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Abstract
The slowness principle is a concept inspired by the visual cortex of the brain. It postu-
lates that the underlying generative factors of a quickly varying sensory signal change on 
a different, slower time scale. By applying this principle to state-of-the-art unsupervised 
representation learning methods one can learn a latent embedding to perform supervised 
downstream regression tasks more data efficient. In this paper, we compare different 
approaches to unsupervised slow representation learning such as Lp norm based slowness 
regularization and the SlowVAE, and propose a new term based on Brownian motion used 
in our method, the S-VAE. We empirically evaluate these slowness regularization terms 
with respect to their downstream task performance and data efficiency in state estimation 
and behavioral cloning tasks. We find that slow representations show great performance 
improvements in settings where only sparse labeled training data is available. Furthermore, 
we present a theoretical and empirical comparison of the discussed slowness regulariza-
tion terms. Finally, we discuss how the Fréchet Inception Distance (FID), commonly used 
to determine the generative capabilities of GANs, can predict the performance of trained 
models in supervised downstream tasks.
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1  Introduction

Learning representations that capture general high-level information from abundant unlabeled 
sensory data remains a challenge for unsupervised representation learning. Research in neu-
roscience suggests that a major difference between state-of-the-art deep learning architec-
tures and the human brain is that cells in the brain do not react to single stimuli, but instead 
extract invariant features from sequences of fast-changing sensory input signals (Bengio & 
Bergstra, 2009). Evidence found in the hierarchical organization of simple and complex vision 
cells shows that time-invariance is the principle after which the cortex extracts the underlying 
generative factors of these sequences and that these factors usually change slower than the 
observed signal (Wiskott & Sejnowski, 2002; Berkes & Wiskott, 2005; Bengio & Bergstra, 
2009).

Computational neuroscientists have named this paradigm the slowness principle wherein 
individual measurements of a signal may vary quickly, but the underlying generative fea-
tures vary slowly. For example, individual pixel values in a video change rapidly during short 
periods of time, but the scene itself usually changes in a slower time scale. This principle 
has found application in Slow Feature Analysis (SFA) as proposed in Wiskott and Sejnowski 
(2002). SFA has shown promising results in computational neuroscience but little research 
has explored the possible applications of the underlying slowness principle to state-of-the-art 
unsupervised representation learning methods used in deep learning. Previous research has 
employed temporal contrastive L1 and L2 losses in end-to-end tasks (Mobahi et al., 2009; Ser-
manet et al., 2018; Zou et al., 2012) such as classification and view-point invariant robot imita-
tion learning. Only recently an unsupervised representation learning method, the SlowVAE 
(Klindt et al., 2020), has been leveraging the observed statistics of natural transitions in obser-
vation space to extend the VAE objective with a sparse temporal prior. The SlowVAE slow-
ness prior has been evaluated on a variety of disentanglement metrics, but not with respect to 
downstream task data efficiency.

In this paper, we put existing methods for slow representation learning using Variational 
Autoencoders (VAEs) (Kingma & Welling, 2013) into a shared context and compare them 
from a theoretical and empirical point of view. We show that different priors used to enforce 
slowness can be included as a general slowness regularization term to the evidence lower 
bound (ELBO) of the VAE objective. Additionally, we propose a new slowness regularization 
term based on a Brownian motion prior for latent space evolution which is used in our method, 
the S-VAE. We empirically compare the �-VAE, the SlowVAE, S-VAE and L1/L2 slowness-
based VAEs with respect to their performance and data efficiency on downstream regression 
tasks such as odometry estimation and behavioral cloning.

Furthermore, we investigate quantitative measures for the quality of latent representations 
and find that the Fréchet Inception Distance proposed in Heusel et al. (2017) correlates with 
the downstream task performance. Being able to predict the downstream task performance 
without the need for ground truth labels, greatly accelerates the hyperparameter search dur-
ing the unsupervised pre-training of VAE models and helps identify good models without the 
need to perform the downstream task.
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2 � Related work

2.1 � Slowness principle

The slowness principle is based on the assumption that the true generative factors of a 
signal vary on slower time scales than raw sensory signals. Research in computational 
neuroscience suggests that cell structures in the visual cortex have emerged based on the 
underlying principle of extracting slowly varying features from the environment (Berkes 
& Wiskott, 2005). Leveraging this principle, we can extract higher-level invariant scene 
information which usually changes slower than for example the individual pixel values 
of a video.

The most well-known application of the slowness principle is the slow feature analy-
sis method (SFA) introduced in Wiskott and Sejnowski (2002). SFA is an unsupervised 
learning algorithm designed to extract linearly decorrelated features by expanding and 
transforming the input signal such that it can be optimized for finding the most slowly 
varying features from an input signal (Wiskott & Sejnowski, 2002). Extending the SFA 
method to nonlinear features has shown that the learned features share many character-
istics with those of complex cells in the V1 cortex (Berkes & Wiskott, 2005). Further 
applications of the slowness principle include transformation invariant object detection 
(Franzius et al., 2011), pre-training of neural networks for improved performance on the 
MNIST dataset (Bengio & Bergstra, 2009) and the self-organization of grid cells, struc-
tures in the rodent brain used for navigation (Franzius et al., 2007a, b).

2.2 � Contrastive learning and the slowness principle

The objective of contrastive learning is to learn to embed data using a metric score 
to express (dis-)similarity of data points. Contrastive learning has been successfully 
applied in reinforcement learning (Laskin et al., 2020) and recently for object classifica-
tion in SimCLR (Chen et al., 2020a, b). These methods use a contrastive loss on aug-
mented versions of the same observation, effectively learning transformation invariant 
features from images, and show that these representations benefit reinforcement learn-
ing and image classification tasks.

When using time as the contrastive metric we talk about time-contrastive learning. 
Time-contrastive learning has been applied successfully to learning view-point-invar-
iant representations for learning from demonstration with a robot (Sermanet et  al., 
2018). Similar to our work, Mobahi et al. used the coherence in video material to train 
a Convolutional Neural Network (CNN) for a variety of specific tasks (Mobahi et  al., 
2009). While training two CNNs in parallel with shared parameters, in alternating fash-
ion a labeled pair of images was used to perform a gradient update minimizing training 
loss followed by selecting two unlabeled images from a large video dataset to minimize 
a time-contrastive loss based on the L1 norm of the representations at each layer. The 
experiments showed that supervised tasks can benefit from the additional pseudo-super-
visory signal and that features invariant to pose, illumination or clutter can be learned. 
Compared to the above methods where a specific task is learned end-to-end with tem-
poral similarity as an additional supervisory signal, we use the slowness principle as a 
bias on model and data to learn task-agnostic representations that facilitate data efficient 
downstream task learning.
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In contrast, the GP-VAE proposed by Fortuin et al. (2020) is a model for learning tem-
poral dynamics for problems such as reconstructing missing input features, especially in 
a medical context. The core idea of the GP-VAE is to learn a latent embedding of high 
dimensional sequential data and to model latent dynamics using a Gaussian Process prior. 
The authors claim this prior facilitates representations that are smoother and allow the 
reconstruction of missing features in the input space. Compared to the GP-VAE, the meth-
ods presented in this paper address the problem of learning good representations for down-
stream tasks, instead of learning temporal dynamics of the signal. Another noteworthy 
method for learning temporal dynamics is the temporal difference variational autoencoder 
(TD-VAE) (Gregor et  al., 2019) which learns representations that encode an uncertain 
belief state from which multiple possible future scenarios can be rolled out.

2.3 � Disentanglement

Another concept related to unsupervised representation learning, especially when talking 
about the �-VAE, is disentanglement. Although there is no clear definition of disentangle-
ment yet, most works (Bengio et  al., 2013; Locatello et  al., 2019a; Klindt et  al., 2020) 
agree on the common notion that disentangled representations should approximate the 
ground truth generative factors of the observed data while the dimensions should be largely 
independent of each other. Ideally, each disentangled factor represents one ground truth 
factor that led to the generation of the observation data. Disentanglement in the context 
of the �-VAE has been discussed more in-depth by Burgess et  al. (2018). In the �-VAE 
pressure on the latent bottleneck of the autoencoder limits how much information can be 
transmitted per sample while at the same time trying to maximize the data log likelihood. 
This is done by enforcing a unit Gaussian prior on the latent distributions which results in 
the embedding of data points on a set of representational axes where nearby points on the 
axes are also close in data space. This regularization results in these axes being the main 
contributors to improvements in the data log-likelihood and therefore often coincide with 
the ground truth generative factors.

Some of the claimed benefits of disentangled representations are better downstream task 
data efficiency and interpretability (Schölkopf et al., 2012; Bengio et al., 2013; Peters et al., 
2017). However, in their research (Locatello et al., 2019a, b) show that various disentan-
glement methods are not able to generate disentangled representations without implicit 
biases on model and data and that more disentanglement does not necessarily lead to better 
downstream task data-efficiency. In a later work by Locatello et al. (2020) the aforemen-
tioned challenges were addressed and the authors showed that with weak supervision it is 
possible to learn fair and generalizable representations.

2.4 � Fréchet inception distance

The Fréchet Inception Distance (FID), as introduced in Heusel et al. (2017), is a measure for 
the generative capabilities of deep generative models. It measures how similar the images gen-
erated by GANs are to images from the real data distribution. The FID is an improvement of 
the Inception Score (IS) introduced by Salimans et al. (2016) which only evaluates the distri-
bution of the generated images and does not compare it to the true data distribution which has 
been shown to fail when comparing models (Barratt & Sharma, 2018). The FID is computed 
by comparing the activation distributions of an Inception-v3 neural network pre-trained on the 
ImageNet dataset for the generated and true data using the Wasserstein-2 distance between the 



2301Machine Learning (2023) 112:2297–2315	

1 3

real data distributions (�,C) , a Gaussian normal distribution with mean � and covariance C, 
and (�pred,Cpred) describing the generated data distribution.

3 � Autoencoding slow representations

Variational Autoencoders (VAEs) (Kingma & Welling, 2013) are a popular tool for dimen-
sionality reduction and representation learning. Let q� be the variational approximate poste-
rior distribution obtained from a VAE’s encoder network with parameters � and z be a latent 
vector such that z ∼ q�(z ∣ o) where o is an observation. The decoder network denoted by 
p�(o ∣ z) is parameterized by � . Since it is computationally not tractable to directly maximize 
the log probability of the data, a lower bound L is used for optimization:

where Lrec = �q�(z∣o)
[log p�(o ∣ z)] is the reconstruction quality, measured by comparing 

the true observation and the decoded observations. Lb = DKL(q�(z ∣ o)‖p(z)) is imposing a 
unit Gaussian prior p(z) on the representations in the bottleneck of the VAE. To make the 
sampling process differentiable (and thus trainable using gradient based optimization), the 
variational distribution is usually reparameterized as a Gaussian q� = N(�,�).

Higgins et al. (2017) proposed the �-VAE, which adds a parameter � to scale the weight of 
the pressure on the bottleneck to allow a trade-off between disentanglement of the latent fac-
tors and reconstruction quality.

Unlike in the �-VAE, where training data is assumed to be i.i.d, slow representation learn-
ing methods assume sequential data. The core idea of slow representation is to use this prop-
erty as a weak supervision signal to extract better high-level representations. The slowness 
constraint is incorporated in the VAE optimization target as

Rewriting Eq. (2) under the Karush–Kuhn–Tucker conditions (KuhnandA & Tucker, 1951; 
Karush , 1939) results in

With the simplification of �, �1, � , �2 ≥ 0 , we can derive the lower bound

with � being the �-VAE parameter and � being a parameter to control the weight of the 
general slowness regularization term Lslow . In the following, we present various slowness 
regularization terms used in existing works and a new slowness regularization term used in 
our method, the S-VAE.

3.1 � Lp‑norm slowness

A straightforward way to describe Lslow is to compute the Lp-norm of the means �i and 
�j of two encoded latent distributions from two distinct yet sequential observations 
�i, �j ∈ � ∣ j > i as

(1)max
�,�

log p�(o) ≥ L = Lrec − Lb

(2)
Lrec subject to Lb < 𝜖1,

Lslow < 𝜖2

(3)F = Lrec − �(Lb − �1) − �(Lslow − �2)

(4)F ≥ L = Lrec − �Lb − �Lslow.
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where j > i . Following Eq. (4), the full formulation of a Lp-slow VAE ELBO is therefore

where � and � parameterize encoder and decoder. The hyperparameters � and � are weights 
for the strength of the disentanglement and slowness regularization.

3.2 � SlowVAE

The SlowVAE by Klindt et al. (2020), is based on a study of the statistics of natural transi-
tions of object and object mask properties in two acknowledged video-object segmenta-
tion datasets. The authors base this prior on experimental evidence that the transitions of 
ground truth factors in such datasets can be approximated by generalized Laplace distribu-
tions, indicating that the temporal transitions are sparse. In other words, only few of the 
ground truth generative factors of a signal change in one transition. This assumption is 
expressed in a Laplacian prior on latent transitions, encouraging axis alignment. The Slow-
VAE slowness loss term is defined as

where p(zi+1 ∣ zi) is the Laplacian prior on the transition.
Consequently, the SlowVAE ELBO is defined as

3.3 � S‑VAE

We propose the S-VAE as an alternative point of view on slow representation learning. 
The key idea is to directly incorporate the slowness principles such that “underlying gen-
erative factors change on a slower time scale“ (Berkes & Wiskott, 2005). Thus the S-VAE 
enforces that observations close in time have similar latent representations and reduces the 
strength of this assumption with growing temporal separation. The temporal similarity in 
the S-VAE is expressed as an additive stochastic process with stationary uncertainty, which 
is known to approach Brownian motion in the limit. Considering two distinct yet sequential 
observations �i, �j ∈ D ∣ j > i , the difference of the corresponding latent representations is 
given by the approximate difference distribution,

(5)LLp
(oj, oi) = (�j − �i)

p

(6)

L(�, �, �, � , oj, oi)

= �q�(zj ,zi∣oj,oi)
[log p�(oj, oi ∣ zj, zi)]

− �DKL(q�(zi ∣ oi)‖p(zi))
− �(�j − �i)

p,

(7)LSlowVAE(oi+1, oi) = �q�(zi∣oi)

�
DKL(q�(zi+1 ∣ oi+1))‖p(zi+1 ∣ zi))

�
.

(8)

L(�, �, �, � , oi+1, oi) =�q�(zi+1,zi∣oi+1,oi)

�
log p�(oi+1, oi ∣ zi+1, zi)

�

− �DKL(q�(�� ∣ ��)‖p(��))
− ��q�(zi∣oi)

�
DKL(q�(zi+1 ∣ oi+1))‖p(�i+1 ∣ zi))

�
.

(9)q�(zj − zi ∣ �j, oi) = N(�j − �i,�j + �i) ≡ q�(Δz ∣ oj, oi).
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We impose a prior p(Δz) on the approximate difference distribution in Eq. (9). For two 
increments zj, zi of a Brownian motion, the prior distribution is defined as

where N ∼ N(0,Δt�I) and Δt = j − i and � is a parameter corresponding to the variance of 
the prior distribution.

The S-VAE loss term is computed as the Kullback–Leibler (KL) divergence between the 
approximate difference distribution in Eq. (9) and the prior distribution in Eq. (10) as

resulting in the S-VAE ELBO

Following from Eq. (10), the Brownian motion prior p(Δz) in the S-VAE ELBO explic-
itly takes the temporal separation of consecutive observations into account and relaxes the 
prior when temporal separation grows. A more detailed derivation can be found in Appen-
dix A.

3.4 � Discussion

Using the Lp-norm to enforce temporal similarity has been explored by Mobahi et  al. 
(2009) where a L1 norm was used to enforce similarity between two halves of a siamese 
CNN architecture to leverage temporal similarity of observations during training. Other 
applications of a Lp-norm to enforce temporal similarity can be found in Zou et al. (2012) 
and (Sermanet et al., 2018), where a L1 norm and a triplet loss (based on the L2 norm) 
respectively were used to achieve viewpoint-invariance by enforcing similarity of repre-
sentations from different angles according to temporal similarity. Cadieu and Olshausen 
(2012) claim that there are no significant differences between L1 and L2 norm for enforc-
ing temporal similarity in latent space. The main differences between existing research and 
the representation learning methods presented in this work are that they do not operate in a 
variational setting and are learned end-to-end instead.

In contrast, the S-VAE and SlowVAE both use the variance of the predicted latent dis-
tributions, albeit in different ways depending on the applied prior. Figure 1 shows the con-
ceptual differences between the S-VAE and SlowVAE for a pair of observations. The Slow-
VAE Laplace prior expresses the assumption that transitions in latent space are sparse, or 
in other words, are axis aligned with the ground truth generative axes. This bears similarity 
to the definition of disentanglement and can be understood as disentangling latent tran-
sitions. The S-VAE does not make such an assumption on the nature of the transitions. 
Instead, it is based on the assumption that observations close in time must also be similar 
in latent space. Increasing temporal distance in observation space is taken into account by 
the increasing uncertainty of the Brownian motion prior. This allows the S-VAE to benefit 
from the closed-form solution of the Brownian motion and to handle pairs of observations 

(10)zj − zi =
√
Δt ⋅ N ∼ N(0,Δt�I) ≡ p(Δz),

(11)Lslow(oi, oj) = DKL(q�(Δz ∣ oj, oi)‖p(Δz)).

(12)

L(�,�, �, � , oj, oi)

= �q� (zj,zi∣oj ,oi)
[log p�(oj, oi ∣ zj, zi)]

− �DKL(q�(zi ∣ oi)‖p(zi))
− �DKL(q�(Δz ∣ oj, oi)‖p(Δz)).
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from any point in the temporal sequence as opposed to the SlowVAE, which has been eval-
uated on consecutive observations.

In Klindt et al. (2020), the authors investigated the performance of the SlowVAE when 
varying the temporal distance between observations up to 1 second when training. Analysis 
of the natural transitions showed that with increasing temporal distance between frames, 
the estimated kurtosis parameter � of the fitted Laplace distribution increased, effectively 
moving closer to Gaussianity ( � = 2 ). This is in line with the central limit theorem stating 
that the sum of i.i.d. random variables approaches the normal distribution when the num-
ber of terms increases.

Based on these differences, we aim to study the following hypotheses experimentally. 
Existing literature suggests that when compared to the �-VAE, L1 and L2 , slowness reg-
ularization is beneficial for various of downstream tasks. The S-VAE and SlowVAE are 
expected to perform better than the Lp-norm slowness regularization as they also consider 
the variance of the latent distributions. Furthermore, we hypothesize that the S-VAE out-
performs the SlowVAE with a kurtosis of � = 1 when the temporal separation between 
observations grows.

4 � Empirical comparison

In this section, we compare the previously introduced slow representation learning meth-
ods to the baseline �-VAE with respect to their data efficiency when learning downstream 
regression tasks. We analyze the influence of the slowness hyperparameter � on the latent 
representations by visualizing the latent spaces.

Although the use case is different, we compared the TD-VAE (Gregor et al., 2019) to 
the slow methods and the �-VAE and found that it is outperformed by all methods. We did 
not include those results as we were not confident in their thoroughness. The problem is 
that, to our knowledge, there is no official code repository for the TD-VAE, and could not 

Fig. 1   Conceptual difference between the S-VAE (ours) and the SlowVAE. The S-VAE expresses slowness 
through a prior p(Δz) on the similarity of zj and zi , which is relaxed when Δt = j − i grows. The SlowVAE 
imposes a sparsity prior on zt+1 , assuming that latent transitions are sparse
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reproduce the original results on the more complex DeepMind Lab experiment with the 
given implementation instructions.

4.1 � Experimental setting

Three experiments have been conducted in which the goal was to learn downstream tasks 
in a semi-supervised way from video data. The semi-supervised process consists of two 
steps.

First, a VAE model is trained on abundant unlabeled video data in an unsupervised way. 
The VAE models use the encoder component to encode two observations oi and oj from the 
input video sequence such that the slowness loss terms can be computed for training. Fol-
lowing the ablation study in Klindt et al. (2020), which indicates that there is a sweet spot 
for the temporal separation of consecutive observations, we also vary Δt during training to 
take into account a wider variety of temporal separation.

Second, a downstream task is learned using embedding from the pre-trained VAE model 
while keeping the encoder network weights frozen. The two encoded latent representations 
zi and zj are concatenated and used to learn a downstream task end-to-end. The downstream 
tasks involve temporal tasks like velocity and odometry estimation or behavioral cloning.

Figure 2 shows random observations from the training dataset of all three experiment 
domains and their reconstructions generated using the S-VAE. The domains are a synthetic 
dataset of a ball bouncing in a 2D world, two reinforcement learning agents playing the 
game of Pong and a human randomly moving an agent in a 3D world in the DeepMind Lab 
environment (Beattie et al., 2016). The experiment setup and neural network architecture 
are described in more detail in Appendix C.

4.2 � Evaluation of downstream task performance

After the VAE training step, the encoder network is frozen and the downstream tasks are 
learned. For each downstream task, multiple models with varying amounts of labeled data 
available (from sparse to abundant) are trained. The downstream task performance is meas-
ured by computing the loss on a previously unseen labeled test set.

Figure  3 shows a plot of the average downstream task performance for each method 
(baseline �-VAE, L1 , L2 , S-VAE and SlowVAE) against the amount of available labeled 
data. Mean and standard deviation are computed over multiple runs with different seeds 
and hyperparameter configurations ( � and �).

Fig. 2   Random images from the training data (top) and their reconstructions (bottom) obtained from the 
S-VAE
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Figures 3a, c show the Ball and Pong experiment in the case where labeled data is 
sparse. In those cases, the S-VAE and SlowVAE outperform the L1 and L2 slowness 
regularization terms. The �-VAE without temporal regularization is outperformed by 
all methods in the Ball and Pong experiment. S-VAE and SlowVAE achieve the same 
performance as the baseline �-VAE with up to an order of magnitude fewer data and 
significantly better performance. In the DeepMind Lab experiment, the difference is 
less pronounced in the sparse data case, due to the complexity of estimating 6-DOF 
odometry from a 3D world with less than 1500 labeled examples. However, Fig.  3d 
shows that the S-VAE outperforms the other methods when more labeled data is avail-
able. Furthermore, in the DeepMind Lab experiment, the L1 and L2 methods yield no 
significant improvement over the �-VAE. We theorize that in this more complex task, 
taking into account the covariances in the slowness regularization term is important to 
learn good representations.

To summarize, slow methods generally yield better downstream task performance. 
Taking into account the variance of the latent distributions when applying slowness 
(S-VAE and SlowVAE) improves performance further.

Fig. 3   Results of the downstream data-efficiency experiment. MSE/BCE Loss between true and predicted 
label in the downstream task vs. the amount of labeled data used to train the model
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4.3 � Slow latent spaces

Next, we investigate how the slowness hyperparameter � influences the latent represen-
tations by visualizing the latent spaces in the Ball experiment. Figure 4 shows a scatter 
plot where the x- and y-axis describe the ground truth position of the ball in the arena 
and the color represents the latent value. Figure 4a shows four plots, one for each latent 
dimension of a �-VAE. Figure 4b, c show the same for variations of the S-VAE with the 
same parameter � , but increasingly higher slowness regularization � . We can see that 
increasing the strength of the slowness regularization increases the continuity of the 
latent space. For the �-VAE we observe multiple discontinuities that separate regions 
with similar latent values, whereas the S-VAE model with increasing slowness regulari-
zation exhibits visibly smooth representations.

5 � Predicting downstream task performance

While a qualitative analysis showed that increasing slowness regularization makes the 
latent space smoother, this analysis is not generally suited to measure the quality of a 
learned embedding space or to predict downstream task performance. In the Ball experi-
ment, we can visualize the latent space using the ground truth position of the ball, which 
is difficult for high-dimensional latent spaces or complex downstream tasks with higher-
dimensional generative factors or observations.

In this section, we want to investigate further how one can predict downstream task 
performance without the need for labeled data or human intervention. Let us consider 
the predictive capabilities of each of the three components of the general formulation in 
Eq. (4): disentanglement, slowness and reconstruction performance.

The extent to which disentanglement can predict downstream task performances 
has been investigated by Locatello et al. in Locatello et al. (2019a). In their work, the 
authors questioned the benefits disentangled representations have for learning down-
stream tasks and criticized that currently, all disentanglement metrics require ground 
truth labels. Furthermore, disentanglement measures are supervised methods relying on 
abundant labeled data and are usually tailored for specific tasks. Thus we do not con-
sider existing disentanglement metrics to predict downstream task performance.

Fig. 4   Visualization of the 4D latent space of the Ball experiment for 3 hyperparameter configurations. 
Each dimension is shown with an individual scatter plot in which x and y axis are the ground truth position 
of the ball in the environment. The color is the value of the latent representation at the given position. Slow-
ness regularization increases from � = 0 ( �-VAE) in a to � = 5.0 in c 
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The second option is to measure if a latent space exhibits the slowness properties and 
correlate this measure with downstream task performance. To this end, we experimented 
with label-agnostic metrics that measure the slowness by how smooth the latent space is. 
We measured the length of a trajectory in latent space defined by N encoded latent repre-
sentations z1,… , zN and compared it to the euclidean distance between z1 and zN . Accord-
ing to the slowness principle and the qualitative analysis in Fig.  4 we hypothesize that 
higher slowness regularization with a qualitatively smoother latent space has fewer jumps 
and therefore, the trajectory in latent space is shorter and more similar to the euclidean 
distance. We observed that, as expected, higher slowness regularization leads to less frag-
mented and shorter latent trajectories. However, this metric does not correlate with down-
stream task performance.

As the remaining option, we show that the generative capabilities of a model allow us 
to predict downstream task performance. The core idea is that a model capable of decoding 
“realistic” images from random samples drawn from the latent distributions encodes more 
useful information in the latent space. To measure this, we use the FID, which is commonly 
used to evaluate the generative capabilities of Generative Adversarial Networks (GANs). In 
practice, we used the python-fid package with standard parameters. The code can be found 
on GitHub. In this implementation, the FID is computed using the 2048 dimensional fea-
tures extracted from the pool3 layer of the pre-trained Inception Net.

Figure 5 shows a scatter plot of the FID for all combinations of � and � plotted against 
downstream task performance.

We observe correlation between low FID and low downstream task loss for the S-VAE 
and SlowVAE in all three experiments.1 In the pong experiment, one can clearly identify 
outliers by their high FID. Upon further inspection, in those hyperparameter configura-
tions, the SlowVAE failed to reconstruct the observations and thus led to weak downstream 
task performance. These models usually had high values for � and � , indicating that for 
those models, the applied regularization was too strong. In the Ball experiment, the L1 and 
L2 methods did not exhibit correlation. We hypothesize that the hyperparameter search in 
this experiment could have been even broader, exploring stronger regularization to find 
better models. This is further supported by the fact that the L1 and L2 models in the Ball 
experiment could reconstruct the ball with minimal reconstruction errors.

In conclusion, the generative capabilities of models can be used to predict the down-
stream task performance of VAE models. Using the FID as an indicator for downstream 
task performance allows more targeted exploration of hyperparameter ranges. We think 
that the FID as a tool to express the experiment-specific and general properties of genera-
tive models when learning downstream tasks should be further explored.

6 � Empirical comparison of slowness regularization

As discussed in Sect. 3.4, the priors in the SlowVAE and S-VAE interpret slowness differ-
ently. The SlowVAE looks at slowness from a transition perspective, assuming that transi-
tions are sparse. While transitions with small Δt have been shown to be sparse, results in 
Klindt et al. (2020) indicate that the kurtosis of the Laplacian fit to the transitions increases 

1  We exclude the �-VAE in this discussion since there are not enough parameter configurations that allow 
conclusions about correlation.
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with temporal separation. The S-VAE, on the other hand, does not put a prior on the transi-
tion but instead enforces similarity based on temporal distance. Furthermore, the S-VAE 
explicitly incorporates Δt in the training process through the Brownian motion prior [see 
Eq. (10)]. Therefore, using the Brownian motion slowness prior to train an embedding 
should yield better performance in downstream tasks where observations are further apart 
in time.

To investigate this hypothesis, we used the best-performing models for each method pre-
sented in Fig. 3 and trained a latent dynamics model to predict future latent representations in 
a sequence. The first two observations of a sequence are encoded and a random observation 
Δt steps ahead in the sequence is drawn for the dynamics model to predict. The performance 
of the dynamics model is expressed as the mean squared error between the predicted and true 
future latent representation. Figure 6 shows the average latent dynamics error for predictions 
of varying Δt . In all environments, the S-VAE generally has a lower error than the SlowVAE 
and the other methods. Interestingly the �-VAE is performing on par with the L2 slowness reg-
ularization. Both methods methods perform better or as good as the SlowVAE for short-term 
predictions in the Ball and DeepMind Lab latent dynamics experiment. This is in line with the 
findings by Klindt et al. (2020), showing that the SlowVAE has a sweet spot for the temporal 

Fig. 5   Scatter plot visualization of FID plotted against downstream task performance. Each point represents 
one model colored by method and with different hyperparameters � and �
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separation, roughly when Δt > 0.4 seconds. The Brownian motion prior in the S-VAE yields 
better performance across all values for Δt explored in this experiment.

7 � Conclusion

In this paper, we discuss the application of the slowness principle as an extension of the 
state-of-the-art �-VAE. We compare existing methods of slowness regularization such as 
L1 and L2 loss and the SlowVAE, a variation of the �-VAE imposing a Laplacian prior 
on the latent transitions. We also propose a new slowness regularization term based on a 
Brownian motion prior. We find that slow methods outperform the baseline �-VAE with 
respect to downstream task data efficiency. Furthermore, the results indicate that the S-VAE 
and SlowVAE perform similarly but better than the �-VAE and Lp-norm-based slowness 
regularization terms with respect to their data efficiency in downstream tasks. When learn-
ing a latent dynamics model to predict latent representations multiple steps ahead in time, 
the S-VAE exhibits superior performance due to its ability to adapt its Brownian motion 
prior to the temporal separation of observations. Lastly, we find that the Fréchet Inception 
Distance is a helpful measure to predict downstream task performance.

 Appendix A Derivation of the S‑VAE slowness regularization term

In the following, we will derive the S-VAE slowness regularization term following the der-
ivation of the �-VAE (Higgins et al., 2017) and extend it to sequential observations.

In a sequential setting, we will maximize the marginal log-likelihood of two observa-
tions oj and oi over the latent factors as

As already discussed in Eqs. (2) and (3) we apply the KKT conditions to obtain the 
Lagrangian

The ELBO can be obtained under the condition that �, �, � , � ≥ 0 as

(A1)

max
𝜙,𝜃

�x∼D[�q𝜙(zj ,zi∣oj ,oi)
[log p𝜃(oj, oi ∣ zj, zi)]] subject to

DKL(q𝜙(zj ∣ oj) ∣∣ p(z)) < 𝜖

DKL(q𝜙(zi ∣ oi) ∣∣ p(z)) < 𝜖

DKL(q𝜙(Δz ∣ oj, oi) ∣∣ p(Δz)) < 𝜁 .

(A2)

F(�, �, �, � , oj, oi, zj, zi) =�q�(zj,zi∣oj ,oi)
[log p�(oj, oi)]

− �(DKL(q�(zj ∣ oj) ∣∣ p(z)) − �)

− �(DKL(q�(zi ∣ oi) ∣∣ p(z)) − �)

− �(DKL(q�(Δz ∣ oj, oi) ∣∣ p(Δz)) − � ).
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where the first three terms (expectation and the � terms) of the r.h.s. are the familiar 
terms from the �-VAE. The term −�DKL(q�(Δz ∣ oj, oi) ∣∣ p(Δz)) is the S-VAE slowness 
loss term imposing the prior p(Δz) ∼ N(0,Δt�I) on the difference of latent distributions 
q�(Δz ∣ oj, oi) ∼ N(�j − �i,�j + �i) . The parameter � allows adjustment of the variance of 
the prior distribution.

In practice, this KL Divergence is summed over the scalars for all N latent dimensions as

Appendix B Slow VAE methods from an information theoretic point of view

In this section, we briefly want to discuss the connection between the FID score as a predictive 
metric for downstream task performance of a model and lowness regularization. Let us look 
at the �-VAE from the Information-theoretic point of view. We can write the �-VAE objective 
as max[I(z;y) − �I(o;z)] (Burgess et al., 2018; Alemi et al., 2016) where I(z; y) is the mutual 
information of the intermediate representation z and the reconstruction task. The subtracted 
term �I(o;z) , usually referred to as the latent bottleneck, effectively encourages the model to 
discard less relevant (to predict the label y) information present in the input o by limiting the 
capacity of the latent information channels. In the case of reconstructing images, such infor-
mation would be properties of the input signal that are not relevant for reconstruction. In the 
previous analysis, we observed that, as expected, increasing the latent bottleneck pressure by 
varying the parameter � reduces the number of latent dimensions used. We theorize that, simi-
lar to how the �-VAE discards less relevant information, the slow methods discard information 
about the input signal that changes in a shorter time scale. Hence fewer latent channels are 
used and better higher-level features are extracted. This draws a parallel to the core idea of the 
slowness principle: Discourage the encoding of irrelevant quickly changing components of the 
input signal and encourage encoding of slowly changing features. Further work on this end is 
required to show mathematical and experimental results that support our theory.

Appendix C Experiment details

In this section, we present a more detailed description of the experiments conducted. The 
experiment framework used in this research shares the same architecture with the Slow-
VAE (Klindt et al., 2020) and the �-VAE (Kingma & Ba, 2014). The encoder consists of 
5 convolutional layers with ReLU activation functions followed by a fully connected head 

(A3)

F(�, �, �, � , oj, oi, zj, zi) ≥L(�, �, �, � , oj, oi, zj, zi)

=�q� (zj ,zi∣oj,oi)
[log p�(oj, oi ∣ zj, zi)]

− �DKL(q�(zj ∣ oj) ∣∣ p(z))

− �DKL(q�(zi ∣ oi) ∣∣ p(z))

− �DKL(q�(Δz ∣ oj, oi) ∣∣ p(Δz))

(A4)

−Lslow = − DKL(q�(Δz ∣ oj, oi) ∣∣ p(z))

=

N∑

n=1

− log(
�
(n)

j
+ �

(n)

i

Δt�
) +

(�
(n)

j
+ �

(n)

i
)2 + (�

(n)

j
− �

(n)

i
)2

2Δt2�2
+

1

2
.
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that returns mean and log-variance. The decoder consists of a fully connected layer and 5 
deconvolutional layers with ReLU activation. For more details, please refer to the Slow-
VAE GitHub repository. The stride and filter size has been adjusted to accommodate rec-
tangular images in the DeepMind Lab experiment.

The hyperparameter � for the S-VAE was selected such that when plotting the SlowVAE 
and S-VAE loss functions, the functions would be roughly in the same value range. We 
expect that training more S-VAE models to find better values for � could further improve 
the performance of the S-VAE.

The downstream task model consists of 2 fully connected layers with 50 nodes each 
and ReLU activation functions, followed by one more fully connected layer with a sigmoid 
activation function.

C.1 Ball experiment

This task aims to predict the velocity of a white ball on a black background in a square-
shaped environment from two consecutive frames. We generated sequences of 20 frames 
of a ball bouncing in a 100 × 100 pixels. For each sequence, the ball is placed in a random 
position and initialized with a random direction velocity vector. Upon reaching the border 
of the environment, the ball’s velocity vector is flipped to mimic the principle "incident 
angle equals emergence angle". Overall, 10000 labeled sequences consisting of 2 data-
points each were generated for training and 500 sequences for testing.

During the unsupervised representation learning step, we use the full dataset without 
labels to train models, exploring hyperparameters � and � . The hyperparameter ranges 
were the same as in the SlowVAE (1.0-16.0 for both � and � ). The training consisted of 75 
epochs with a batch size of 32 and a learning rate 1e − 04.

In the supervised downstream task we use subsets of ( 1, 1∕2, 1∕4,… , 1∕128 ) of the full 
labeled dataset with their labels to train the downstream task of predicting the ball velocity/posi-
tion from two consecutive frames. The downstream tasks are trained by freezing the encoder 
networks trained in the previous step and feeding two latent representations into the down-
stream task model to predict the ball velocity. The downstream loss is computed as the mean 
squared error between true and predicted label. The downstream experiment was averaged over 
10 seeds, effectively initializing the downstream neural network differently for each run.

C.2 Pong experiment

The goal of this experiment is to learn the policy for two agents playing the game of pong. 
The agents can take 3 actions: No action, move up and move down. The dataset consists of 
10000 sequences of length 20. Sequences that contained reset events of the environment, 
for example, when a game was won/lost were discarded during dataset generation to obtain 
uninterrupted sequences. In this experiment, a batch size of 32 was used and the training 
was performed for 175 epochs. The downstream training of this experiment was conducted 
similarly to the Ball experiment, obtaining two consecutive latent representations, concat-
enating them and predicting action probabilities. Subsets of ( 1, 1∕2, 1∕4,… , 1∕128 ) of the 
full labeled dataset with their labels were used to train the downstream task. The loss is 
computed as the Binary Cross Entropy loss between the predicted and one-hot encoded 
action probabilities. The downstream experiment was averaged over 5 seeds, effectively 
initializing the downstream neural network differently for each run.
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C.3 DeepMind lab dataset

In this experiment, the goal is to learn the 6-DOF motion vector of an agent exploring a 
DeepMind Lab environment (Beattie et al., 2016). A dataset of 20, 000 sequences of size 
20 was generated while recording a human moving around in the environment. Subsets of 
( 1, 1∕2, 1∕4,… , 1∕128 ) of the full labeled dataset with their labels were used to train the 
downstream task. The loss is computed as the MSE loss between the predicted and true 
6D odometry vector. The downstream experiment was averaged over 5 seeds, effectively 
initializing the downstream neural network differently for each run.
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