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Abstract
Gaussian processes (GPs) are an important tool in machine learning and statistics. How-
ever, off-the-shelf GP inference procedures are limited to datasets with several thousand 
data points because of their cubic computational complexity. For this reason, many sparse 
GPs techniques have been developed over the past years. In this paper, we focus on GP 
regression tasks and propose a new approach based on aggregating predictions from sev-
eral local and correlated experts. Thereby, the degree of correlation between the experts 
can vary between independent up to fully correlated experts. The individual predictions 
of the experts are aggregated taking into account their correlation resulting in consistent 
uncertainty estimates. Our method recovers independent Product of Experts, sparse GP 
and full GP in the limiting cases. The presented framework can deal with a general kernel 
function and multiple variables, and has a time and space complexity which is linear in 
the number of experts and data samples, which makes our approach highly scalable. We 
demonstrate superior performance, in a time vs. accuracy sense, of our proposed method 
against state-of-the-art GP approximations for synthetic as well as several real-world data-
sets with deterministic and stochastic optimization.
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1  Introduction

Gaussian processes (GPs) are a class of powerful probabilistic method used in many statis-
tical models due to their modelling flexibility, robustness to overfitting and availability of 
well-calibrated predictive uncertainty estimates with many applications in machine learn-
ing and statistics. However, off-the-shelf GP inference procedures are limited to datasets 
with a few thousand data points N, because of their computational complexity O(N3) and 
memory complexity O(N2) due to the inversion of a N × N kernel matrix (Rasmussen and 
Williams 2006). For this reason, many GP approximation techniques have been developed 
over the past years. There are at least two different approaches to circumvent the com-
putational limitation of full GP. On the one hand, there are sparse and global methods 
(Csató and Opper 2002, Quiñonero-Candela and Rasmussen 2005, Rasmussen and Wil-
liams 2006, Seeger et al. 2003) based on Mg ≪ N so-called (global) inducing points, which 
cover sparsely the input space and optimally summarizing the dependencies of the train-
ing points. This results in a low-rank approximation of the kernel matrix of size Mg ×Mg , 
which is less expensive to invert. These methods consistently approximate full GP, for 
instance the authors in Titsias (2009) have shown that it converges to full GP as Mg → N . 
However, all these methods are still cubic in the number of global inducing points Mg and 
for many applications—in particular in higher dimensions—the amount of inducing points 
has to be rather large to capture the pattern of the function properly. A lot of work has been 
done to optimize the locations of the inducing inputs e.g., Bui et al. (2017), Snelson and 
Ghahramani (2006), Titsias (2009), which allows to have less inducing points but more 
optimization parameters. This optimization procedures were further improved by stochastic 
optimization e.g., Bui et al. (2017), Hensman et al. (2013), Kania et al. (2021), Schürch 
et  al. (2020), which allows to update the parameters in mini-batches and thus speed up 
the inference. Optimization of these (variational) parameters helps to scale GP approxima-
tions, however, the large number of optimization parameters makes these methods hard to 
train and they are still limited to Mg global inducing points.

On the other hand, there are independent and local  models based on averaging predic-
tions from J independent local experts/models resulting in a block-diagonal approximation 
of the kernel matrix. The final probabilistic aggregation is then based on a product of the 
individual predictive densities, thus they are called Product of Experts (PoEs), see Fleet 
(2014), Deisenroth and Ng (2015), Hinton (2002), Rullière et  al. (2018), Tresp (2000), 
Liu et al. (2018). PoE methods provide fast and rather accurate predictions, because they 
have fewer hyperparameters than inducing point methods and are locally exact. However, 
the predictive aggregation of complete independent experts leads to unreliable uncertainty 
estimates and less accurate predictions in regions between experts. Further, also a rigorous 
connection to full GP is missing. Beside the mentioned local and global methods, there are 
also numerical approaches, for instance by exploiting parallelism in specialized hardware 
(Wang et al. 2019). For a more thorough overview of GP approximations we refer to Liu 
et al. (2020), Rasmussen and Williams (2006).

Our approach aims to overcome these limitations by introducing a framework based on 
J correlated experts, so that it approximates full GP in two orthogonal directions: sparsity 
and locality. Thereby, our model is a generalization of the independent PoEs and sparse 
global GPs by introducing local correlations between experts. These experts correspond 
to local and sparse GP models represented by a set of local inducing points, which are 
points on the GP summarizing locally the dependencies of the training data. The degree 
of correlation C between the experts can vary between independent up to fully correlated 
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experts in a consistent way, so that our model recovers independent PoEs, sparse global 
GP and full GP in the limiting cases. Our method exploits the conditional independence 
between the experts resulting in a sparse and low-rank prior as well as posterior precision 
(inverse of covariance) matrix, which can be used to efficiently obtain local and correlated 
predictions from each expert. These correlated predictions are aggregated by the covari-
ance intersection method (Julier and Uhlmann 1997), which is useful for combining con-
sistently several estimates with unknown correlations. The resulting predictive distribution 
is a smooth weighted average of the predictive distributions of the individual experts. Our 
algorithm works with a general kernel function and performs well in higher dimensional 
input spaces. The number of hyperparameters to optimize of our method is the same as for 
full GP, which are just a few parameters (depending on the kernel). These parameters can 
be similarly estimated via the log marginal likelihood, which is analytically and efficiently 
computable for our model. In our inference, also log normal priors can be incorporated 
leading to maximum-a-posteriori estimates for the hyperparameters.

Compared to the number of global inducing point Mg , which is usual much smaller than 
the number of data points N, our approach allows a much higher of total local inducing 
points in the order of N which helps to cover the space and therefore model more compli-
cated functions. Compared to the independent PoEs, the performance can already signifi-
cantly improve by modelling just a few of the pairwise correlations between the experts. 
Our method shares also some similarities with other sparse precision matrix GP approxi-
mations. The works Durrande et al. (2019), Grigorievskiy et al. (2017) exploit a band pre-
cision matrix together with univariate kernels, whereas Bui and Turner (2014) propose a 
precision structure according to a tree. The authors Datta et al. (2016), Katzfuss and Guin-
ness (2021) use a more general precision matrix structure, however they need to know the 
prediction points in advance and are only well suited for low dimensional data (i.e. 1D and 
2D), which is usually not useful in the context of machine learning, where the dimension is 
higher and predictions are needed after training.

In Sect. 2, we briefly review full GP for regression and sparse and global  as well as 
independent and local  approaches for GP approximation. In Sect.  3, we propose our 
method Correlated Product of Experts (CPoEs), where we introduce the graphical model 
(Sect. 3.1) of our method and explain the local and sparse character of the prior approxi-
mation (Sect. 3.2). Further, we discuss how to make inference (Sect. 3.3) and prediction 
(Sect. 3.4) in our model. In Sect. 3.5, we show that the quality of our approximation con-
sistently improves in terms of Kullback–Leibler-(KL)-divergence (B11) w.r.t. full GP for 
increasing degree of correlation. Further, we present deterministic and stochastic hyperpa-
rameter optimization techniques (Sect. 3.6). In Sect. 4 we compare against state-of-the-art 
GP approximation methods in a time versus accuracy sense, for synthetic as well as several 
real-world datasets. Moreover, comparison to non-GP regression methods are provided. 
We demonstrate superior performance of our proposed method for different (non-trivial) 
kernels in multiple dimensions. Section 5 concludes the work and presents future research 
directions.

2 � GP regression

Suppose we are given a training set D =
{
yi,Xi

}N

i=1
 of N pairs of inputs Xi ∈ ℝ

D and 
noisy scalar outputs yi generated by adding independent Gaussian noise to a latent 
function f, that is yi = f (Xi) + �i , where �i ∼ N

(
0, �2

n

)
 . We denote y = [y1,… , yN]

T the 
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vector of observations and with X = [XT
1
,… ,XT

N
]T ∈ ℝ

N×D . We model f with a Gauss-
ian Process, i.e. f ∼ GP(m, k� ) with mean m(X) and a covariance function (or kernel) 
k�(X,X

�) for any X,X� ∈ ℝ
D , where � is a set of hyperparemeters. For the sake of sim-

plicity, we assume m(X) ≡ 0 and a squared exponential (SE) kernel with individual 
lengthscales for each dimension if not otherwise stated, however, the mean function 
can be arbitrary and the covariance any positive definite kernel function (see, e.g., Ras-
mussen and Williams (2006), Chap. 4). For any input matrix A = [A1;… ;AM] ∈ ℝ

M×D 
consisting of rows Ai ∈ ℝ

D , we define the GP output value 
a = f (A) =

[
f (A1),… , f (AM)

]T
=
[
a1,… , aM

]T
∈ ℝ

M , so that the joint distribution 
p(a) = p

(
a1,… , aM

)
 is Gaussian N

(
a|0,KAA

)
 with a kernel matrix KAA ∈ ℝ

M×M , where 
the entries 

[
KAA

]
ij
= KAiAj

 correspond to the kernel evaluations k�(Ai,Aj) ∈ ℝ . In par-
ticular, the joint distribution p(f , f∗) of the training values f = f (X) =

[
f (X1),… , f (XN)

]T 
and a test function value f∗ = f (X∗) at test point X∗ ∈ ℝ

D is Gaussian N
(
0,K[X;X∗][X;X∗]

)
 , 

where [X;X∗] is the resulting matrix when stacking the matrices above each other. For 
GP regression, the Gaussian likelihood p(y|f ) = N

(
y|f , �2

n
�
)
 can be combined with the 

joint prior p(f , f∗) , so that the predictive posterior distribution can be analytically 
derived Rasmussen and Williams (2006).

Alternatively, the posterior distribution over the latent variables given the data can 
be explicitly formulated as

where the data is split into J mini-batches of size B, i.e. D =
{
yj,Xj

}J

j=1
 with inputs 

Xj ∈ ℝ
B×D , outputs yj ∈ ℝ

B and the corresponding latent function values f j = f (Xj) ∈ ℝ
B . 

In (1) we used the notation f k∶j indicating [f k,… , f j] and the conditionals p
(
f j|f 1∶j−1

)
 can 

be derived from the joint Gaussian, where we define p
(
f 1|f 1∶0

)
= p(f 1) . Given the poste-

rior p(f |y) , the predictive posterior distribution from above is equivalently obtained as 
p
(
f∗|y

)
= ∫ p

(
f∗|f

)
p(f |y) df  via Gaussian integration (B7). The corresponding graphical 

model is depicted in Fig. 1(a)i) and 1(b)i), respectively.
The GP depends via the kernel matrix on the hyperparameters � , which are typically 

estimated by maximizing the log marginal likelihood log p(y|�) = logN
(
y|0,KXX + �2

n
�
)
. 

Although GP inference is an elegant probabilistic approach for regression, the compu-
tations for inference and parameter optimization require the inversion of the matrix 
KXX + �2

n
𝕀 ∈ ℝ

N×N , which scales as O(N3) in time and O(N2) for memory which is 
infeasible for large N.

(1)p(f |y) ∝ p(f , y) =

J∏

j=1

p
(
yj|f j

)
p
(
f j|f 1∶j−1

)
,

y1 y2 yj yJ... ...

f1 f2 fj fJ ... ...

y1 y2 ... ...

f1 f2

a

y1 y2 ... ...

f1 f2 ... ...

iii) PoEii) SGPi) Full GP

fj fJ fj fJ

yj yJ yj yJ

(a) Training.

f1 fJfj

y∗

f∗

i) Full GP

y∗

f∗

a

ii) SGP

fjf1 fJ

iii) PoE

y∗

f∗

f∗jf∗1 f∗J

(b) Prediction.

Fig. 1   Graphical models of different GP approaches
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2.1 � Global sparse GPs

Sparse GP regression approximations based on global inducing points reduce the com-
putational complexity by introducing Mg ≪ N inducing points a ∈ ℝ

Mg that optimally 
summarize the dependency of the whole training data globally, as illustrated in the graph-
ical model in Fig.  1(a)ii) and is denoted in the following as SGP(Mg) . Thereby the induc-
ing inputs A ∈ ℝ

Mg×D are in the D-dimensional input data space and the inducing outputs 
a = f (A) ∈ ℝ

Mg are the corresponding GP-function values.
Similarly to full GP in Eq. (1), the posterior over the inducing points p(a|y) ∝ ∫ p(a, f , y) df  

can be derived from the joint distribution

where the usual Gaussian likelihood p
(
yj|f j

)
= N

(
f j, �

2
n
�
)
 and the Gaussian conditional 

p
(
f j|a

)
 are used. Based on the joint distribution in (2), the posterior p(a|y) can be derived 

from which prediction can be performed using the predictive conditional p
(
f∗|a

)
 as more 

precisely explained in Appendix E.1 and illustrated in Fig. 1(b)ii). Batch inference in these 
sparse global models can be done in O(M2

g
N) time and O(MgN) space (Quiñonero-Candela 

and Rasmussen (2005)).
In order to find optimal inducing inputs A and hyperparameters � , a sparse variation of the 

log marginal likelihood similar to full GP can be used Bui et al. (2017), Snelson and Ghah-
ramani (2006), Titsias (2009). For larger datasets, stochastic optimization has been applied 
e.g., Bui et al. (2017), Hensman et al. (2013), Kania et al. (2021), Schürch et al. (2020) to 
obtain faster and more data efficient optimization procedures. For recent reviews on the sub-
ject we refer to Liu et al. (2020), Quiñonero-Candela and Rasmussen (2005), Rasmussen and 
Williams (2006).

2.2 � Local independent GPs

Local approaches constitute an alternative to global sparse inducing point methods, which 
exploit multiple local GPs combined with averaging techniques to perform predictions. In this 
work we focus on Product of Expert (PoE) Hinton (2002), where individual predictions from J 
experts based on the local data yj are aggregated to the final predictive distribution

where gj is a function introduced in order to increase or decrease the importance of the 
experts and depends on the particular PoE method Hinton (2002), Fleet (2014), Tresp 
(2000), Liu et  al. (2018), Liu et  al. (2020). Note, in particular, the generalized PoE 
(GPoE)Fleet (2014), where the weights are set to the difference in entropy of the local prior 
and posterior. The individual predictions p

(
f∗j|yj

)
 are based on a local GP, for which the 

implicit joint posterior can be formulated as

(2)p(a, f , y) =

J∏

j=1

p
(
yj|f j

)
p
(
f j|a

)
p(a),

(3)p
(
f∗|y

)
=

J∏

j=1

gj
(
p
(
f∗j|yj

))
,

(4)p(f |y) ∝ p(f , y) =

J∏

j=1

p
(
yj|f j

)
p
(
f j
)
,
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where the corresponding graphical model is depicted in Fig. 1iii) and more details are pro-
vided in Appendix E.2. Other important contributions in this field are distributed local GPs 
Deisenroth and Ng (2015), parallel hierarchical PoEs Buschjäger et al. (2019), and local 
experts with consistent aggregations Rullière et al. (2018), Nakai-Kasai and Tanaka (2021). 
A different category of averaging techniques are for instance mixture of experts (Masoud-
nia and Ebrahimpour 2014; Trapp et al. 2020), which basically replace the product in (3) 
by a sum. A particularly interesting approach is deep structured mixtures of GPs (Trapp 
et al. 2020), which exploits a sum-product network of local and independent GPs. More-
over, simple baseline methods for local methods are the minimal variance (minVar) and 
the nearest expert (NE) aggregation, where only the prediction from the expert with mini-
mal variance and nearest expert is used, respectively. Although both methods show often 
surprisingly good performance, they suffer from the important disadvantage that there are 
serious discontinuities at the boundaries between the experts (see for instance Fig. 2) and 
thus often not useful in practice. This is also the main limitation of all local methods based 
only on the prediction of one single expert (e.g., deep structured mixture GPs (Trapp et al. 
2020)), which was the main reason for introducing smooth PoEs with combined experts. 
We refer to Liu et al. (2020) for a recent overview.

3 � Correlated product of experts

In this section, we present our GP regression method Correlated Product of Expert 
CPoE(C, �) , which is a generalization of the independent PoEs and sparse global GPs. The 
first generalization is the introduction of correlations between the experts, which can be 

Fig. 2   Different GP approximations (with comparable time complexity) indicated with predictive mean 
(solid blue) and 95%-credible interval (dotted blue) compared to full GP (black and shaded blue area). The 
number in the right bottom corner indicates the KL-divergence (B11) to full GP. In the last plot, our method 
Correlated Product of Expert (CPoE) is presented for a degree of correlation C = 2 and sparsity � = 1 . We 
provide a second example in Figure A6 and a discussion about the relation of our method to deep structured 
mixture GPs (Trapp et al. 2020) is given in Sect. A.5
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adjusted by the parameter 1 ≤ C ≤ J and allows to interpolate between local and global 
models. Secondly, similar to the sparse global approximation, our method allows to spar-
sify the inducing points by sparsity parameter 0 < 𝛾 ≤ 1 . We refer to Table 1 in the Appen-
dix for an overview of the used notation.

3.1 � Graphical model

Assuming N = BJ data samples which are divided into J ordered partitions (or experts) of 
size B, i.e. D =

{
yj,Xj

}J

j=1
 with inputs Xj ∈ ℝ

B×D and outputs yj ∈ ℝ
B . We denote 

f j = f (Xj) ∈ ℝ
B the corresponding latent function values on the GP f. We abbreviate 

y = y1∶J ∈ ℝ
N ,X = X1∶J ∈ ℝ

N×D and f = f 1∶J ∈ ℝ
N.

Definition 1  (Local inducing points) We refer to local inducing points 
{
aj,Aj

}J

j=1
 with 

inducing inputs Aj ∈ ℝ
L×D and the corresponding inducing outputs aj = f (Aj) ∈ ℝ

L of size 
L = ⌊�B⌋ with 0 < 𝛾 ≤ 1.

These L local inducing points 
(
aj,Aj

)
 of expert j serve as local summary points for the 

data 
(
yj,Xj

)
 , where the sparsity level can be adjusted by � . If � = 1 , the inducing inputs 

Aj correspond exactly to Xj and correspondingly aj = f j . We abbreviate a = a1∶J ∈ ℝ
M , 

where M = LJ , for all local inducing outputs with the corresponding local inducing inputs 
A = A1∶J ∈ ℝ

M×D . Next, we model connections between the experts by a set of neighbour 
experts according to the given ordering.

Definition 2  (Predecessor and Correlation Index Sets) Let �i(j) ∈ {1,… , j − 1} the index 
of the ith predecessor of the jth expert. For a given correlation parameter 1 ≤ C ≤ J , we 
introduce the predecessor set �C(j) =

⋃Ij

i=1
�i(j) satisfying

such that the size of the set Ij = |�C(j)| = min(j − 1,C − 1).
Further, we define the region of correlation with the correlation indices as 

�C(j) = �C(j) ∪ j if j > C and �C(j) = �C(C) = {1,… ,C} otherwise, so that |�C(j)| = C 
for all j.

The purpose of these predecessor and correlation indices is to model the local correla-
tions among the experts of degree C. If for all j the indices �C(j) are the C − 1 previous 
indices, we say that the predecessors are consecutive and non-consecutive otherwise. If C 
is clear from the context, �C(j) and �C(j) are abbreviated by �(j) and �(j) , respectively. 
Details about the specific choices of the ordering, partition, inducing points and predeces-
sor indices are given in Sect. 3.6.1.

Definition 3  (Graph) We define a directed graph G(V ,E) with nodes V = a ∪ f ∪ y and 
directed edges

where �i
C
(j) and � i

C
(j) denote the ith element in the corresponding set.

�C(j) ⊂ {1,… , j − 1} and �C+1(j) = �C(j) ∪ 𝜙C+1(j),

E = { {(a�i
C
(j), aj)}

Ij

i=1
∪ {(a� i

C
(j), f j)}

C
i=1

∪ (f j, yj) }
J
j=1

,
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The directed graph G is depicted in Fig. 4aii), where the local inducing points of the jth 
expert are connected with the inducing points of the Ij experts in �C(j) . Further, the func-
tion values f j are connected in the region of correlation �C(j) to the local inducing points. 
The graph G = (V ,E) can be equipped with a probabilistic interpretation, in particular, 
each node v ∈ V  and each incoming edge (vi, v) ∈ E for all predecessors i = 1,… , I can be 
interpreted as a conditional probability density p

(
v|v1,… , vI

)
.

Proposition 1  (Graphical Model; Proof 1) We define a graphical model corresponding to 
the graph G(V ,E) with the conditional probability distributions

where (5) is the usual Gaussian likelihood for GP regression with noise variance �2
n
 , (6) 

the projection conditional and (7) the prior transition. Thereby, the matrices are defined as 
Hj = K

XjA�(j)
K

−1

A�(j)A�(j)
∈ ℝ

B×LC , Vj = Diag[K
XjXj

− K
XjA�(j)

K
−1

A�(j)A�(j)
K

A�(j)Xj
] ∈ ℝ

B×B , 
Fj = KAjA�(j)

K−1
A�(j)A�(j)

∈ ℝ
L×LIj , and Qj = K

AjAj
− K

AjA�(j)
K

−1

A�(j)A�(j)
K

A�(j)Aj
∈ ℝ

L×L with F1 = 0 
and Q1 = KA1A1

.

The two conditional distributions (6) and (7) can be derived from the true joint prior dis-
tribution p(a, f , y) as shown in Proof 1. Alternatively, a generalization of this model can be 
obtained when using a modified projection distribution p

(
f j|a�(j)

)
 , so that for C → J and 

𝛾 < 1 our model recovers a range of well known global sparse GP methods as described in 
Sect. A.1 and Prop. 5. In any case, these local conditional distributions lead to the follow-
ing joint distribution.

Definition 4  (Joint distribution) For the graphical model corresponding to graph G , the 
joint distribution over all variables f , a, y can be written as

In the case � = 1 and thus a = f  , the joint distribution simplifies (Proof 2) to

We use q = qc,� instead of p in order to indicate that it is an approximate distribution. 
The joint distributions in Def. 4 and the corresponding graphical model in Fig. 4a allow 
interesting comparisons to other GP models in Fig. 1 and the corresponding formulas 
(1), (2), (4). Whereas the conditioning set for full GP are all the previous latent values 
f 1∶j−1 , for sparse GPs some global inducing points a and for local independent experts 
the empty set, we propose to condition on the C − 1 predecessors f�(j) (or a sparsified 
version in the general case). From this point of view, we can notice that our probabilistic 

(5)p
(
yj|f j

)
= N

(
yj|f j, �2

n
�
)
,

(6)p
(
f j|a�(j)

)
= N

(
f j|Hja�(j),Vj

)

(7)p
(
aj|a�(j)

)
= N

(
aj|Fja�(j),Qj

)
,

qc,� (f , a, y) =

J∏

j=1

p
(
yj|f j

)
p
(
f j|a�(j)

)
p
(
aj|a�(j)

)
.

qc,1(f , y) =

J∏

j=1

p
(
yj|f j

)
p
(
f j|f�(j)

)
.
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model is equal to full GP, sparse GP and PoEs under certain circumstances, which are 
more precisely formulated in Prop. 5.

3.2 � Sparse and local prior approximation

The conditional independence assumptions between the experts induced by the pre-
decessor structure �C lead to an approximate prior qc,� (a) and approximate projection 
qc,� (f |a) yielding a sparse and local joint prior qc,� (a, f , y).

Proposition 2  (Joint prior approximation, Proof 4) The prior over all local inducing points 
a in our CPoE model is

with prior precision SC = S = FTQ−1F ∈ ℝ
M×M , where Q = Diag

[
Q1,… ,QJ

]
∈ ℝ

M×M 
and F ∈ ℝ

M×M is given as the sparse lower triangular matrix in Fig.  5. Moreover, the 
projection is

qc,� (a) =

J∏

j=1

p
(
aj|a�(j)

)
= N

(
a|0, S−1

C

)
,

a1 a5a4a3a2

a5a4a3a2a1

a5a4a3a2a1 a5a4a3a2a1

a5a4a3a2a1

π1

π2

π3

π4

π5

F

C = 1 C = 2 C = 3 C = 4 C = 5

S, T,Σ−1

H

Fig. 3   Correlation structure �C between the J = 5 experts for different degrees of correlation 1 ≤ C ≤ J . 
Left: Graphical model among the local inducing points aj . Right: Structure of sparse transition matrix F , 
projection matrix H , prior precision S , likelihood precision T and posterior precision �−1 . Note that �C 
does not have to be consecutive, e.g 2 ∉ �2(3)

y1 y2 yj yJ... ...

f1 f2 fj fJ

πC(J)πC(j)

i) Full CPoE (γ = 1)

y1 y2 yj yJ... ...

f1 fj fJf2

aJ

... ...

πC(J)πC(j)

a1 aja2

ψC(j) ψC(j)

ii) Sparse CPoE (γ < 1)
a1 a2 aJ

f∗C f∗J

ψC(j)

aj
ψC(J)ψC(2)

y∗

f∗j

f∗

(a) Training. (b) Prediction.

Fig. 4   Graphical model for training and prediction of CPoE(C, �)
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where H ∈ ℝ
N×M defined in Fig. 5 and V = Diag

[
V1,… ,VJ

]
∈ ℝ

N×N . Together with the 
exact likelihood p(y�f ) = ∏J

j=1
p(yj�f j) = N

�
y�f , �2

n
�
�
 determines the joint approximate 

prior

Note that the joint prior qc,� (a, f , y) is Gaussian N(0,W) with dense covariance W and 
sparse precision Z = W−1 as shown in Fig. C7 in the Appendix. If the predecessor set 
is consecutive, the matrix F is a lower band (block)matrix with bandwidth C and in the 
non-consecutive case each row has exactly C non-zero blocks. The sparsity pattern of F 
is inherited to the prior precision S = FTQ−1F , which is also a sparse matrix (see Fig. 3). 
For the consecutive case, S is a block-band matrix with bandwidth 2C − 1 . Note that, the 
inverse S−1 is dense. The likelihood matrix H is exact in the corner up to indices C which 
ensures that our model recovers sparse global GP in the limiting case C = J . The quality of 
the approximation of our CPoE(C, �) model is discussed in Sect. 3.5, where we show that 
qc,� (a, f , y) converges to the true prior p(a, f , y) for C → J.

3.3 � Inference

For our model it is possible to infer analytically the posterior qc,� (a|y) and the marginal 
likelihood qc,� (y) used later for prediction and for hyperparameter estimation, respectively.

Proposition 3  (Posterior approximation; Proof 12) From the joint distribution, the latent 
function values f  can be integrated out yielding

qc,� (f |a) =
J∏

j=1

p
(
f j|a�(j)

)
= N

(
f |Ha,V

)
,

qc,� (a, f , y) = p(y|f ) qc,� (f |a) qc,� (a).

Fig. 5   Sparse transition F ∈ ℝ
M×M and projection H ∈ ℝ

N×M matrices, where Fi

j
∈ ℝ

L×L and Hi

j
∈ ℝ

B×L 
are the ith part of Fj ∈ ℝ

L×L(C−1) and Hj ∈ ℝ
B×LC , respectively, corresponding to the ith entries in �i(j) and 

� i(j)
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with V = V + �2
n
𝕀 ∈ ℝ

N×N . The posterior can be analytically computed by

with �
−1 = � = T + S ∈ ℝ

M×M , � = �� ∈ ℝ
M , � = HTV−1y ∈ ℝ

M and 
T = HTV−1H ∈ ℝ

M×M.

The posterior precision matrix �−1 = T + S inherits the sparsity pattern of the prior, 
since the addition of the projection precision T = HTV−1H has the same sparsity struc-
ture, as depicted in Figs. 3 and 6. On the other hand, the posterior covariance � is dense, 
therefore it will be never explicitly fully computed. Instead, the sparse linear system of 
equations �−1� = � can be efficiently solved for � = �� . Further, in our CPoE model, the 
marginal likelihood qc,� (y|�) can be analytically computed by ∫ qc,� (y, a) da = N(0,P) (see 
Proof 9) with the (dense) matrix P = HS−1HT + V ∈ ℝ

N×N , which is used in Sect. 3.6.2 
for hyperparameter optimization. The posterior approximation qc,� (a|y) as well as the 
approximate marginal likelihood qc,� (y) converge to the true distributions p(a|y) and p(y) , 
respectively, for C → J . In particular, they correspond exactly to the posterior and marginal 
likelihood of full GP and sparse global GP with ⌊�N⌋ inducing points for C = J, � = 1 and 
C = J, 𝛾 < 1 , respectively.

3.4 � Prediction

The final predictive posterior distribution is obtained by an adaptation of the PoE aggre-
gation in (3). The main idea is to consistently aggregate weighted local predictions form 
the experts, such that the correlations between them are taken into account resulting in a 
smooth and continuous predictive distribution.

Proposition 4  (Prediction aggregation; Proof 17) Similarly to the PoE aggregation (3), we 
define the final predictive posterior distribution for a query point x∗ ∈ ℝ

D as

involving the local predictions qc,� (f∗j|y) = N
(
m∗j, v∗j

)
 and weights �∗j ∈ ℝ defined in 

Prop. 8 and Def. 5, respectively. Moreover, the distribution qc,� (f∗|y) = N
(
m∗, v∗

)
 with 

qc,� (a, y) = ∫ qc,� (f , a, y) df = qc,� (y|a)qc,� (a) = N(y|Ha,V)N
(
a|0, S−1

)

qc,� (a|y) =
qc,� (a, y)

qc,� (y)
∝ qc,� (a, y) = N(a|�,�) = N−1(a|�,�),

(8)qc,� (f∗|y) =
J∏

j=C

qc,� (f∗j|y)�∗j ,

= +

HV −1

HTFF T Q−1Σ−1

prior precision Sposterior precision projection and likelihood precision T

Fig. 6   Sparse posterior precision approximation
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m∗ = v∗
∑J

j=C
�∗j

m∗j

v∗j
 and 1

v∗
=
∑J

j=C

�∗j

v∗j
 is analytically available. The final noisy prediction 

is p
(
y∗|y

)
= N

(
m∗, v∗ + �2

n

)
.

The graphical model corresponding to this prediction procedure is depicted 
in Fig.  4b and A3 in the Appendix. Further, the local predictions qc,� (f∗j|y) in Equa-
tion (8) are based on the region �(j) , where the correlations are modelled and can be 
computed as qc,� (f∗j|y) = ∫ p

(
f∗j|a�(j)

)
qc,� (a�(j)|y) da�(j) involving the local posteriors 

qc,� (a�(j)|y) = N
(
��(j),��(j)

)
 and the predictive conditional p

(
f∗j|a�(j)

)
 , as thoroughly 

shown in Proposition 8 in the Appendix. Thereby, the local posteriors with mean ��(j) 
and covariance entries ��(j) could be obtained from the corresponding entries �(j) of 
� and � . However, computing explicitly some entries in the dense covariance � based 
on the sparse precision �−1 is not straightforward since in the inverse the blocks are no 
longer independent. However, we can exploit the particular sparsity and block-structure 
of our precision matrix and obtain an efficient implementation of this part, which is key 
to achieve a competitive performance of our algorithm. More details are given in the 
Appendix in Sect. A.2.

Definition 5  (Aggregation weights) The input depending weights �∗j = �j(X∗) at query 
point X∗ model the impact of expert j. In particular, the unnormalized weights

are set to the difference in entropy H (B10) before and after seeing the data similarly pro-
posed by Fleet (2014). Thereby, the predictive prior is p

(
f∗
)
= N

(
0, v∗0

)
 with v∗0 = kX∗X∗

 
and the predictive posterior defined in Prop. 8. The normalized weights are then obtained 
by 𝛽∗j = b−1𝛽Z

∗j
 where b =

∑J

j=C
𝛽Z
∗j

 and Z = log(N)C.

These weights bring the flexibility of increasing or reducing the importance of the 
experts based on the predictive uncertainty. However, independent of the particular 
weights, our aggregation of the predictions is consistent since it is based on the covari-
ance intersection method (Julier and Uhlmann 1997), which is useful for combining 
several estimates of random variables with known mean and variance but unknown cor-
relation between them.

3.5 � Properties

Proposition 5  (Equality; Proof 3) Our model correlated Product of Experts CPoE(C, �) is 
equal to full GP for C = J and � = 1 . For 𝛾 < 1 , our model correspond to sparse global GP 
with Mg = ⌊�N⌋ inducing points. Further, with C = 1 and � = 1 , our model is equivalent to 
independent PoEs. That is, we have

where SGP refers to the FITC model Snelson and Ghahramani (2006) and GPoE  corre-
spond to GPoE Fleet (2014) with slightly different weights ( Z = 1 ) in the prediction.

𝛽∗j = H[p
(
f∗
)
] − H[p

(
f∗j|y

)
] =

1

2
log

(
v∗0

v∗j

)
,

CPoE(J, 1) = GP; CPoE(J, �) = SGP(⌊�N⌋); CPoE(1, 1) = GPoE∗,



1423Machine Learning (2023) 112:1411–1432	

1 3

In Sect. A.1 in the Appendix we present a generalization of our model, so that CPoE(J, � ) 
correspond to a range of other well known versions of sparse global GP by changing the 
projection distribution and adding a correction term in the log marginal likelihood simi-
larly discussed in Schürch et al. (2020) for the global case. For instance, we can extend our 
model analogously to the variational version of Titsias (2009).

For correlations between the limiting cases C = 1 and C = J , we investigate the differ-
ence in KL of the true GP model with CPoE(C, �) and CPoE(C2, �) for 1 ≤ C ≤ C2 ≤ J . 
For that reason, we define the difference in KL between the true distribution of x and two 
different approximate distributions, i.e.

Similarly, the difference in KL for a conditional distribution is defined in Eq. (B15). Using 
these definitions, we show that the approximation quality of the prior qc,� (a) and projec-
tion approximation qc,� (f |a) monotonically improves for C → J , so that the KL between 
the true joint distribution p(a, f , y) and our approximate joint distribution qc,� (a, f , y) is 
decreasing for C → J.

Proposition 6  (Decreasing KL; Proof  6) For any predecessor structure �C and any 
0 < 𝛾 ≤ 1 and 1 ≤ C ≤ C2 ≤ J , the difference in KL of the marginal prior, projection and 
data likelihood are non negative, i.e.

so that the joint difference in KL is also non-negative

Moreover, we can quantify the approximation quality, in particular �(C,C2)
[a] =

1

2
log

|QC|
|QC2

| 

and �(C,C2)
[f |a] = 1

2
log

|V̄C|
|V̄C2

| .

The last statement demonstrates that our CPoE model is a sound GP prior precision 
approximation, which converges monotonically to the true prior for C → J . The decreasing 
KL of the joint prior is depicted in Fig. 7 together with the decreasing KL of the posterior, 
marginal likelihood and predictive posterior. More details and proofs are given in Appen-
dix C.

3.6 � Computational details

3.6.1 � Graph

The graphical model in Sect.  3.1 is generically defined and several choices are left for 
completely specifying the graph G(V ,E) for a particular dataset: the partition method, the 
ordering of the partition, the selection of the predecessors and the local inducing points. 
We tried to make these choices as simple and straightforward as possible with focus on 
computational efficiency, however, there might be more sophisticated heuristics. Con-
cretely, we use KD-trees Maneewongvatana and Mount (2001) for partitioning the data 
D into J regions and the ordering starts with a random partition which is then greedily 
extended by the closest partition in euclidean distance (represented by the mean of the 

�(C,C2)
[x] = KL[p(x) ∣∣ qc,� (x)] − KL[p(x) ∣∣ qc2,� (x)].

�(C,C2)
[a] ≥ 0, �(C,C2)

[f |a] ≥ 0, �(C,C2)
[y|f ] = 0,

�(C,C2)
[a, f , y] = �(C,C2)

[a] + �(C,C2)
[f |a] + �(C,C2)

[y|f ] ≥ 0.
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inducing points). The L ≤ B inducing inputs Aj ∈ ℝ
L×D of the jth partition (or expert) can 

be in principle arbitrary, however, in this work they are chosen as a random subset of the 
data inputs Xj ∈ ℝ

B×D of the jth expert for the sake of simplicity. For the predecessors 
(block-)indices �C , the C − 1 closest partitions among the previous (according to the order-
ing) predecessors in euclidean distance are greedily selected. These concepts are illustrated 
for a toy example in Fig. 8.

3.6.2 � Hyperparameter estimation

In Sect.  3, we introduced CPoE for fixed hyperparameters � where implicitly all distri-
butions are conditioned on � , however, we omitted the dependencies on � in the most 
cases for the sake of brevity. Similar to full GP, sparse GP or PoEs, the log marginal 
likelihood (LML) can be used as an objective function for optimizing the few hyperpa-
rameters � . The log of the marginal likelihood of our model formulated in Sect.  3.3 is 

Fig. 7   Decreasing KL[p||q] between true distribution p of full GP and approximate distribution q = qc,� of 
CPoE for increasing values of C and � for the joint prior, posterior, marginal likelihood and predictive pos-
terior for synthetic GP data ( N = 1024,D = 2 , SE kernel)

Fig. 8   Toy example for partition, local inducing points, predecessors and directed graph illustrated for 
D = 2 with J = 5 experts/partitions each with B = 4 samples, � = 0.75 and thus L = 3 local inducing 
points. In a) the ordered partition with the data (black), local inducing points (green) and their mean (blue) 
are depicted. In b) and c) the directed graph for C = 2 and C = 3 are shown with corresponding prede-
cessors �2(1) = {} , �2(2) = {1} , �2(3) = {1} , �2(4) = {2} , �2(5) = {3} and �3(1) = {} , �3(2) = {1} , 
�3(3) = {1, 2} , �3(4) = {2, 3} , �3(5) = {3, 4} , respectively. In the previous example, �3 is consecutive and 
�2 is non-consecutive
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L(�) = log q(y|�) = logN(0,P) with P = HS−1HT + V which can be efficiently computed 
as detailed in Sect. A.3 and can be used for deterministic optimization with full batch y 
for moderate sample size N. However, in order to scale this parameter optimization part 
to larger number of samples N in a competitive time, stochastic optimization techniques 
exploiting subsets of data have to be developed similarly done for the global sparse GP 
model (SVI Hensman et al. (2013); REC Schürch et al. (2020); IF Kania et al. (2021)). We 
adapt the hybrid approach IF of Kania et al. (2021) where we can also exploit an independ-
ent factorization of the log marginal likelihood which decomposes into a sum of J terms, 
so that it can be used for stochastic optimization. This constitutes a very fast and accurate 
alternative for our method as shown in the Appendix A.3 and will also be exploited in 
Sect. 4 for large data sets. Alternatively to the log marginal likelihood (LML) maximiza-
tion as presented above, the maximum a posteriori (MAP) estimator for � can be used. This 
means, that some suitable prior on the hyperparameters are introduced, as explained in 
Sect. A.3.3 and an example is presented in Sect. 4.4.

3.6.3 � Complexity

The time complexity for computing the posterior and the marginal likelihood in our algo-
rithm is dominated by J operations which are cubic in LC (inversion, matrix-matrix multi-
plication, determinants). This leads to O(NB2�3) and O(NB�2) for time and space complex-
ity, respectively, where we define the approximation quality parameter � = C� . Similarly, 
for Nt testing points the time and space complexities are O(NB�2Nt) and O(N�Nt) (an 
approach to remove the dependency of N is outlined in A.4). In Table 1, the asymptotic 
complexities of our model together with other GP algorithms are indicated. It is interest-
ing that for � = 1 , our algorithm has the same asymptotic complexity for training as sparse 
global GP with Mg = B global inducing points but we can have M = LJ = �BJ = �N total 
local inducing points! Thus, our approach allows much more total local inducing points 
M in the order of N (e.g., M = 0.5N with C = 2 ) whereas for sparse global GP usually 
Mg ≪ N . This has the consequence that the local inducing points can cover the input space 
much better and therefore represent much more complicated functions. As a consequence, 
there is also no need to optimize the local inducing points resulting in much fewer param-
eters to optimize. Consider the following example with N = 10�000 in D = 10 dimensions. 
Suppose a sparse global GP model with Mg = 500 global inducing points. A CPoE model 
with the same asymptotic complexity has a batch size B = Mg = 500 and � = 1 . There-
fore, we have J =

N

B
= 20 experts and we choose C = 2 and � =

1

2
 such that we obtain 

L = �B = 250 local inducing points per experts and M = �N = 5�000 total local inducing 
points! Further, the number of hyperparameters to optimize with a SE kernel is for global 
sparse GP MgD + |�| = 5012 , whereas for CPoE there are only |�| = 12 . For an extended 
version of this section consider A.4 in the Appendix.

Table 1   Complexity for 
training, pointwise predictions 
for Nt points and number of 
optimization parameters for 
different GP algorithms

Full GP Sparse GP PoE CPoE

Time O(N3) O(NM2
g
) O(NB2) O(NB2�3)

Space O(N2) O(NMg) O(NB) O(NB�2)

Time t O(N2Nt) O(M2
g
Nt) O(NBNt) O(NBNt�

2)

Space t O(NNt) O(MgNt) O(NNt) O(NNt�)

#pars |�| MD + |�| |�| |�|
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4 � Comparison

In this section, we compare the performance with competitor methods for GP approxi-
mations using synthetic and several real world datasets as summarized in Table 3. More-
over, we provide a comparison to non-GP regression methods as well as an applica-
tion about probabilistic time series prediction both exploiting non-trivial kernels. More 
details about the experiments and implementations are provided in Sects. A.6, A.7 and 
F in the Appendix.

4.1 � Synthetic data

First, we examine the accuracy vs. time performance of different GP algorithms for 
fixed hyperparameters in a simulation study with synthetic GP data. We generated 
N = 8192 data samples in D = 2 with 5 repetitions from the sum of two SE kernels 
with a shorter and longer lengthscale such that both global and local patterns are pre-
sent in the data (compare Fig. A5). In Fig. 9 the mean results are shown for the KL and 
RMSE to full GP, the 95%-coverage and the log marginal likelihood against time in 
seconds. The results for sparse GP with increasing number of global inducing points 
M are shown in blue, the results for minVar, GPoE and BCM for increasing number of 
experts J are depicted in red, cyan and magenta, respectively. For CPoE, the results for 
increasing correlations C are shown in green. We observe superior performance of our 
method compared to competitors in terms of accuracy compared to full GP versus time. 
Moreover, one can observe that the confidence information of our model are reliable 
already for small approximation orders since it is based on the consistent covariance 
intersection method. A precise description of the experiment is provided in Sect. A.7.1 
in the Appendix.

4.2 � Real world data

Second, we benchmark our method with 10 real world datasets as summarized in Table 3 
and more details are given in Sect. A.7.2 in the Appendix (e.g., how to access and pre-
process the data). For the 5 smaller datasets in the first block we use deterministic param-
eter optimization for which the average results over 10 training/testing splits are depicted 
in Table 2. In particular, the KL to full GP (left) and time (right) for different GP methods 
are shown. Similarly, the average accuracy and times for the 4 larger datasets in the second 

Fig. 9   Average accuracy versus time performance of different GP algorithms
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block where stochastic parameter optimization is exploited can be found in Table A4 in the 
Appendix.

In general, the local methods perform better than the global sparse method. Further, the 
performance of our correlated PoEs is superior to the one of independent PoEs for all data-
sets. In particular, the KL to full GP can be continuously improved for increasing degree 
of correlation, i.e. larger C values. The time for CPoE(1) is comparable with the independ-
ent PoEs and for increasing C, our approximation has a moderate increase in time with a 
significant decrease in KL. For more details about the experiments consider Sect. A.7.2 in 
the Appendix and more results including standard deviations are provided in Appendix F.

4.3 � Comparison to non‑GP methods

Third, we compare our probabilistic regression method CPoE to other popular non-
GP regression methods, in particular, dense neural networks (MLPs), eXtreme Gradi-
ent Boosting (XGboost) and linear regression1. We use three different architectures 
for the neural networks, that is, MLP(100,  100), MLP(500,  500), MLP(100,  100,  100), 
where the numbers in the parentheses correspond to the number of hidden nodes 

Table 2   Average KL to full GP (left) and time (right) for different GP methods and 5 datasets with 10 rep-
etitions. More results are provided in Appendix F

KL Time
Concrete mg Space Abalone Kin Concrete mg Space Abalone Kin

fullGP 0.0 0.0 0.0 0.0 0.0 7.3 25.5 114.8 237.9 161.5
SGP(100) 352.9 9.9 108.1 15.6 603.7 36.4 14.4 46.6 58.9 42.2
minVar 122.2 19.4 63.6 25.1 211.0 1.5 2.0 7.2 6.4 9.3
GPoE 174.4 54.2 98.0 50.3 342.3 1.4 1.9 7.2 6.3 9.4
GRBCM 224.6 69.1 105.6 36.4 129.8 1.7 2.3 6.5 7.6 11.9
CPoE(1) 111.1 12.2 63.0 16.8 152.4 1.5 2.1 7.8 6.4 9.2
CPoE(2) 89.6 8.4 36.5 8.1 79.9 2.1 2.8 10.6 7.5 12.9
CPoE(3) 82.2 7.8 36.3 6.2 46.9 2.5 3.1 12.9 9.3 19.8
CPoE(4) 79.5 7.6 36.0 4.7 32.8 2.8 3.3 14.9 10.4 27.8

Table 3   Summary of used datasets and results for the elecdemand time series

N D Ntest J

concrete 927 8 103 4
mg 1247 6 138 8
space 2797 6 310 8
abalone 3760 8 417 16
kin 5192 8 3000 16

kin2 7373 8 819 16
cadata 19640 8 1000 64
sarcos 43484 21 1000 128
casp 44730 9 1000 128

elecdemand 2184 3 15288 13

(a) Description of datasets.

KL KL IN KL OUT time

full GP 0.0 0.0 0.0 404.3

SGP(100) 120.9 110.5 146.7 56.3
SGP(200) 114.9 65.6 238.3 75.2
minVar 503.0 406.5 744.5 20.7
GPoE 328.0 336.0 307.9 20.4
GRBCM 393.4 382.1 421.8 28.2

CPoE(1) 289.5 255.1 375.5 20.5
CPoE(2) 113.1 108.5 124.3 36.8
CPoE(3) 86.4 61.9 147.6 39.7
CPoE(4) 58.3 59.4 55.5 52.9

(b) KL to full GP and time of different methods.

1  We use the algorithms in https://​scikit-​learn.​org.

https://scikit-learn.org
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per hidden layer. Moreover, we used ADAM optimizer with learning rate 0.01. For 
XGboost(max_depth, n_estimators, learning_rate) , we use XGboost(3, 100, 0.1). All these 
hyperparameters are chosen in primary experiments so that those methods obtain advanta-
geous test performance. For our CPoE method, we use a SE kernel as in the previous sec-
tions, and in addition, we run the algorithm with a more flexible kernel, namely

where kSMi
 is a spectral-mixture kernel (Wilson and Adams 2013), kMLP an (infinite) wide 

1-hidden-layer neural network kernel (Neal 1995) and kLIN a linear kernel. We run full GP 
for smaller datasets as comparison. The average RMSE, ABSE and time results are provided 
in Tables 4, F22 and F23, respectively. For instance in Table 4, we can observed that the 
GP approximation methods using either a SE kernel or a more flexible kernel achieve com-
petitive performance.

Finally, we would like to emphasize that our probabilistic CPoE model provides a pre-
dictive distribution, that is, it models the predictive uncertainty and can thus provide reli-
able credible-intervals. Computing also the predictive variances is a harder task than only 
computing the predictive means, as the most other regression algorithms do. Therefore, the 
slightly higher computational times (Table F23) for similar accuracy (Tables 4 and F22) 
are very reasonable in our opinion. More detailed results are given in Tables F15–F21 and 
on github.2

4.4 � Time series application

In this section, our method is applied on time series data with covariates using a non-sta-
tionary kernel together with priors on the hyperparameters as discussed in Sect. A.3.3 by 

(9)k�(x1, x2) = kSM1
(x1, x2) + kSM2

(x1, x2) + kMLP(x1, x2) + kLIN(x1, x2),

Table 4   Average RMSE for our CPoE methods compared to non-GP regression methods

The methods ending with SE were run with a squared-exponential and a flexible kernel (9), respectively. 
Best method (beside GP full) is indicated in bold

Concrete mg Space Abalone Kin Cadata Sarcos Casp

fullGP-SE 0.311 0.511 0.471 0.635 0.267
fullGP-FLEX 0.254 0.509 0.455 0.638 0.28
CPoE(1)-SE 0.333 0.508 0.506 0.637 0.31 0.476 0.099 0.597
CPoE(2)-SE 0.326 0.512 0.49 0.634 0.292 0.47 0.1 0.59
CPoE(3)-SE 0.323 0.513 0.489 0.634 0.28 0.47 0.099 0.59
CPoE(1)-FLEX 0.266 0.511 0.631 0.687 0.334 0.456 0.094 0.525
CPoE(2)-FLEX 0.259 0.515 0.446 0.669 0.315 0.423 0.094 0.522
CPoE(3)-FLEX 0.255 0.516 0.444 0.659 0.303 0.42 0.092 0.522
MLP(100-100) 0.289 0.525 0.482 0.652 0.287 0.456 0.117 0.591
MLP(500-500) 0.292 0.522 0.475 0.761 0.284 0.485 0.097 0.577
MLP(100-100-100) 0.285 0.531 0.476 0.762 0.299 0.485 0.106 0.585
XGboost 0.323 0.545 0.543 0.65 0.667 0.474 0.251 0.767
LinReg 0.626 0.633 0.645 0.66 0.765 0.605 0.27 0.854

2  https://​github.​com/​mansc​huer/​CPoE/​blob/​main/​exper​iments/​compa​rison_​non_​GP.​ipynb.

https://github.com/manschuer/CPoE/blob/main/experiments/comparison_non_GP.ipynb
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using MAP estimation. A recent work Corani et al. (2021) demonstrates that GPs constitute 
a competitive method for modelling time series using a sum of kernels including priors on 
the hyperparameters, which are previously learnt from a large set of different time series. 
We adapt their idea by using the same priors and a slightly modified kernel. In particular, 
for two data points x1 = [t1, x1,2,… , x1,D] and x2 = [t2, x2,2,… , x2,D] , we model the kernel 
as the sum of 4 components

where kP1
 and kP1

 are standard periodic kernels with period p1 and p2 , respectively, kSM 
a spectral-mixture kernel and kSE a squared-exponential kernel. Note that, the former 
3 kernels only depend on the first variable corresponding to time, whereas the SE-ker-
nel depends on all variables, thus models the influence of the additional variables. With 
our CPoE model it is straightforward to handle time series with covariates, as opposed to 
other time series methods (Benavoli and Corani (2021), Corani et al. (2021), Sarkka et al. 
(2013), Hyndman and Athanasopoulos (2018)). We demonstrate the MAP estimation for � 
on the elecdemand time series (Hyndman (2020), Table 3), which contains the electricity 
demand as response y together with the time as the first variable x1 , the the corresponding 
temperature as x2 and the variable whether it is a working day as x3 which is depicted in 
the plots in Fig. 10 on the left, where we shifted the first and third variable in the second 
plot for the sake of clarity. Similarly as in the previous section, we run full GP, SGP, PoEs 
and CPoE and optimized the hyperparameter deterministically using the MAP as objective 
function taking into account the priors. The results are provided in Table 3 and in Fig. 10 
on the right, which again show very competitive performance also for a general kernel with 
priors on the hyperparameters. More details about the experiment is given in Sect. A.7.3 in 
the Appendix.

5 � Conclusion

In this paper, we introduce a novel GP approximation algorithm CPoE, where the degree of 
approximation can be adjusted by a locality and a sparsity parameter, so that the proposed 
method recovers independent PoEs, sparse global GP and full GP. Thereby, our method 
consistently approximates full GP, in particular, we proved that increasing the correlations 
between the experts decreases monotonically the KL of the joint prior of full GP to them 

k�(x1, x2) = kP1
(t1, t2) + kP2

(t1, t2) + kSM(t1, t2) + kSE(x1, x2),

Fig. 10   Time series data with covariates and prior on hyperparameters
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of our model. The presented algorithm has only a few hyperparameters, which allows an 
efficient deterministic and stochastic optimization. Further, our presented algorithm works 
with a general kernel, with several variables and also priors on the hyperparameters can 
be included. Moreover, the time and space complexity is linear in the number of experts 
and number of data samples, which makes it highly scalable. This is demonstrated with 
efficient implementations, so that a dataset with several ten thousands of samples can be 
processed in around a minute on a standard laptop. In several experiments with synthetic 
and real world data, superior performance in a accuracy vs. time sense compared to state-
of-the-art methods, is demonstrated, which makes our algorithm a competitive GP regres-
sion approximation method.

Our approach could be enhanced in several directions. The first improvement would be 
more practical. While the current implementation of our algorithm works very competi-
tively for moderate large datasets (on a standard laptop), further work has been done to 
scale it up to very large datasets. The current limitations are particularly factorizing the 
sparse block Cholesky matrices. We are convinced, that the theoretical properties of our 
algorithm—in particular the linearity in the number of experts and data samples—enables 
large scale implementations when exploiting more low level linear algebra tools. Another 
interesting direction would be to investigate the connection of our sparse precision matrix 
to state space systems, such that sequential learning algorithm could be exploited, which 
is briefly outlined in D. Further, it would be interesting to apply variational methods to 
our model, so that a connection to full GP in a posterior sense might be established, where 
some ideas are outlined in A.1.
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