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Abstract
Being able to provide counterfactual interventions—sequences of actions we would have 
had to take for a desirable outcome to happen—is essential to explain how to change an 
unfavourable decision by a black-box machine learning model (e.g., being denied a loan 
request). Existing solutions have mainly focused on generating feasible interventions with-
out providing explanations of their rationale. Moreover, they need to solve a separate opti-
mization problem for each user. In this paper, we take a different approach and learn a 
program that outputs a sequence of explainable counterfactual actions given a user descrip-
tion and a causal graph. We leverage program synthesis techniques, reinforcement learning 
coupled with Monte Carlo Tree Search for efficient exploration, and rule learning to extract 
explanations for each recommended action. An experimental evaluation on synthetic and 
real-world datasets shows how our approach, FARE (eFficient counterfActual REcourse), 
generates effective interventions by making orders of magnitude fewer queries to the black-
box classifier with respect to existing solutions, with the additional benefit of complement-
ing them with interpretable explanations.
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1  Introduction

Counterfactual explanations are very powerful tools to explain the decision process of 
machine learning models (Wachter et al., 2017; Karimi et al., 2020). They give us the 
intuition of what could have happened if the state of the world was different (e.g., if you 
had taken the umbrella, you would not have gotten soaked). Researchers have devel-
oped many methods that can generate counterfactual explanations given a trained model 
(Wachter et  al., 2017; Dandl et  al., 2020; Mothilal et  al., 2020; Karimi et  al., 2020; 
Guidotti et al., 2018; Stepin et al., 2021). However, these methods do not provide any 
actionable information about which steps are required to obtain the given counterfactual. 
Thus, most of these methods do not enable algorithmic recourse. Algorithmic recourse 
describes the ability to provide “explanations and recommendations to individuals who 
are unfavourably treated by automated decision-making systems” (Karimi et al., 2021). 
For instance, algorithmic recourse can answer questions such as: what actions does a 
user have to perform to be granted a loan? Recently, providing feasible algorithmic 
recourse has also become a legal necessity (Voigt & Bussche, 2017). Some research 
works address this problem by developing ways to generate counterfactual interven-
tions (Karimi et  al., 2021), i.e., sequences of actions that, if followed, can overturn a 
decision made by a machine learning model, thus guaranteeing recourse. While being 
quite successful, these methods have several limitations. First, they are purely optimiza-
tion methods that must be rerun from scratch for each new user. As a consequence, this 
requirement prevents their use for real-time intervention generation. Second, they are 
expensive in terms of queries to the black-box classifier and computing time. Last but 
not least, they fail to explain their recommendations (e.g., why does the model suggest 
getting a better degree rather than changing jobs?). On the contrary, explainability has 
been pointed out as a major requirement for methods generating counterfactual inter-
ventions (Barocas et al., 2020).

In this paper, we cast the problem of providing explainable counterfactual interven-
tions as a program synthesis task (De Toni et al., 2021; Pierrot et al., 2019; Bunel et al., 
2018; Balog et al., 2017): we want to generate a “program” that provides all the steps 
needed to overturn a bad decision made by a machine learning model. We propose a 
novel reinforcement learning (RL) method coupled with a discrete search procedure, 
Monte Carlo Tree Search (Coulom, 2006), to generate counterfactual interventions in an 
efficient data-driven manner. We call it FARE (eFficient counterfActual REcourse). As 
done by Naumann and Ntoutsi (2021), we assume a causal model encoding relationships 
between user features and consequences of potential interventions. We also provide a 
solution to distil an explainable deterministic program from the learned policy in the 
form of an automaton (E-FARE, Explainable and eFficient counterfActual REcourse). 
Figure 1 provides an overview of the architecture and the learning strategy and an exam-
ple of an explainable intervention generated by the extracted automaton. Our approach 
addresses the three main limitations characterizing existing solutions:

•	 It learns a general policy that can be used to generate interventions for multiple 
users, rather than running separate user-specific optimizations.

•	 By coupling reinforcement learning with Monte Carlo Tree Search, it can efficiently 
explore the search space, requiring massively fewer queries to the black-box classi-
fier than the best evolutionary algorithm (EA) model available, especially in settings 
with many features and (relatively) long interventions.
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•	 By extracting a program from the learned policy, it can complement the intervention 
with explanations motivating each action from contextual information. Furthermore, 
the program can be executed in real-time without accessing the black-box classifier.

Our experimental results on synthetic and real-world datasets confirm the advantages 
of the proposed solution over existing alternatives in terms of generality, scalability and 
interpretability.

2 � Related work

Counterfactual explanations are versatile techniques to provide post-hoc interpretability 
of black-box machine learning models (Wachter et al., 2017; Dandl et al., 2020; Mothilal 
et al., 2020; Karimi et al., 2020; Guidotti et al., 2018; Stepin et al., 2021). They are model-
agnostic, which means that they can be applied to trained models without performance 
loss. Compared to other global methods (Greenwell et  al., 2018; Apley & Zhu, 2020), 
they provide instead local explanations. Namely, they underline only the relevant factors 
impacting a decision for a given initial target instance. They are also human-friendly and 
present many characteristics of what it is considered to be a good explanation (Miller, 
2019). Therefore, they are suitable candidates to provide explanations to end-users since 
they are both highly-informative and localized. Recent research has shown how to gener-
ate counterfactual interventions for algorithmic recourse via various techniques (Karimi 
et  al., 2020), such as probabilistic models (Karimi et  al., 2020), integer programming 
(Ustun et  al., 2019; Kanamori et  al., 2020), reinforcement learning (Yonadav & Moses, 
2019), program synthesis (Ramakrishnan et al., 2020), and genetic algorithms (Naumann 
& Ntoutsi, 2021). Researchers also developed solutions tied to a specific class of machine 
learning models, such as linear models (Tolomei et  al., 2017) or Additive Tree Models 
(Cui et  al., 2015). Methods with (approximated) convergence guarantees on the optimal 
counterfactual policies have also been proposed  (Tsirtsis & Rodriguez, 2020). However, 
most of these methods ignore the causal relationships between user features  (Tsirtsis & 

Fig. 1   1. Model architecture. Given the state st representing the features of the user, the agent generates 
candidate intervention policies �f  and �x for functions and arguments, respectively (an action is a func-
tion-argument pair). MCTS uses these policies as a prior, and it extracts the best next action (f , x)∗

t+1
 . Once 

found, the reward received upon making the action is used to improve the MCTS estimates, and correct 
traces (i.e., those leading to the desired outcome change) are saved in a replay buffer. 2. Training step. The 
buffer is used to sample a subset of correct traces to be used to train the RL agent to mimic the behaviour 
of MCTS. 3. Explainable intervention. Example of an explainable intervention generated by the automaton 
extracted from the learned agent. Actions are in black, while explanations for each action are in red
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Rodriguez, 2020; Ustun et al., 2019; Yonadav & Moses, 2019; Ramakrishnan et al., 2020). 
Without assuming an underlying causal graph, the proposed interventions become permu-
tation invariant. For example, given an intervention consisting of three actions [A, B, C], 
any intervention that is a permutation of the actions will have the same total cost. More 
importantly, it has been recently shown that optimal algorithmic recourse is impossible 
to achieve without a causal model of the interactions between the features (Karimi et al., 
2020). The work by Karimi et al. (2020) provides algorithmic recourse following a proba-
bilistic causal model but optimizes for subpopulation-based interventions instead of per-
sonalizing for a single user. CSCF (Naumann & Ntoutsi, 2021) is the only model-agnostic 
method capable of producing consequence-aware sequential interventions by exploiting 
causal relationships between features represented by a causal graph. However, CSCF is 
still purely an (evolutionary-based) optimization method, so it has to be run from scratch 
for each new user. Furthermore, the approach is opaque with respect to the reasons behind 
a suggested intervention. In this work, we show how our approach improves over CSCF in 
terms of generality, efficiency and interpretability.

3 � Methods

3.1 � Problem setting

The state of a user is represented as a vector of attributes s ∈ S (e.g., age, sex, monthly 
income, job). A black-box classifier h ∶ S → {True,False} predicts an outcome given a 
user state, with True being favourable to the user and False being unfavourable. The setting 
can be easily extended to multiclass classification by either grouping outcomes in favour-
able and unfavourable ones or learning separate programs converting from one class to the 
other. A counterfactual intervention I is a sequence of actions. Each action is represented 
as a tuple, (f , x) ∈ A , composed by a function, f, and its argument, x ∈ Xf  (e.g., (change_
income, 500)). When an action is performed for a certain user, it modifies their state by 
altering one of their attributes according to its argument. A library F  contains all the pos-
sible functions which can be called. This library and the corresponding DSL (Domain Spe-
cific Language) are typically defined as a-priori by experts to prevent changes to protected 
attributes (e.g., age, sex, etc.). Examples of such DSLs can be found in ”Appendix B”. 
Moreover, each function possesses pre-conditions in the form of Boolean predicates over 
its arguments which describe the conditions that a user state must meet in order for a func-
tion to be called. The end of an intervention I is always specified by the STOP action. 
We also define a cost function, C ∶ A × S → ℝ which mimics the effort made by a given 
user to perform an action given the current state. The cost is computed by looking at a 
causal graph G (Pearl, 2009), where the nodes of the graph are the user’s features. This 
assumption encodes the concept of consequences and it ensures a notion of order for the 
intervention’s actions. For example, it might be easier to get first a degree and then a bet-
ter salary rather than doing the opposite. The causal graph is problem-specific, and we can 
estimate it using domain knowledge or a domain expert. If we have observational data, we 
can also try to learn a candidate G using automated methods (Tian & Pearl, 2001; Spirtes & 
Zhang, 2016), although inferring the “true” causal graph without interventions is not triv-
ial. We use the former method for the evaluation by manually crafting the causal graphs. 
Figure 2 shows an example of a causal graph G and of the corresponding costs. Our goal is 
to train an agent that, given a user with an unfavourable outcome, generates counterfactual 
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interventions that overturn it. Given a black-box classifier h, a user s0 for whom the pre-
diction by h is unfavourable (i.e., h(s0) = False ), a causal graph G and a set of possible 
actions A (implicitly represented by the functions in F  and their arguments in X  ), we want 
to generate a sequence I∗ , that, if applied to s0 , produces a new state, s∗ = I(s0) , such that 
h(s∗) = True . This sequence must be actionable, which means that the user has to be able 
to perform those actions, and minimize the user’s cost. More formally:

3.2 � Model architecture

3.2.1 � Overall structure

Figure 1 shows the complete FARE model architecture. It is composed of a binary encoder 
and an RL agent coupled with the Monte Carlo Tree Search procedure. The binary encoder 
converts the user’s features into a binary representation. The conversion is done by one-
hot-encoding the categorical features and discretizing the numerical features into ranges. 
In the following sections, we will use st to directly indicate the user’s state binary version. 
Given a state st , the RL agent generates candidate policies, �f  and �x , for the function and 
argument generation respectively. MCTS uses these policies as priors for its exploration 
of the action space and extracts the best next action (f , x)∗

t+1
 . The action is then applied to 

the environment. The procedure ends when the STOP action is chosen (i.e., the interven-
tion was successful) or when the maximum intervention length is reached, in which case 
the result is marked as a failure. During training, the reward is used to improve the MCTS 
estimates of the policies. Moreover, correct traces (i.e., traces of interventions leading to 
the desired outcome change) are stored in a replay buffer, and a sample of traces from the 
buffer is used to refine the RL agent.

(1)

I∗ = min
I

T∑

t=0

C(at, st)

s.t. I = {at}
T
t=0

at ∈ A ∀t

st = It−1(st−1) ∀t > 0

h(I(s0)) ≠ h(s0)

Fig. 2   Examples of interventions on a causal graph. A A causal graph and a set of candidate actions. B 
Examples of interventions together with their costs. Note that the green line ( 

∑
C = 15 ) has a lower cost 

than the red line ( 
∑

C = 28 ) thanks to a better ordering of the actions making up the intervention (Color 
figure online)
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3.2.2 � RL agent structure

The agent structure is inspired by previous program synthesis works (De Toni et al., 2021; 
Pierrot et al., 2019). It is composed by 5 components: a state encoder, genc , an LSTM con-
troller, glstm , a function network gf  , an argument network gx and a value network gV . See 
Fig. 3 for an overview. We use simple feedforward networks to implement gf  , gx and gV.

genc encodes the user’s state in a latent representation which is fed to the controller, glstm . 
The controller, glstm learns an implicit representation of the program to generate the inter-
ventions. The function and argument networks are then used to extract the corresponding 
policies, �f  and �x , by taking as input the hidden state ht from glstm . gV represents the value 
function V and it outputs the expected reward from the state st . Here, we omit the state 
st when defining the policies and the value function output, since st is already embedded 
into the ht representation. In our settings, we try to learn a single program, which we call 
INTERVENE.

3.2.3 � Policy

A policy is a distribution over the available actions (i.e., functions and their arguments) 
such that 

∑N

i=0
�(i) = 1 . Our agent produces two policies: �f  on the function space, and �x 

on the argument space. The next action, (f , x)t+1 , is chosen by taking the argmax over the 
policies:

Each program starts by calling the program INTERVENE, and it ends when the action 
STOP is called.

(2)genc(st) =et glstm(et, ht−1) = ht

(3)gf (ht) =�f gx(ht) = �x gV (ht) = vt

ft+1 = argmax
f∈F

�f (f ) xt+1 = argmax
x∈Xft+1

�x(x|ft+1)

Fig. 3   Agent architecture. Given 
the user’s state st , it outputs a 
function policy, �f  , an argument 
policy �x and an estimate of the 
expected reward from the state vt . 
These outputs are used to select 
the next best action (f , x)t+1
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3.2.4 � Reward

Once we have applied the intervention I, given the black-box classifier h, the reward, r, is 
computed as:

where � is a regularization coefficient and T is the length of the intervention. The �T penal-
izes longer interventions in favour of shorter ones. Minimizing the intervention length is 
related to minimizing the sparsity, which indicates how many features we have changed to 
obtain a successful counterfactual (Wachter et al., 2017). Sparsity is regarded as an impor-
tant quality for counterfactual examples and algorithmic recourse (Miller, 2019).

3.3 � Monte Carlo tree search

Monte Carlo Tree Search (MCTS) is a discrete heuristic search procedure that can suc-
cessfully solve combinatorial optimization problems with large action spaces (Silver 
et al., 2018, 2016). MCTS explores the most promising nodes by expanding the search 
space based on a random sampling of the possible actions. In our setting, each tree 
node represents the user’s state at a time t, and each arc represents a possible action 
determining a transition to a new state. MCTS searches for the correct sequence of 
interventions that minimize the user effort and changes the prediction of the black-
box model. We use the agent policies, �f  and �x , as a prior to explore the program 
space. Then, the newly found sequence of interventions is used to train the RL agent. 
To select the next node, we maximize the UCT criterion (Kocsis & Szepesvári, 2006):

Here Q(s, (f, x)) returns the expected reward by taking action (f, x). U(s, (f, x)) is a term that 
trades-off exploration and exploitation, and it is based on how many times we visited node 
s in the tree. L(s, (f, x)) is a scoring term which is defined as follows:

where lcost = C(a, s) ∈ ℝ represents the effort needed to perform the a = (f , x) ∈ A action, 
and lcount ∈ ℝ penalizes interventions that call multiple times the same function f. MCTS 
uses the simulation results to return an improved version of the agent policies �mcts

f
 and 

�
mcts
x

 . We can also specify the depth of the search tree as a hyperparameter to balance the 
computational load requested by the procedure.

From the found intervention, we build an intervention trace, which is a sequence of 
tuples that stores, for each time step t: the input state, the output state, the reward, the 
hidden state of the controller and the improved policies. The traces are stored in the 
replay buffer, to be used to train the RL agent.

(4)r = �
TR � ∈ (0, 1), R =

{
1 h(I(s)) ≠ h(s)

0 otherwise

(5)(f , x)t+1 = argmax
f∈F,x∈Xf

Q(s, (f , x)) + U(s, (f , x)) + L(s, (f , x))

(6)L(s, (f , x)) = e−(lcost((f ,x),s)+lcount(f ))
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3.4 � Training the agent

The agent has to learn to replicate the interventions provided by MCTS at each step t. 
Given the replay buffer, we sample a batch of intervention traces and we minimize the 
cross-entropy L between the MCTS policies and the agent policies for each time step t:

where � represents the agent’s parameters and V is the value function evaluation computed 
by the agent.

3.5 � Generate interventions through RL

When training the agent, we learn a general policy that can be used to provide interven-
tions for many different users. The inference procedure is similar to the one used for train-
ing. Given an initial state s, MCTS explores the tree search space using as “prior” the 
learnt policies �x and �f  coming from the agent. The policies �x and �f  give MCTS a hint 
of which node to select at each step. Once MCTS finds the minimal cost trace that achieves 
recourse, we return it to the user. In principle, we can also use only �x and �f  to obtain 
a viable intervention (e.g., by deterministically taking the action with highest probability 
each time). However, keeping the search component (MCTS) with a small exploration 
budget outperforms the RL agent alone. See Table 2 in Sect. 4 for the comparison between 
the agent-only model and the agent augmented with MCTS.

Learning a general policy to provide interventions is a powerful feature. However, the 
policy is encoded in the latent states of the agent, thus making it impossible for us to under-
stand it. We want to be able to extract from the trained model an explainable version of this 
policy, which can then be used to explain why the model suggested a given intervention. 
Namely, besides providing to the users a sequence of actions, we want to show also the 
reason behind each suggested action. The intuition to achieve this is the following: given a 
set of successful interventions generated by the agent, we can distill a synthetic automaton, 
or program, (E-FARE) which condense the policy in a graph-like structure which we can 
traverse.

3.6 � Explainable intervention program

We now show how we can build a deterministic program given the agent. Figure 4 shows 
the complete procedure and an example of the produced trace. First, we sample M interven-
tion traces from the trained agent and extract a sequence of {(si, (f , x)i)}Ti=0 for each trace. 
Then, we construct an automaton graph, P , in the following way: 

1.	 Given the function library F  , we create a node for each function f available. We also 
add a starting node called INTERVENE and a “sink” node called STOP;

2.	 We connect each node by unrolling the sampled traces. Starting from INTERVENE, we 
treat each action (f , x)t as a transition. We label the transition with (f, x) and we connect 
the current node to the one representing the function f;

(7)argmin
�

∑

batch

(V − r)2 − (�mcts
f

)T log(�f ) − (�mcts
x

)T log(�x)
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3.	 Lastly, for each node f, we store a collection of outgoing state-action pairs (si, (f , x)i) . 
Namely, we store all the states s and the corresponding outward transitions which were 
decided by the model while at the node f;

4.	 For each node, f ∈ P , we train a decision tree on the tuples (si, (f , x)i) stored in the node 
to predict the transition (f , x)i given a user’s state si.

The decision trees are trained only once by using the collection of traces sampled from the 
trained agent. The agent is frozen at this step, and it is not trained further. At this point, we 
perform Step 1 to 3 of Fig.  4. The pseudocode of the entire procedure is available in the 
”Appendix A”.

3.7 � Generate explainable interventions

The intervention generation is done by traversing the graph P , starting from the node INTER-
VENE, until we reach the STOP node or we reach the maximum intervention length. In the last 
case, the program is marked as a failure. Given the node f ∈ P and given the state st , we use the 
decision tree of that node to predict the next transition (f �, x�) . Moreover, we can extract from 
the decision tree interpretable rules which tell us why the next action was chosen. A rule is a 
boolean proposition on the user’s features such as (income > 5000 ∧ education = bachelor) . 
Then, we follow (f �, x�) , which is an arc going from f to the next node f ′ , and we apply the 
action to st to get st+1 . Again, the program is “fixed” at inference time, and it is not trained 
further. See Step 4 of Fig. 4 for an example of the inference procedure and of the produced 
explainable trace.

Fig. 4   Procedure to generate the explainable program from intervention traces. 1. For all f ∈ F  , we add 
a new node. 2. Given the samples traces, we add the transitions, and we store (si, (fi, xi)) in each node. 3. 
We train a decision tree for each node to predict the next action (consistently with the sampled traces). 4. 
We execute the program on the new instance at prediction time, using the decision trees to decide the next 
action at each node. We extract a Boolean rule explaining it from the corresponding decision tree for each 
action. On the right, an example of generated intervention. The actions (f, x) are black, while the explana-
tions are red (Color figure online)



1398	 Machine Learning (2023) 112:1389–1409

1 3

4 � Experiments

Our experimental evaluation aims at answering the following research questions: (1) Does 
our method provide better performances than the competitors in terms of the validity of the 
algorithmic recourse? (2) Does our approach allow us to complement interventions with 
action-by-action explanations in most cases? (3) Does our method minimize the interaction 
with the black-box classifier to provide interventions?

The code and the dataset of the experiments are available on Github to ensure reproduc-
ibility.1 The software exploit parallelization through mpi4python (Dalcin & Fang, 2021) 
to improve inference and training time. We compared the performance of our algorithm 
with CSCF (Naumann & Ntoutsi, 2021), to the best of our knowledge the only existing 
model-agnostic approach that can generate consequence-aware interventions following a 
causal graph. However, note that earlier solutions still perform user-specific optimization, 
so that our results in terms of generality, interpretability and cost (number of queries to the 
black-box classifier and computational cost) carry over to these alternatives. For the sake 
of a fair comparison, we built our own parallelized version of the CSCF model based on 
the original code. We developed the project to make it easily extendable and reusable by 
the research community. The experiments were performed using a Linux distribution on an 
Intel(R) Xeon(R) CPU E5-2660 2.20GHz with 8 cores and 100 GB of RAM (only 4 cores 
were used).

4.1 � Dataset and black‑box classifiers

Table 1 shows a brief description of the datasets. They all represent binary (favourable/
unfavourable) classification problems. The two real world datasets, German Credit (ger-
man) and Adult Score (adult) (Dua & Graff, 2017), are taken from the relevant literature. 
Given that in these datasets a couple of actions is usually sufficient to overturn the outcome 
of the black-box classifier, we also developed two synthetic datasets, syn and syn_long, 
where longer interventions are required, so as to evaluate the models in more challenging 
scenarios. The datasets are made of both categorical and numerical features (e.g., monthly 
income, job type, etc.). Each dataset was randomly split into 80% train and 20% test. For 
each dataset, we manually define a causal graph, G , by looking at the features available. 

Table 1   Description of the 
datasets

|D| is the size of the dataset. |s| the number of features for an instance. 
|B(s)| shows how many binary features the agent sees after the con-
version with the binary converter. |F| is the size of the agent program 
library. h(s) indicates the number of favourable (1) and unfavourable 
(0) samples

Dataset |D| h(s) = 1 h(s) = 0 |s| |B(s)| |F|

german 1002 301 701 10 44 7
adult 48,845 11,691 37,154 15 125 6
syn 10,004 5002 5002 10 40 6
syn_long 10,004 5002 5002 14 64 10

1  https://​github.​com/​unitn-​sml/​syn-​inter​venti​ons-​algor​ithmic-​recou​rse.

https://github.com/unitn-sml/syn-interventions-algorithmic-recourse
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For the synthetic datasets, we sampled instances directly from the causal graph. See Fig. 10 
in the Appendix for an example of these graphs. The black-box classifier for german and 
adult was obtained by training a 5-layers MLP with ReLu activations. The trained clas-
sifiers are reasonably accurate ( ∼ 0.9 test-set accuracy for german, ∼ 0.8 for adult). The 
synthetic datasets (syn and syn_long) do not require any training since we directly use our 
manually defined decision function.

4.2 � Models

We evaluate four different models: FARE, the agent coupled with MCTS ( MFARE ), 
E-FARE, the explainable deterministic program distilled from the agent ( ME-FARE ), and 
two versions of CSCF, one ( Mcscf  ) with a large budget of generation, n, and population 
size, p, ( n = 50, p = 200 ) and one ( Msmall

cscf
 ) with a smaller budget ( n = 25, p = 100 ). For 

MFARE , we set the MCTS exploration depth to 7 for all the experiments.

4.3 � Evaluation

The left plot in Fig. 5 shows the average validity of the different models, namely the frac-
tion of instances for which a model manages to generate a successful intervention (Wachter 
et al., 2017). We can see how MFARE outperforms or is on-par with the Mcscf  and Msmall

cscf
 

models on both the real-world and synthetic datasets. The performance difference is more 
evident in the synthetic datasets because the evolutionary algorithm struggles to generate 
interventions that require more than a couple of actions. The validity loss incurred in dis-
tilling MFARE into a program ( ME-FARE ) is rather limited. This implies that we are able 
to provide interventions with explanations for 94% (german), 66% (adult), 99% (syn) and 
87% (syn_long) of the test users.2 Moreover, ME-FARE generates similar interventions to 
MFARE . The sequence similarity between their respective interventions for the same user 

Fig. 5   Experimental results. (Left) validity (fraction of successful interventions); (Middle) Average length 
of a successful intervention; (Right) Average cost of a successful intervention. Results are averaged over 
100 test examples

2  Note that the validity loss observed on adult is due to the limited sampling budget we allocated for 
ME-FARE (250 traces for all datasets). Adapting this budget to the feature space size (considerably larger 
for adult) can help boost the performance, at the cost of generating longer explanations.
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are 0.89 (german), 0.72 (adult), 0.80 (syn) and 0.71 (syn_long), where 1.0 indicates identi-
cal interventions.

The main reason for the validity gains of our model is the ability to generate long inter-
ventions, something evolutionary-based algorithms struggle with. This effect can be clearly 
seen from the middle plot of Fig.  5. Both Mcscf  and Msmall

cscf
 rarely generate interventions 

with more than two actions, while our approach can easily generate interventions with up 
to five actions. A drawback of this ability is that intervention costs are, on average, higher 
(right plot of Fig. 5). On the one hand, this is due to the fact that our model is capable of 
finding interventions for more complex instances, while Mcscf  and Msmall

cscf
 fail. Indeed, if we 

compute lengths and costs on the subset of instances for which all models find a successful 
intervention, the difference between the approaches is less pronounced. See Fig. 6 for the 
evaluation. On the other hand, there is a clear trade-off between solving a new optimization 
problem from scratch for each new user, and learning a general model that, once trained, 
can generate interventions for new users in real-time and without accessing the black-box 
classifier.

We also conducted a quantitative analysis of the quality of the explanations generated 
using ME-FARE . We measured the average number of boolean clauses in the rule of a 
given suggested action. Our explanations need to be concise, thus involving a limited num-
ber of features, to be easily understandable. The literature defines seven as the maximum 
acceptable number of concepts in an explanation (Miller, 2019, 1956). We have an average 
of 3 for the syn, syn_long and german datasets, while we have an average of  6.5 clauses 
for the adult dataset. Indeed, the ME-FARE model can generate compact explanations as 
boolean predicates. The adult dataset requires a more complex recourse policy. Therefore 
the decision rules of the automaton are more complex, thus involving longer boolean predi-
cates. See Fig. 7 for examples of interventions coupled with rule-based explanations.

Figure  8 reports the average number of queries to the black-box classifier. Our 
approach requires far fewer queries than Mcscf  (note that the plot is in logscale), and 

Fig. 6   Evaluation considering only the instances for which all the models provide a successful intervention. 
If we restrict the comparison to the subset of instances for which all models manage to generate a success-
ful intervention, the difference in costs between methods shrinks substantially (top left vs bottom left). The 
same behaviour applies to the intervention length (top right vs bottom right)
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even substantially less than Msmall
cscf

 (that is anyhow not competitive in terms of valid-
ity). Furthermore, most queries are made for training the agent ( MFARE(train) ), which 
is only done once for all users. Once the model is trained, generating interventions for 
a single user requires around two orders of magnitude fewer queries than the competi-
tors. Note that MCTS is crucial to allow the RL agent to learn a successful policy with 
a low budget of queries. Indeed, training an RL agent without the support of MCTS 
fails to converge in the given budget (between 50 and 100 iterations), leading to a com-
pletely useless policy. By efficiently searching the space of interventions, MCTS man-
ages to quickly correct inaccurate initial policies, allowing the agent to learn high qual-
ity policies with a limited query budget. MCTS is also critical during inference, since 
it increases the validity of the results. Given a trained agent, the  validity drops  if we 
perform inference without the MCTS components. See Table 2 for the evaluation.

Fig. 7   Example of Interventions with rule-based explanations. We show here two additional examples of 
successful interventions (syn and german datasets) combined with boolean predicates explaining why we 
suggested the given action. The black text indicates the action (f , x)t , while the red text indicates the deci-
sion rule (Color figure online)

Fig. 8   Number of queries. Total 
number of queries to the black-
box classifier made by the mod-
els. ME-FARE(predict) is not 
visible, as the automaton does 
not query the black-box classifier 
to generate interventions. Note 
that the number of queries is in 
logscale
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When turning to the program, building the automaton ( ME-FARE(train) ) requires a 
negligible number of queries to extract the intervention traces used as supervision.

Using the automaton to generate interventions does not require to query the black-
box classifier. This characteristic can substantially increase the usability of the system, 
as ME-FARE can be employed directly by the user even if they have no access to the 
classifier. Computationally speaking, the advantage of a two-step phase is also quite 
dramatic. Mcscf  takes an average of ∼ 693 s for each user to provide a solution (the same 
order of magnitude of training a model for all users with MFARE ), while MFARE infer-
ence time is under 1s, allowing real-time interaction with the user.

Additionally, Fig.  9 shows how it is possible to improve the performances of 
ME-FARE by just sampling more traces from the trained agent ( MFARE ). We can see 
how the validity increases in the adult, syn and syn_long datasets. We also notice that 
using a larger budget to train ME-FARE produces longer explainable rules by keeping 
the length and cost of the generated interventions almost constant. The total number of 
queries to the black-box classifier will also slightly increase.

Table 2   Ablation study

In order to evaluate the contribution of MCTS in finding successful 
interventions, we also evaluated a trained FARE model which only 
uses the RL agent, Magent . The agent predicts the next action using 
its own policy without leveraging MCTS to refine the choice. Results 
indicate that RL alone is incapable of finding successful interventions 
and the validity drops. Bold values indicate the best results

Dataset MFARE Magent

german 1.00 0.00
adult 0.93 0.00
syn 0.98 0.59
syn_long 0.92 0.00

Fig. 9   Validity of ME-FARE when varying the training budget. We show the effect on increasing the sam-
pling budget (from 100 to 700 traces) when training the ME-FARE model
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Overall, our experimental evaluation allows us to affirmatively answer the research 
questions stated above.

5 � Conclusion

This work improves the state-of-the-art on algorithmic recourse by providing a method, 
FARE (eFficient counterfActual REcourse), that can generate effective and interpret-
able counterfactual interventions in real-time. Our experimental evaluation confirms the 
advantages of our solution with respect to alternative consequence-aware approaches in 
terms of validity, interpretability and number of queries to the black-box classifier. Our 
work unlocks many new research directions, which could be explored to solve some of its 
limitations. First, following previous work on causal-aware intervention generation, we use 
manually-crafted causal graphs and action costs. Learning them from the available data 
directly, minimizing the human intervention, would allow applying the approach in set-
tings where this information is not available or unreliable. Second, we showed how our 
method learns a general program by optimizing over multiple users. It would be interesting 
to investigate additional RL methods to optimize the interventions globally and locally to 
provide more personalized sequences to the users. Such methods could be coupled with 
interactive approaches eliciting preferences and constraints directly from the user, thus 
maximizing the chance to generate the most appropriate intervention for a given user.

6 � Ethical Impact

The research field of algorithmic recourse aims at improving fairness, by providing 
unfairly treated users with tools to overturn unfavourable outcomes. By providing real-
time, explainable interventions, our work makes a step further in making these tools widely 
accessible. As for other approaches providing counterfactual interventions, our model 
could in principle be adapted by malicious users to “hack” a fair system. Research on 
adversarial training can help in mitigating this risk.

Appendix A: Program distillation pseudocode

We present here the pseudocode of two algorithms. Algorithm 1 shows how to distill the 
synthetic program from the agent and it refers to Step 3 of Fig. 4. Algorithm 1 shows how 
the distilled program is applied at inference time to a new user and it refers to Step 4 of 
Fig. 4.

Appendix B: Domain specific languages (DSL) and causal graphs

We now show the Domain Specific Languages (DSL) used for the german (Table 3), syn-
thetic (Table 4) and adult (Table 5) experiments. For each setting, we show the functions 
available, the argument type they accept and an exhaustive list of the potential arguments. 
Each program operates on a single feature. The name of the program suggests the feature it 
operates on (e.g., CHANGE_JOB operate on the feature job). The programs which accept 



1404	 Machine Learning (2023) 112:1389–1409

1 3

numerical arguments simply add their argument to the current value of the target feature. 
The program STOP does not accept any argument and it signals only the end of the inter-
vention without changing the features. The DSLs for the synthetic_long experiment is simi-
larly defined and is omitted for brevity (Fig. 10).

Table 3   Example of the DSL for the german experiment

Program Argument Type Argument

CHANGE_SAVINGS Categorical unknown, little, moderate, rich, quite_rich
CHANGE_JOB Categorical unskilled_non_resident, unskilled_resident, skilled, highly_

skilled
CHANGE_CREDIT Numerical 100, 1000, 2000, 5000
CHANGE_HOUSING Categorical free, rent, own
CHANGE_DURATION Numerical 10, 20, 30
CHANGE_PURPOSE Categorical business, car, domestic_appliances, education, furniture/

equipment, radio/TV, repairs, vacation/others
STOP – –

Table 4   Example of the DSL for the synthetic experiment

Program Argument Type Argument

CHANGE_EDUCATION Categorical none,secondary school diploma, bachelor, master, phd
CHANGE_JOB Categorical unemployed, worker, office worker, manager, ceo
CHANGE_INCOME Numerical 5000, 10000, 20000, 30000, 40000, 50000
CHANGE_HOUSE Categorical none, rent, own
CHANGE_RELATION Categorical single, married, divorced, widow/er
STOP – -
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Fig. 10   Causal Graphs. Depiction of the causal graphs used in the experiments for the syn and german data-
set. The bold nodes indicate the variables we want to predict. Here, the graphs encode the assumption that 
we know the factors influencing the target features (Risk and Loan). However, in practice, we cannot know 
which features the decision function of the black-box model is using for inference



1407Machine Learning (2023) 112:1389–1409	

1 3

Author contributions  GDT designed the method, conducted the data collection process, built the experi-
mental infrastructure and performed the relevant experiments. BL and AP contributed to the design of the 
method, provided supervision and resources. All authors contributed to the writing of the manuscript.

Funding  This research was partially supported by TAILOR, a project funded by EU Horizon 2020 research 
and innovation programme under GA No 952215. The work of Giovanni De Toni was partially supported by 
the project AI@Trento (FBK-Unitn).

Availability of data and materials  The datasets used in the experimental evaluation are freely available at 
https://​github.​com/​unitn-​sml/​syn-​inter​venti​ons-​algor​ithmic-​recou​rse.

Code availability  The code is freely available at https://​github.​com/​unitn-​sml/​syn-​inter​venti​ons-​algor​ithmic-​
recou​rse.

Declarations 

Conflict of interest  The authors have no competing interests to declare that are relevant to the content of this 
article.

Ethics approval  Not applicable.

Consent to participate  Not applicable.

Consent for publication  Not applicable.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 

https://github.com/unitn-sml/syn-interventions-algorithmic-recourse
https://github.com/unitn-sml/syn-interventions-algorithmic-recourse
https://github.com/unitn-sml/syn-interventions-algorithmic-recourse


1408	 Machine Learning (2023) 112:1389–1409

1 3

permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Apley, D. W., & Zhu, J. (2020). Visualizing the effects of predictor variables in black box supervised 
learning models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 82(4), 
1059–1086.

Dalcin, L., & Fang, Y. (2021). mpi4py: Status update after 12 years of development. Computing in Science 
Engineering, 23(4), 47–54. https://​doi.​org/​10.​1109/​MCSE.​2021.​30832​16.

Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for pro-
cessing information. Psychological Review, 63(2), 81.

Miller, T. (2019). Explanation in artificial intelligence: Insights from the social sciences. Artificial Intel-
ligence, 267, 1–38.

Pearl, J. (2009). Causality. Cambridge University Press.
Pierrot, T., Ligner, G., Reed, S. E., Sigaud, O., Perrin, N., Laterre, A., et al. (2019). Learning compositional 

neural programs with recursive tree search and planning. NeurIPS, 32, 14673–14683.
Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., et al. (2016). Mastering 

the game of go with deep neural networks and tree search. Nature, 529, 484–503.
Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., et  al. (2018). A general rein-

forcement learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419), 
1140–1144. https://​doi.​org/​10.​1126/​scien​ce.​aar64​04.

Stepin, I., Alonso, J. M., & Pereira-Fariña, A. C. M. (2021). A survey of contrastive and counterfactual 
explanation generation methods for explainable artificial intelligence. IEEE Access, 9, 11974–12001.

Voigt, P., & Bussche, A. (2017). The EU general data protection regulation (GDPR): A practical guide (1st 
ed.). Springer.

Wachter, S., Mittelstadt, B., & Russell, C. (2017). Counterfactual explanations without opening the black 
box: Automated decisions and the GDPR. Harvard Journal of Law and Technology, 31, 841.

Balog, M., Gaunt, A. L., Brockschmidt, M., Nowozin, S., & Tarlow, D. (2017). DeepCoder: Learning to 
write programs. In ICLR. https://​openr​eview.​net/​pdf?​id=​rkE3y​85ee

Barocas, S., Selbst, A., & Raghavan, M. (2020). The hidden assumptions behind counterfactual explanations 
and principal reasons. In FAT*.

Bunel, R., Hausknecht, M., Devlin, J., Singh, R., & Kohli, P. (2018). Leveraging grammar and reinforce-
ment learning for neural program synthesis. In ICLR. https://​openr​eview.​net/​forum?​id=​H1Xw6​2kRZ

Coulom, R. (2006). Efficient selectivity and backup operators in Monte-Carlo tree search. In Proceedings 
computers and games 2006. Springer.

Cui, Z., Chen, W., He, Y., & Chen, Y. (2015). Optimal action extraction for random forests and boosted 
trees. In Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and 
data mining (pp. 179–188).

Dandl, S., Molnar, C., Binder, M., & Bischl, B. (2020). Multi-objective counterfactual explanations. In 
PPSN (pp. 448–469). Springer.

De Toni, G., Erculiani, L., & Passerini, A. (2021). Learning compositional programs with arguments and 
sampling. In AIPLANS.

Dua, D., & Graff, C. (2017). UCI machine learning repository. http://​archi​ve.​ics.​uci.​edu/​ml
Greenwell, B. M., Boehmke, B. C., & McCarthy, A. J. (2018). A simple and effective model-based variable 

importance measure. arXiv preprint arXiv:​1805.​04755
Guidotti, R., Monreale, A., Ruggieri, S., Pedreschi, D., Turini, F., & Giannotti, F. (2018). Local rule-based 

explanations of black box decision systems. CoRR arxiv:​1805.​10820
Kanamori, K., Takagi, T., Kobayashi, K., & Arimura, H. (2020). Dace: Distribution-aware counterfactual 

explanation by mixed-integer linear optimization. In IJCAI (pp. 2855–2862).
Karimi, A., Barthe, G., Balle, B., & Valera, I. (2020). Model-agnostic counterfactual explanations for conse-

quential decisions. In AISTATS (pp. 895–905). PMLR.
Karimi, A., Barthe, G., Schölkopf, B., & Valera, I. (2020). A survey of algorithmic recourse: Definitions, 

formulations, solutions, and prospects. arXiv preprint arXiv:​2010.​04050
Karimi, A., Schölkopf, B., & Valera, I. (2021). Algorithmic recourse: from counterfactual explanations to 

interventions. In FaccT (pp. 353–362).

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/MCSE.2021.3083216
https://doi.org/10.1126/science.aar6404
https://openreview.net/pdf?id=rkE3y85ee
https://openreview.net/forum?id=H1Xw62kRZ
http://archive.ics.uci.edu/ml
http://arxiv.org/abs/1805.04755
http://arxiv.org/abs/1805.10820
http://arxiv.org/abs/2010.04050


1409Machine Learning (2023) 112:1389–1409	

1 3

Karimi, A., von Kügelgen, J., Schölkopf, B., & Valera, I. (2020). Algorithmic recourse under imperfect 
causal knowledge: A probabilistic approach. In NeurIPS. https://​proce​edings.​neuri​ps.​cc/​paper/​2020/​
file/​02a3c​7fb3f​48928​8ae69​42498​498db​20-​Paper.​pdf

Kocsis, L., & Szepesvári, C. (2006). Bandit based Monte-Carlo planning. In ECML (pp. 282–293). Springer, 
Berlin, Heidelberg. https://​doi.​org/​10.​1007/​11871​842_​29

Mothilal, R. K., Sharma, A., & Tan, C. (2020). Explaining machine learning classifiers through diverse 
counterfactual explanations. In: FAT* (pp. 607–617).

Naumann, P., & Ntoutsi, E. (2021). Consequence-aware sequential counterfactual generation. In ECMLP-
KDD. https://​doi.​org/​10.​1007/​978-3-​030-​86520-7_​42

Ramakrishnan, G., Lee, Y. C., & Albarghouthi, A. (2020). Synthesizing action sequences for modifying 
model decisions. In AAAI (Vol. 34, pp. 5462–5469).

Spirtes, P., & Zhang, K. (2016). Causal discovery and inference: concepts and recent methodological 
advances. In Applied Informatics (Vol. 3, pp. 1–28). SpringerOpen.

Tian, J., & Pearl, J. (2001). Causal discovery from changes. In Proceedings of the seventeenth conference on 
uncertainty in artificial intelligence (pp. 512–521).

Tolomei, G., Silvestri, F., Haines, A., & Lalmas, M. (2017). Interpretable predictions of tree-based ensem-
bles via actionable feature tweaking. In Proceedings of the 23rd ACM SIGKDD international confer-
ence on knowledge discovery and data mining (pp. 465–474).

Tsirtsis, S., & Rodriguez, M. (2020). Decisions, counterfactual explanations and strategic behavior. In Neu-
rIPS. https://​proce​edings.​neuri​ps.​cc/​paper/​2020/​hash/​c2ba1​bc54b​23920​8cb37​b901c​0d3b3​63-​Abstr​act.​
html

Ustun, B., Spangher, A., & Liu, Y. (2019). Actionable recourse in linear classification. In FAT* (pp. 10–19).
Yonadav, S., & Moses, W. S. (2019). Extracting incentives from black-box decisions. CoRR arxiv:​1910.​

05664

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://proceedings.neurips.cc/paper/2020/file/02a3c7fb3f489288ae6942498498db20-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/02a3c7fb3f489288ae6942498498db20-Paper.pdf
https://doi.org/10.1007/11871842_29
https://doi.org/10.1007/978-3-030-86520-7_42
https://proceedings.neurips.cc/paper/2020/hash/c2ba1bc54b239208cb37b901c0d3b363-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c2ba1bc54b239208cb37b901c0d3b363-Abstract.html
http://arxiv.org/abs/1910.05664
http://arxiv.org/abs/1910.05664

	Synthesizing explainable counterfactual policies for algorithmic recourse with program synthesis
	Abstract
	1 Introduction
	2 Related work
	3 Methods
	3.1 Problem setting
	3.2 Model architecture
	3.2.1 Overall structure
	3.2.2 RL agent structure
	3.2.3 Policy
	3.2.4 Reward

	3.3 Monte Carlo tree search
	3.4 Training the agent
	3.5 Generate interventions through RL
	3.6 Explainable intervention program
	3.7 Generate explainable interventions

	4 Experiments
	4.1 Dataset and black-box classifiers
	4.2 Models
	4.3 Evaluation

	5 Conclusion
	6 Ethical Impact
	Appendix A: Program distillation pseudocode
	Appendix B: Domain specific languages (DSL) and causal graphs
	References




