there can not be an anomaly without a pre-conditional event). This 
concept is illustrated in the right-hand side of Fig. 3 as a Venn diagram for classes.

Our working hypothesis in this paper is that modelling these pre-conditional events can 
be advantageous to capture the actual events of interest. To achieve this, we adopt a layered 
learning method (Stone & Veloso, 2000). Layered learning denotes a hierarchical machine 
learning approach in which a predictive task is split into two or more layers (simpler pre-
dictive tasks) where the learning process within a layer affects the learning process of the 
next layer. This type of approach is also common in the hierarchical reinforcement learning 
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literature (Dietterich, 2000a); for example, the options framework by Sutton (1998). Our 
contribution is its application to early anomaly detection problems.

Our approach exploits the idea that rare events of interest co-occur with pre-conditional 
events, which are considerably more frequent. Further, the same type of event of inter-
est can be caused by distinct factors. For example, a particular type of CHE affecting two 
people may be caused by different diseases, which in turn may cause distinct dynamics in 
the time series of physiological signals. Therefore, initially modelling a relaxed version of 
the event of interest may lead to a simplification of the predictive task and a better perfor-
mance when capturing the actual event of interest.

We apply the proposed approach to tackle the problem of predicting different types 
of CHE, including hypotension, hypertension, tachycardia, bradycardia, tachypena, 
bradypena, and hypoxia. Our results show that the layered learning model leads to a better 
average anticipation time for the same rate of false alarms when compared to different state 
of the art methods.

In short, the contributions of this paper are the following:

– a general hierarchical approach to the early detection of anomalies in time series data;
– the application of the proposed approach to several CHE problems, namely hypoten-

sion, hypertension, tachycardia, bradycardia, tachypena, bradypena, and hypoxia;
– a set of experiments validating the proposed approach, which includes a comparison 

with state of the art approaches.

This paper is structured as follows. In the next section, we start by formalising the problem 
of activity monitoring, both in general terms and using the case study of event prediction in 
ICUs. In sect.  3, we present the proposed layered learning approach to activity monitoring. 
We overview layered learning as proposed by Stone and Veloso (2000), and formalise our 
proposed adaptation for the early detection of CHE. In sect.  4, we carry out some experi-
ments using the MIMIC II database (Saeed et al., 2002), and discuss these in Sect. 5. In 
sect.  6, we overview the related work, and finally conclude the paper in sect.  7.

We note that this paper is an extension of the work published in Cerqueira et al. (2019). 
The data is publicly available (Saeed et al., 2002). We also publish our code in an online 
repository1.

2  Early anomaly detection

2.1  Formalization

We formalise the problem of early anomaly detection in time series in this section. We start 
by formalising the general problem and then the particular case of CHE prediction.

We follow (Weiss & Hirsh, 1998) to formalise the predictive task. Let D = {D1,… , 
D|D|} denote a set of time series. In our case, D represents a set of patients being monitored 
at the ICU of an hospital. Each Di ∈ D denotes a time series Di = {di,1, di,2, di,ni} , where ni 
represents the number of observations for entity Di , and each d ∈ Di represents information 

1 At https:// github. com/ vcerq ueira/ activ ity_ monit oring_ mimic.

https://github.com/vcerqueira/activity_monitoring_mimic
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regarding Di in the respective time step (e.g. a set of physiological signals captured from a 
patient in the ICU).

Each Di can also be represented as a set of sub-sequences Di = {�1, �2,… , 
�i,… , �n�−1, �n� } , where �i represents the i-th sub-sequence. A sub-sequence is a tuple 
�i = (ti,Xi, yi) , where ti denotes the time stamp that marks the beginning of the sub-
sequence, Xi ∈ � represents the input (predictor) variables, which summarise the recent 
past dynamics of the time series Di ; and yi ∈ �  denotes the target variable, which is a 
binary value ( yi ∈ {0, 1},∀ i ∈ {1,… , n�} ) that represents whether or not there is an 
impending anomaly in the near future in the respective time series. How near in the future 
is typically a domain-dependent parameter. For each sub-sequence �i , we construct the fea-
ture-target pair ( Xi,yi ) as follows.

As illustrated in Fig. 1, �i has three associated windows: (i) the target window (TW), 
which is used to determine the value of yi ; (ii) an observation window (OW), which is the 
period available for computing the values of Xi ; and (iii) a warning window (WW), which 
is the lead time necessary for a prediction to be useful. An adequate WW enables a more 
efficient allocation of resources. Further, in the case of clinical medicine, physicians need 
some time after an alarm is launched to decide the most appropriate treatment.

The sizes of these windows depend on the domain of application and on the sampling 
frequency of the time series. In principle, the problem will be easier as the observation 
window is closer to the target window, that is, a smaller warning window is required. Weiss 
and Hirsh (1998) provide evidence for this property when predicting equipment failure, 
and Lee and Mark (2010) obtain similar results regarding hypotension prediction.

2.2  Event prediction in ICUs

In this work, we focus on a particular instance of early anomaly detection problems: CHE 
prediction in ICUs, particularly hypotension, hypertension, tachycardia, bradycardia, 
tachypena, bradypena, and hypoxia. For example, Ghosh et al. (2016) state that prolonged 
hypotension leads to critical health damage, from cellular dysfunction to severe injuries in 
multiple organs. Sustained tachycardia significantly increases the risk of stroke or cardiac 
arrest. Because CHEs are a relevant cause of mortality in ICUs, it is fundamental to antici-
pate them early in time so that physicians can prevent them or mitigate their consequences.

Patients assigned to the ICU are typically continuously monitored, with bio-sensors cap-
turing several physiological signals, such as heart rate, or mean arterial blood pressure. 
This is illustrated in Fig.  2, where the data of a patient is depicted. A sub-sequence for 

i time span

Observation 
Window

Warning 
Window

Target 
Window

ti
time

Fig. 1  Splitting a sub-sequence �i into observation window, warning window, and target window. The fea-
tures Xi are computed during the observation window, while the outcome yi is determined in the target 
window. In the timeline, the solid line describes the data available (past), while the dotted line represents 
the future
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CHE prediction is given as an example in the shaded area of the graphic. This area is split 
into three windows (observation, warning, target), as explained above.

Sensors capturing the physiological signals of a patient are typically collected with a 
high sampling frequency. In this work, we assume an instance arrives every minute for 
each ICU stay.

2.3  Critical health episodes

Table 1 describes each type of event we attempt to predict in this paper. We follow Forkan 
et al. (2017) closely to define these clinical conditions. Typically, these events occur when 
the respective physiological signal is below/above a pre-defined threshold for a prolonged 
period of time. For example, hypotensive episodes are defined as “a 30-minute window 
having at least 90% of its 6mean arterial blood pressure (MAP) values below 60 mmHg 
[millimetres of mercury]” (Tsur et al. 2018; Lee and Mark 2010). Essentially, this means 
that an hypotension episode occurs if the definition put forth in Table 1 is met for 90% of 
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Fig. 2  The physiological signal of patients are monitored over time. Each sub-sequence, denoted by the 
shaded areas, is split in an observation window, a warning window, and a target window

Table 1  Critical health episodes addressed in this work. The threshold column defines the point from which 
the respective condition occurs

Event Description Threshold

Acute hypotension Low mean arterial blood pressure < 60 mmHg
Hypertension High mean arterial blood pressure > 105 mmHg
Tachycardia High heart rate > 100 beats p/ min (resting)
Bradycardia Low hear rate < 60 beats p/ min (resting)
Tachypena High respiration rate > 17 breaths p/ min
Bradypena Low respiration rate < 12 breaths p/min
Hypoxia Low oxygen saturation < 93%
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the instances in a given 30 minute period. We adopt this approach for all seven CHEs. In 
this context, the target variable value for a given CHE is computed as follows:

In other words, we consider that the i-th sub-sequence represents an anomaly if its target 
window represents a CHE (c.f. Fig.  2). Since CHEs are typically rare, the target vector y 
is dominated by the negative class (i.e. y = 0 ), where a patient shows a normal behaviour. 
For the target window of 30 minutes, we consider an observation window and a warning 
window of 60 minutes each.

2.4  Discriminating approaches to early anomaly detection

Naturally, one of the most common approaches to solving the problem defined previously 
is to view it as a conditional probability estimation problem and use standard supervised 
learning classification methods (Fawcett & Provost, 1999; Tsur et al., 2018). The idea is to 
build a model f ∶ � → �  , where X ∈ � and y ∈ �  . This model can be used to predict the 
target values associated with unseen feature attributes. In other words, f is a discriminating 
model that explicitly distinguishes normal activity from anomalous activity.

Notwithstanding the widespread use of this approach, early anomaly detection problems 
often comprise complex target variables whose definition is derived from the data. In such 
cases, it is possible to decompose the target variable into partial and less complex concepts, 
which may be easier to model. In this context, our working hypothesis is that we can lever-
age a layered learning approach to model these partial concepts and obtain an overall better 
model for capturing the actual events of interest.

3  Layered learning for early anomaly detection

3.1  Layered learning

Layered learning is designed for predictive tasks whose mapping from inputs to outputs 
is complex. For example, Stone and Veloso (2000) apply this approach to robotic soccer. 
Particularly, one of the problems they face is the retrieval and passing of a ball. The authors 
split this task into three layers: (i) ball interception; (ii) pass evaluation; and (iii) pass selec-
tion. This process leads to a more effective decision-making system with a considerably 
higher success rate than a direct approach. This type of approach is also common in the 
reinforcement learning literature (Dietterich, 2000a). Specifically, hierarchical reinforce-
ment learning consists in breaking a problem into a hierarchy of sub-tasks.

As Stone and Veloso (2000) describe, “the key defining characteristic of layered learn-
ing is that each layer directly affects the learning of the next”. This effect can occur in sev-
eral ways; for example, by affecting the set of training examples, or by providing features 
used for learning the original concept.

The general assumption behind decomposing a problem into hierarchical sub-tasks is 
that the problem addressed in each layer is simpler than the original one. We hypothesise 
that, when combining the models in each layer, this leads to a better overall approach for 
solving the task at hand.

yi =

{
1, if a CHE happens in TWi,

0, otherwise.



4415Machine Learning (2023) 112:4409–4430 

1 3

3.2  Pre‑conditional events

The definition of an anomalous event in time series data is in many cases determined 
according to some rule derived from the data. As an example from the healthcare domain 
presented in the previous section, a CHE is defined as a percentage of numeric val-
ues which are below some threshold within a time interval (c.f. sect.  2.3). This type of 
approach for defining anomalous events is also common in other domains. For example, in 
predictive maintenance (Ribeiro et al., 2016), numerical information from sensor readings 
is transformed into a class label which denotes whether or not an observation is anomalous. 
In wind ramp detection, a ramp event is a rare occurrence that denotes a large percentage 
change in wind power output in a short time interval (Ferreira et al., 2011).

Since these anomalous events are defined according to the value of an underlying vari-
able, we can also define pre-conditional events: relaxed versions of the actual events of 
interest, but which are more frequent. A more precise definition can be given as follows. 
A pre-conditional event is an arbitrary but computable event that is expected to occur with 
the main event taking place simultaneously. If the main event occurs, the pre-conditional 
event must occur, but the latter can occur without the main event.

An example can be provided using the case study of hypotension prediction. According 
to sect.  2.3, we define the main event as “a 30-minute window having at least 90% of its 
mean arterial blood pressure (MAP) values below 60 mmHg”. A possible pre-conditional 
event for this scenario could be “a 30-minute window having at least 45% of its mean arte-
rial blood pressure (MAP) values below 60 mmHg”. Another possibility is “a 30-minute 
window having at least 90% of its mean arterial blood pressure (MAP) values below 70 
mmHg”.

In summary, pre-conditional events should have the following two characteristics:

– Pre-conditional events should have a higher relative frequency than the main events;
– Pre-conditional events always happen when the main events happen. The inverse is not 

a necessary condition. Another way to put it is that pre-conditional events are neces-
sary, but not sufficient, events for the occurrence of the respective clinical condition.

3.3  Methodology

We can leverage the idea of pre-conditional events and use a layered learning strategy to 
tackle activity monitoring problems in time series data. Our idea is to decompose the main 

Data Space

Main  

Events

Data Space

Main 

Events 

Pre- 

conditional  

Events

Normal  

Activity
Normal  

Activity

Fig. 3  Venn diagram for the classes in an activity monitoring problem. The main event represents a small 
part of the data space; pre-conditional events are more frequent and include the occurrence of the main 
events
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predictive task into two layers, each denoting a predictive sub-task. Pre-conditional events 
are modelled in the first layer, while the main events are modelled in the subsequent one.

The intuition behind this idea is given in Fig.  3. The figure presents two Venn diagrams 
for classes. Focusing on the left-hand side, the anomalies or main events (e.g. hypotension) 
represent a small part of the data space. This is one of the issues that makes them difficult 
to model. In the typical classification approach, main events are directly modelled with 
respect to the remaining data space (deemed normal activity).

Our idea is represented on the right-hand side. An initial pre-conditional concept is 
considered, which is more common than the main target concept, while also including it. 
The higher relative frequency of the pre-conditional events with respect to the main events 
helps to mitigate the problem of having an imbalanced distribution, which is the case in 
activity monitoring tasks. This phenomenon can compromise the performance of learn-
ing algorithms (He & Ma, 2013). In effect, we first model the pre-conditional events with 
respect to normal activity. These pre-conditional events are, in principle, easier to learn 
relative to the main concept because they are more frequent and thus the classification 
algorithms will not suffer so much from an imbalanced distribution. Afterwards, the main 
target events are modelled with respect to the pre-conditional events, which is also a less 
imbalanced distribution than the original on the left diagram.

In the remainder of this section, we will further formalise our approach using a generic 
notion of pre-conditional and main events. In the next section, we will apply this formalisa-
tion to CHE prediction problems.

3.3.1  Pre‑conditional events sub‑task

Let S denote a pre-conditional event. The target variable when modelling these events is 
defined as:

For this task, a sub-sequence �S
i
 is a tuple �S

i
= (ti,Xi, y

S

i
) . The difference to the original 

sub-sequence �i is the target variable, which replaces y with yS . Finally, the goal of this first 
predictive task is to build a function f S that maps the input predictors X to the output yS.

3.3.2  Main events sub‑task

Provided that we solve the pre-conditional events sub-task, in order to predict impending 
main events the remaining problem is to find out whether or not, when S happens, the main 
event also happens.

Let F  be defined as the occurrence: “given S , there is an impending main event in the 
target window of the current sub-sequence”. Effectively, the target variable for this task is 
defined as follows:

The target variable for this sub-task ( yF  ) is formalised in equation 2. Given that the class 
of yS is positive (which means that there is an impending pre-conditional event), the class 

(1)yS
i
=

{
1 if S happens,

0 otherwise.

(2)Given yS = 1, yF
i
=

{
1 if a main event happens in TWi,

0 otherwise.



4417Machine Learning (2023) 112:4409–4430 

1 3

of yF  is positive if a main event also happens in that same target window, or negative 
otherwise.

The goal of this second predictive task is to build a function fF  , which maps X to yF  . 
Formally, a sub-sequence �F

i
 is represented by �F

i
= (ti,Xi, y

F

i
) . In this scenario, however, 

the set of available sub-sequences Di is considerably smaller than in the pre-conditional 
sub-task because only the sequences for which yS equals 1 are accounted for. This means 
that fF  only learns with sub-sequences that at least lead to a pre-conditional event. Effec-
tively, this aspect represents how the learning in the pre-conditional events sub-task affects 
the learning on the main events sub-task, i.e., by influencing the data examples used for 
training. In the main events sub-task, a predictive model is concerned with the distinction 
between pre-conditional events and main events. Essentially, it assumes that the distinction 
between normal activity and pre-conditional events is carried out by the previous layer. 
Given this independence, the training of the two layers can occur in parallel.

3.3.3  Predicting impending anomalies

To make predictions about impending events of interest we combine the models f S with 
fF  with a function g ∶ � ×� → � .

Essentially, according to equation 3 the function g predicts that there is an impending main 
event in a given sub-sequence �i according to the multiplication of the outcome predicted 
by both f S and fF .

Ideally, there are three possible outcomes:

– Both event S and event F  happen, which means there is an impending main event: both 
f S and fF  should return 1 so that f S ⋅ fF = 1;

– Event S happens, but event F  does not happen: f S = 1 , but fF = 0 , so f S ⋅ fF = 0;
– Event S does not happen, and consequently, event F  also does not happen: f S ⋅ fF = 0.

3.4  Application of layered learning to CHE prediction

As mentioned before (c.f. sect.  2.3), a CHE is defined as a 30-min period where 90% of 
the respective physiological signal values are below or above the threshold. We propose to 
relax this threshold and define the pre-conditional event S as: 

S
CHE  : “a 30-minute window having at least 45% of its physiological signal values below/

above the pre-defined threshold".

We picked the value 45% arbitrarily (half the original percentage), and use it for all 
seven problems. Essentially, we attempted to make the pre-conditional events much more 
frequent relative to the main events. Nevertheless, this parameter can be optimised. Simi-
larly to other hierarchical methodologies, for example in hierarchical reinforcement learn-
ing (Dietterich, 2000b), the definition of the sub-task is performed manually. In sect.  5.2, 
we will discuss this issue further.

(3)g(Xi) = f S(Xi) ⋅ f
F(Xi)
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4  Empirical experiments

The central research question addressed in this paper is the following:
How does the proposed layered learning strategy perform relative to other state of the 

art approaches for the early anomaly detection of critical health events?

4.1  Case study and predictive tasks

4.1.1  MIMIC II

In the experiments, we used the database Multi-parameter Intelligent Monitoring for Inten-
sive Care (MIMIC) II (Saeed et  al., 2002), which is a benchmark for several predictive 
tasks in healthcare, including CHE prediction.

As inclusion criteria of patients and general database pre-processing steps, we follow 
(Lee & Mark, 2010) closely. For example, the sampling frequency of the physiological data 
of each patient in the database is minute by minute. Moreover, the following physiological 
signals are collected: heart rate (HR), systolic blood pressure (SBP), diastolic blood pres-
sure (DBP), mean arterial blood pressure (MAP), respiration rate (RR), and oxygen satura-
tion (SPO2).

As described in sect.  2.2, the target window size is 30 minutes. For each target window, 
there is a 60-minute observation window and a 60-minute warning window. For a compre-
hensive read regarding the data compilation, we refer to the work by (Lee & Mark, 2010). 
Considering this setup, the number of patients is 2.643, leading to a data size of 10.067.577 
sub-sequences.

4.1.2  Pre‑processing and feature engineering

We consider HR, SBP, DBP, and MAP values between 10 and 200 (bpm for HR, mmHg 
for the remaining ones). Values outside of this range are eliminated as “unlikely outliers” 
(Lee & Mark, 2010). From the available signals (HR, SBP, DBP, MAP, RR, SPO2), we 
compute the values of cardiac output (CO) and pulse pressure (PP).

Regarding feature engineering, we follow previous work in the literature (Lee & Mark, 
2010; Tsur et al., 2018). Using the observation window of each sub-sequence and of each 
physiological signal, the feature engineering process was carried out using statistical, 
cross-correlation, and wavelet functions. The statistical metrics include skewness, kurtosis, 
slope, median, minimum, maximum, variance, mean, standard deviation, and inter-quartile 
range. For each observation window, we also compute the cross-correlation of each pair of 
signals at lag 0. We also use the Daubechies wavelet transform (Percival & Walden, 2006) 
to perform a 5-level discrete wavelet decomposition and capture the relative energies in dif-
ferent spectral bands. Intuitively, medication data can play an important role. However, Lee 
and Mark (2010) reported no predictive advantage in using such information. In effect, we 
do not include this information in the predictive models.

4.1.3  Predictive tasks

We explore the research question put forth above in the seven problems described in 
sect.  2.3. These are also outlined in Table 2, which also includes the distribution of anom-
alous events and the distribution of the respective pre-conditional event.
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We apply the same data pre-processing steps and learning algorithms for all these pre-
dictive tasks.

4.2  Performance estimation

To estimate the predictive performance of each method, we used a 10-fold cross-valida-
tion, in which folds are split by patients. To be more precise, in each iteration of the cross-
validation procedure, one fold of patients is used for validation, another fold of different 
patients is used for testing, and the remaining patients are used for training the predictive 
model. Therefore, all sub-sequences of a given patient are only used for either training, val-
idation, or testing. The set of time series (patients) only comprises a temporal dependency 
within each patient, and we assume the data across patients to be independent. That is, the 
probability that a patient suffers a health crisis is independent of another patient also suffer-
ing a health crisis. In this context, the application of cross-validation in this setting is valid. 
Finally, the sub-sequences of the patients chosen for training are concatenated together to 
fit the predictive model. This model is tuned using the sub-sequences of patients chosen for 
validation and evaluated using the sub-sequences of patients chosen for testing.

4.2.1  Sub‑sequences used for training

Given the sizes of OW, WW, and TW (60, 60, and 30 minutes, respectively), the duration 
of a sub-sequence is 150 minutes. Since the data is collected every minute, there is consid-
erable overlap between consecutive sub-sequences. During run-time, a given model is used 
to predict whether there is an impending CHE in each sub-sequence. This approach emu-
lates a realistic scenario, where a prediction is produced as more data is available regarding 
the current health state of a given patient.

Given the redundancy among consecutive sub-sequences, it is common to sample the 
sub-sequences for training a predictive model (Tsur et al., 2018). For example, Cao et al. 
(2008) compile sub-sequences for training according to whether a patient has experienced 
a CHE. For every patient that did, the latest 120 minutes of data before the onset of the 
respective CHE are used to create a training sub-sequence. If a patient did not experience 
a CHE, one or more sub-sequences are sampled at random. Lee and Mark (2010) col-
lect multiple sub-sequences in a sliding window fashion, irrespective of whether a patient 
experienced a CHE. A sliding window with no overlap and of size TW is used to traverse 
each patient. That is, if a sub-sequence �i starts at time tj then the next sub-sequence �i+1 
starts at time tj+30 . The authors show that this approach leads to better results relative to 

Table 2  Distribution of each 
anomalous event and its 
respective pre-conditional event

Event Event Dist. (%) Pre-conditional 
Event Dist. (%)

Bradycardia 2.05 3.25
Bradypena 3.81 7.57
Hypertension 2.42 4.96
Hypotension 1.59 4.00
Hypoxia 5.76 9.95
Tachycardia 9.86 13.00
Tachypena 30.49 43.83
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the approach taken by Cao et al. (2008). In both cases described above, the authors note 
that these approaches lead to an imbalanced data set. They recommend under-sampling the 
majority class to overcome this issue.

In this work, we follow the approach by Lee and Mark (2010). As recommended, we 
also apply a class balance procedure, which is described below in sect.  4.3.

4.2.2  The value of a prediction

The timely prediction of impending CHEs enables a more efficient allocation of ICU 
resources and a more prompt application of the appropriate treatment. In this context, for 
a prediction to be useful, it must occur before the onset of the respective CHE. We assume 
that, after the event starts, any prediction becomes obsolete. Further, predicting too early 
also leads to meaningless predictions due to the continuity of time. We follow the approach 
taken in the 10th PhysioNet challenge (Moody & Lehman, 2009) regarding hypotension 
prediction, and extend it to all seven problems addressed in this work. A CHE is considered 
to be correctly anticipated if it starts within 60 minutes after an alarm is launched. We con-
sider the value of an alarm to be binary, where its benefit is 1 if it is issued correctly, and 0 
otherwise.

4.2.3  Learning algorithms

We tested different predictive models in the experiments, namely a random forest (Wright, 
2015), a support vector machine (Karatzoglou et  al., 2004), a deep feed-forward neural 
network (Abadi et al., 2016), an extreme gradient boosting (xgboost) model (Chen et al., 
2015), and the lightgbm algorithm (Ke et al., 2017). We only show the results of the latter 
in these experiments, since it provides better performance than the remaining methods for 
the prediction of the CHEs addressed in this paper. Each learning algorithm is optimized 
on a validation set (c.f. 4.2) using a grid search.

4.3  State of the art methods

We compare the proposed layered learning approach (henceforth denoted as LL) with the 
following four methods.

4.3.1  Standard classification

We compare LL with a standard classification method (CL) that does not apply a layered 
learning approach and directly models the events of interest with respect to normal activ-
ity (c.f. Fig.  3). One of the working hypothesis for the application of the proposed layered 
learning approach is that it helps to mitigate the class imbalance problem. To further cope 
with this problem, we process the data used for training CL and LL using a re-sampling 
method. In the case of LL, this process was applied to both layers after performing the task 
decomposition. We applied SMOTE (Chawla et al., 2002) in both cases for all problems. 
We also tested other strategies in our experiments (e.g. random undersampling, random 
oversampling), but overall SMOTE performed better.
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4.3.2  Isolation forest

An Isolation Forest (IF) (Liu et al., 2012) is a state of the art unsupervised model-based 
approach to anomaly detection. A typical method of this sort typically discards the anom-
alies within the training data and creates a model for normal activity. Observations that 
significantly deviate from the typical behaviour are considered outliers. We referred to 
these approaches as profiling methods (sect.  6.1). Instead of separating the normal activ-
ity, IF explicitly models the anomalies in an unsupervised manner using an ensemble of 
tree-structured models. The core idea behind a IF is that the paths resulting from partition-
ing the data are shorter for anomalous observations because the regions comprising these 
anomalies are separated quickly.

4.3.3  Ad‑hoc methods

While there is an increasing number of machine learning applications in healthcare, many 
of the currently deployed systems still rely on simple ad-hoc rules to support the decision-
making process of professionals. Taking hypotension prediction as an example, a simple 
rule is to trigger an alarm if the MAP of a patient drops below 60 mmHg in a given time 
step. A similar approach can be used for the remaining anomalous events, where an alarm 
is launched if the respective variable variable exceeds the threshold at any point in time. 
However simple, these ad-hoc rules often work well in practice. We use these rules as 
baselines in our experimental design and denote them as AH. The threshold for each CHE 
is described in Table 1.

4.4  Evaluation metrics

Approaches dealing with the prediction of critical health episodes typically evaluate pre-
dictive models using classical classification metrics, namely precision, recall, and F1 (Lee 
& Mark, 2010, 2010; Ghosh et  al., 2016; Tsur et  al., 2018). However, these metrics are 
unsuitable when dealing with high frequency time series because, as Fawcett and Prov-
ost (1999) state, they ignore the temporal order of observations and the value of timely 
decisions.

The goal behind early anomaly detection problems is not to classify each sub-sequence 
as positive or negative (Fawcett & Provost, 1999). Instead, the main goal is to detect, in a 
timely manner, when there is an impending anomalous event. In this context, we follow 
(Fawcett & Provost, 1999) regarding the evaluation process and apply the activity moni-
toring operating characteristic (AMOC) analysis. The rationale behind AMOC curves is 
similar to that of the well-known ROC curves, but tailored for time-dependent problems.

The AMOC curve used in this work differs from the standard ROC curve in two 
ways. First, it plots the expected number of false alarms, normalized by the unit of 
time, on the x-axis. We apply 60 minutes as the unit of time, which represents the 
size of the observation window. As an example, a false alarm rate (FAR) of 0.5 means 
that a false alarm is expected every 30 minutes. Second, the AMOC curve plots the 
expected value of the alarm on the y-axis instead of the true positive rate. As described 
in sect.  4.2.2, we quantify the value of an alarm according to anticipation time. There-
fore, the expected value of the alarm represents the average anticipation time, which 
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is also normalized by a period of 60 minutes. In effect, a score of 0.5 means that we 
expect to predict an event with 30 minutes in advance. We refer to the work by Fawcett 
and Provost (1999) for a comprehensive read on AMOC analysis.

As we mentioned before, we use a 10-fold cross-validation process to estimate pre-
dictive performance. The AMOC curve for each method is created by concatenating 
the results across all folds. Therefore, each curve presented below reflects the predic-
tive performance of each method across all patients.

Fig. 4  AMOC curves for the 
bradycardia predictive task
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Fig. 5  AMOC curves for the 
bradypena predictive task
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4.5  Results

Figures 4, 5, 6, 7, 8, 9, and 10 show the results of the experiments in the form of AMOC 
curves, one for each predictive task: bradycardia, bradypena, hypertension, hypotension, 
hypoxia, tachycardia, and tachypena. Each AMOC curve depicts the false alarm rate (aver-
aged across ICU visits) in the x-axis, and the event anticipation time (also averaged across 
ICU stays) in the y-axis for the respective approach. The average false alarm rate should be 
minimized, while the average anticipation time should be maximized. Therefore, methods 
perform better as their AMOC curve is closer to the top-left corner of the graphic.

Fig. 6  AMOC curves for the 
hypertension predictive task
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Fig. 7  AMOC curves for the 
hypotension predictive task
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Inspecting Figs. 4, 5, 6, 7, 8, 9, and 10 from an high-level perspective, the AMOC curve 
for the proposed method (LL) dominates the curves of the other approaches in most of the 
problems. In general, both LL and CL show a systematic and consistent advantage relative 
to IF, except for the tachypena scenario. The AH point is also dominated in most scenarios, 
except in the bradypena and hypoxia problems. We remark that the AH method presents a 
single point as it is not a probabilistic approach. Notwithstanding, a single point perfor-
mance score is less flexible as practitioners are unable to select the level of risk via the 
decision threshold. Moreover, in the two scenarios where AH is not dominated, its aver-
age anticipation score may be too low for detecting CHEs, where the recall scores are 

Fig. 8  AMOC curves for the 
hypoxia predictive task
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Fig. 9  AMOC curves for the 
tachycardia predictive task
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fundamental. It is worth mentioning that IF fails to beat the AH points in all problems 
except tachypena, which shows that this method is not generally suitable for these tasks.
LL shows a systematic improvement over CL in almost all problems. The exceptions are 

the task hypoxia and bradypena, where the performance of the two methods are compara-
ble across the curves. Interestingly, these are the same two problems where the AH point is 
not dominated by either LL or CL, tough there may not be any type of causality between 
the two occurrences.

5  Discussion

5.1  On the experimental results

In the previous section, we provided empirical evidence for the advantages of using a lay-
ered learning approach for CHE prediction problems. We briefly discuss the results in this 
section. We also discuss the main challenges associated with the proposed approach.

The results indicate that IF, a state of the art approach for anomaly detection, performs 
considerably worse relative to discriminating approaches, namely LL and CL, for six out of 
the seven problems. While AH is a simplistic baseline, its performance was not dominated 
by the trainable models in two of the tasks. Notwithstanding, this method is also inflexible 
to different levels of risk. Overall, LL shows the most competitive performance relative to 
state of the art approaches across all seven problems addressed in this work.

As we mentioned before, the reported experiments were carried out using an lightgbm 
(Ke et al., 2017). This algorithm was used to train both layers of our approach (LL), and as 
a stand-alone classifier without layered learning (CL). Using this learning algorithm leads 
to the best overall results relative to other ones such as random forests, or a deep feedfor-
ward neural network. Notwithstanding, deep learning approaches, recurrent architectures 
in particular, have been increasingly applied in the healthcare domain (e.g., Tamilselvan 

Fig. 10  AMOC curves for the 
tachypena predictive task
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and Wang (2013)). In future work, we will study these methods further, both as bench-
marks and as possible solutions within a layered learning approach.

When applying CL and LL we resorted to the SMOTE pre-processing algorithm 
(Chawla et al., 2002) to balance the class distribution. We tested different algorithms, such 
as random under-sampling, but SMOTE showed the most competitive performance across 
the seven problems.

In terms of scalability, we did not find significant differences between the trainable 
methods in terms of inference time. Although LL contains two predictive models (one for 
each layer), the inference time of the lightgbm is negligible.

5.2  Future work

One of the main challenges in the proposed methodology is the manual definition of 
pre-conditional events. This process is highly domain-dependent. In this sense, it can be 
regarded as an opportunity for domain experts to embed their expertise in predictive mod-
els. Notwithstanding, nowadays there is an increasing interest for end-to-end automated 
machine learning technologies (Thornton et al., 2013; Feurer et al., 2015), and a manual 
definition of sub-tasks can be regarded as a bottleneck.

The problem of manually defining sub-tasks is common in other hierarchical 
approaches. For example, similarly to layered learning, hierarchical reinforcement learn-
ing also involves the decomposition of a problem into hierarchical sub-tasks (Dietterich, 
2000a). In this topic, one of the most common approaches to this effect is the options 
framework by Sutton (1998). According to this approach, the definition of the sub-tasks in 
performed manually by the programmer.

An automatic definition of sub-tasks, which in our case refers to the definition of pre-
conditional events, is a difficult problem. In the reinforcement learning literature, there is 
recent work which try to learn these sub-tasks (Klissarov et al., 2017; Harb et al., 2018; 
Riemer et al., 2018). In future work, we will explore this research line and try to leverage it 
to develop a way of automatically defining pre-conditional events. In this work, we settled 
for simple definition of pre-conditional events by decreasing the target percentage from 
90% to 45% for all seven problems. Clearly, this value can be optimized using a valida-
tion set, and it is something that an automatic definition of pre-conditional events should 
include.

Although we focus on CHE prediction problems, our ideas for layered learning can 
be generally applied to other early anomaly detection or activity monitoring problems, 
for example, problems with complex targets, which can be decomposed into partial, sim-
pler targets. While the task decomposition is dependent on the domain, we describe some 
guidelines which can facilitate its implementation.

6  Related research

6.1  Activity monitoring

The problem of timely detection of anomalies is also known in the literature as activity 
monitoring (Fawcett & Provost, 1999). The goal of this predictive task is to track a given 
activity over time and launch timely alarms about interesting events that require action. 
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According to (Fawcett & Provost, 1999), there are two classes of methods for activity 
monitoring:

– Profiling: In a profiling strategy, a model is constructed using only the normal activity 
of the data, without reference to abnormal cases. Consequently, an alarm is triggered 
if the current activity deviates significantly from normal activity. This approach may 
be useful in complex time-dependent data where anomalies do not have a well-defined 
concept. For example, fraud attempts often occur in different manners. Effectively, by 
modelling only normal activity, one is apt to detect different types of anomalies, includ-
ing the ones unknown hitherto.

– Discriminating: A discriminating method constructs a model about anomalies with 
respect to the normal activity, handling the problem as a classification one. A system 
then uses a model to examine the time series and look for anomalies. In this scenario, 
the recent past dynamics of the data are used as predictor variables. The target variable 
denotes whether the event of interest occurs.

We focus on the latter strategy, which is the one followed by the proposed layered learning 
method for activity monitoring. Notwithstanding, we compare our approach to IF, which 
is a method that follows the profiling strategy.

6.2  CHE prediction

Hypotension prediction has been gaining increasing attention from the scientific commu-
nity. For example, the 10th annual PhysioNet / Computers in Cardiology Challenge focused 
on this predictive task (Moody & Lehman, 2009). While the methods used in this particu-
lar challenge are not state of the art anymore, the purpose of the reference is to show the 
relevance of the predictive task.

Regarding the other problems, namely hypertension, tachycardia, bradycardia, tachy-
pena, bradypena, and hypoxia, we follow Forkan et al. (2017) to define these events. How-
ever, they adopt a standard classification approach to evaluate the predictive performance 
of models and check how well each instance is classified into the positive or negative class. 
In our case, we are interested in anticipating each event rather than each isolated instance. 
Therefore, we used a more robust approach for defining the critical events. We consider 
that an event occurs if the respective physiological signal is below/above the threshold in 
90% of the observations in a given 30 minute period.

Like other activity monitoring problems or anomaly detection tasks, the typical 
approach to this problem is to use standard classification methods. This is the case of Lee 
and Mark, which use a feed-forward neural network as predictive model (Lee & Mark, 
2010). Tsur et al. (2018) follow a similar approach and also propose an enhanced feature 
extraction approach before applying an extreme gradient boosting algorithm.

6.3  Layered learning

Layered learning was proposed by Stone and Veloso (2000), and was specifically designed 
for scenarios with a complex mapping from inputs to outputs. In particular, they applied 
this approach to improve several processes in robotic soccer.
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Decroos et  al. (2017) apply a similar approach for predicting goal events in soccer 
matches. Instead of directly modelling such events, they first model goal attempts as what 
we call in this paper as a pre-conditional events sub-task.

Layered learning stems from the more general topic of multi-strategy learning. Layered 
learning approaches run multiple learning processes to improve the generalisation in a pre-
dictive task. This is a similar strategy as ensemble learning methods (Dietterich, 2000b). 
The main difference is that in layered learning, each layer addresses a different predic-
tive task, while in ensemble learning the predictive task is typically a single one. Another 
closely related topic to layered learning is hierarchical classification. In hierarchical clas-
sification, the output classes have a subsumptive relation. In our case, each pre-conditional 
event incorporates the occurrence of the respective main event (a CHE). We refer to the 
works by Silla and Freitas (2011) and Babbar (2014) for a comprehensive read on hierar-
chical classification approaches. We are unaware of the application of these approaches to 
time series data, particularly with the proposed idea of pre-conditional events.

6.4  Related early decision systems

The need for early predictions is also important in other predictive tasks which are related 
to activity monitoring. Time series classification is a well-studied topic, for example, in 
data stream mining (Bifet & Kirkby, 2009). However, traditional time series classification 
methods are inflexible for early classification. Typically, a method is trained on the full 
length of the time series, and the prediction is also made at that time point. Therefore, the 
main limitation of such methods is that they ignore the sequential nature of data, and the 
importance of early classification (Fawcett & Provost, 1999). The earliness component of 
classifiers for time series is important so that professionals and decision-makers can take 
pro-active measures and timely decisions. To overcome this limitation, several models 
for early classification of time series have been proposed. An example is the work of He 
et al. (2015), or Xing et al. (2011). Another example of a type of early decision systems is 
human motion recognition (Kuehne et al., 2011). This task is fundamental for surveillance 
systems or human-computer interactive systems.

7  Summary

Layered learning approaches are designed to solve predictive tasks in which a direct map-
ping from inputs to outputs is difficult. In this paper, we developed a layered learning 
approach for the early detection of anomalies in time series data. The idea is to break the 
original predictive task into two simpler predictive tasks, which are, in principle, easier 
to solve. We create an initial model that is designed to distinguish normal activity from a 
relaxed version of anomalous behaviour (pre-conditional events). A subsequent model is 
created to distinguish such pre-conditional events from the actual events of interest.

We have focused on predicting critical health conditions in ICUs. Compared to standard 
classification, which is a common solution to this type of predictive tasks, the proposed 
model can achieve a better trade-off between average anticipation time and average false 
alarm rate. The results also suggest that the proposed approach is better than other state of 
the art methods.
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