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Abstract
In federated learning, client models are often trained on local training sets that vary in 
size and distribution. Such statistical heterogeneity in training data leads to performance 
variations across local models. Even within a model, some parameter estimates can be 
more reliable than others. Most existing FL approaches (such as FedAvg), however, do not 
explicitly address such variations in client parameter estimates and treat all local param-
eters with equal importance in the model aggregation. This disregard of varying eviden-
tial credence among client models often leads to slow convergence and a sensitive global 
model. We address this gap by proposing an aggregation mechanism based upon the Hes-
sian matrix. Further, by making use of the first-order information of the loss function, we 
can use the Hessian as a scaling matrix in a manner akin to that employed in Quasi-Newton 
methods. This treatment captures the impact of data quality variations across local models. 
Experiments show that our method is superior to the baselines of Federated Average (Fed-
Avg), FedProx, Federated Curvature (FedCurv) and Federated Newton Learn (FedNL) for 
image classification on MNIST, Fashion-MNIST, and CIFAR-10 datasets when the client 
models are trained using statistically heterogeneous data.
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1 Introduction

Federated learning allows for a centralised model to be trained while the training data 
remains distributed over a number of clients. Federated learning is important since 
artificial intelligence applications often demand strict privacy or operate on private 
data.

One of the early attempts to perform federated learning was FedSGD (federated sto-
chastic gradient descent) (Chen et al., 2016), where the gradients for the model weight 
updates are averaged proportionally to the number of training samples on each client. 
FedAvg (federated averaging) (McMahan et al., 2017) builds on FedSGD. In FedAvg, 
the global model weights are updated, making use of a weighted average. Despite the 
averaging approaches above are effective for identically distributed data (IID) across 
local models, real-world applications face several statistical challenges due to non-IID 
data distributions and unreliable or relatively slow network connections. Moreover, the 
averaging of the model weights across the clients can lead to accuracy degradation and 
require a large number of communication rounds in statistically heterogeneous sce-
narios (Li et al., 2020).

Note that, in non-IID data distributions, classification performance for each data 
distribution depends on particular parameters that may not share the same indices in 
all local models. Thus, combining local models with an averaging operation such as 
that used by FedAvg can cause the model to “drift” from their local objective. Exist-
ing FedAvg modifications (Li et al., 2020, 2019; Karimireddy et al., 2020) attempt to 
reduce client drifts by including additional regularisation terms in local functions, but 
they do not directly address model variations. FedProx (Li et al., 2020), for example, 
incorporates a proximal term in the local objective function to avoid sharp deviations 
from global parameters and aggregates client updates with a standard weighted average 
approach. We argue, however, that not all parameter estimations are equally important 
to the model’s performance.

In contrast with these methods, we explicitly address this statistical challenge at 
the aggregation phase of the federated learning process without imposing any penalty 
in the local objective functions. Here, we propose a novel aggregation approach that 
considers the quality variations and weighs each parameter of the local client models 
according to its rate of convergence. This contrasts with the isotropic weighted aver-
age used by methods akin to FedAvg. Thus, we compute a weight for each of the client 
models making use of the Hessian matrix. In this manner, this weight coefficients cap-
tures the rate of the convergence of the corresponding model weights. This treatment 
allows for these parameters to be aggregated according to their convergence rate.

The work present here makes a number of contributions. Firstly, we propose a novel 
approach for federated model aggregation under non-IID data distributions. At the cen-
tre of the approach is an aggregation criterion based on the Hessian metric. The use 
of the Hessian allows for the aggregation of the client weights to be effected based 
upon their convergence rate. We demonstrate the superior performance of our pro-
posed approach on MNIST (Lecun et al., 1998), Fashion-MNIST (Xiao et al., 2017), 
and CIFAR-10 (Krizhevsky & Hinton, 2009) datasets using statistical heterogeneous 
distributions better resembling those in real applications. Our aggregation approach is 
comparable to alternatives such as FedAvg (McMahan et al., 2017), FedProx (Li et al., 
2020) and FedCurv (Shoham et al., 2019) on IID data while outperforming the alterna-
tives under non-IID data distributions.
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2  Background and motivation

To commence, we require some formalism. Consider a group of K clients working collabo-
ratively to learn a machine learning task. Let Dk be the training data accessible by client 
k ∈ K and nk be the size of Dk . The aim is to solve the following distributed machine learn-
ing problem.

In the equation above, f (⋅) is the loss function, w are the weights of the global model, wk 
are those for the kth client that has access to nk training samples locally and n denotes 
the size of total training data distributed across the K clients. Recall that FederatedSGD 
(FedSGD) (McMahan et al., 2017) was the first federated learning approach where the cen-
tral server controls the global model, whereby each client performs a single stochastic gra-
dient descent (SGD) step on its training data locally and sends gradient information to the 
server.

Despite effective, FedSGD is computationally expensive since each client has to com-
municate twice with the central server after every SGD step. To tackle this drawback, 
McMahan et  al. (2017) propose the Federated Average (FedAvg) algorithm. FedAvg 
reduces the communication overhead by allowing multiple SGD steps between each com-
munication round. In this manner, instead of just sending a gradient update after each SGD 
step, FedAvg allows clients to send local parameters estimates at the end of each com-
munication round. As a result, FedAvg (McMahan et al., 2017) is widely used in federated 
learning, typically involving a central central server that performs aggregation on K locally 
trained models so as to produce a single global model with weights w.

Thus, at each communication round, FedAvg starts by initialising each local model 
weights with those in the global model and proceeds to train the client’s model on its cor-
responding locally available data Dk . This is done, as usual, by minimising the local loss 
function L(wk) making use of stochastic gradient descent(SGD). The central server hold-
ing the global model then performs a weighted average across the locally trained models 
to produce an updated, single global model. This is a simple average over the local model 
weights. In this manner, the global model weights are then given by

where � =
∑K

k=1
nk and wk are the model weights for the kth client.

Therefore, in federated learning methods such as FedAvg and its variants, the contri-
bution of client k is based on the amount of its locally available data as given by nk . This 
is important since, for the IID case, all clients have the same amount of data distributed 
identically across the local clients. This leads to uniformly distributed weights across the 
clients and, in turn, to an aggregated global model that is evenly balanced with respect to 
the weights of all local models.

This is an important observation since it underpins the issues arising from model aggre-
gation methods based on simple means over non-IID data distributions. Moreover, in 
real-world settings, it’s not unusual to find data that is not identically distributed over the 
clients. This setting, where federated learning involves clients with non-IID data distribu-
tions, often derives in large model quality variations among local clients. To illustrate this, 
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we show, in Fig. 1 the heatmap for the weights on the last layer of the neural network for 
two of the local clients used in our experiments when both, IID and non-IID data distribu-
tions are used for training. These heatmaps have been computed, making use of the method 
presented in Eisen et al. (1998) and the type II data distribution presented in Sect. 5. Note 
that, for both cases, the weights for the clients reflect the data distributions used for train-
ing. This is somewhat expected since the performance of each model relies on the param-
eters trained using the available data to each client. Therefore, data heterogeneity can sig-
nificantly affect the final value of these trainable parameters.

Since the standard weighted average often used for weight aggregation typically assigns 
an isotropic weight,nk

�
 to each local model, it effectively treats each local parameter with 

equal importance. Thus, the amalgamation of local models with these methods, which 
employ simple averaging, will prospectively aggregate weights with a larger variance. 
Moreover, there is a trade-off between communication efficiency and convergence rate in 
these methods whereby heterogeneity of data slows down the convergence (Li et al., 2020). 
Consequently, federated learning using simple average aggregation methods may take 
many communication rounds to converge for heterogeneous data.

3  Hessian‑weighted aggregation

The Hessian is a square matrix comprised by the second-order partial derivatives of the 
loss function. Let the Hessian for the kth client be denoted by �k = J

(

∇L
(

wk

))

 , where 
�
(

∇L
(

wk

))

 is the Jacobian matrix of the gradient of the loss with respect to the weights wk 
of the client under consideration.

The Hessian is fundamental to explain the curvature of the loss function (Pennington 
& Worah, 2018). Intuitively, the Hessian describes the rate at which a function is being 
extremized. For example, if the elements of the Hessian at a given value of wk are large, its 
an indication that the loss function has a gradient with a high variation along wk . Similarly, 
if the coefficients of �k are small, it implies that the loss function has a critical point at wk . 
As a result, the Hessian has been widely used in optimisation. Recall that Newton methods 
employ the Hessian matrix to find the roots of a differentiable function (Nocedal & Wright, 
1999). In deep learning, second order training methods leverage the inverse of Hessian to 
accelerate convergence with, sometimes, significant improvement in performance (Botev 
et al., 2017). In general, the update step in Newton’s method is given by:

Fig. 1  Last-layer parameter values in two client models trained on MNIST. In the panels, each column 
shows the first 25 weights for the 10 output nodes (rows) of the client model. In the non-IID setting, the two 
client models were trained with only two labels: 0 & 1 (left-hand panel) on the and 8 & 9 on the (right-hand 
panel)
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However, one of the key disadvantages in using the Hessian is its computational cost.
This makes the use of the Hessian often impractical in optimization problems with a 

large number of parameters (LeCun et al., 2012). As a result, Gauss–Newton optimiza-
tion method (Becker & LeCun, 1989; Schraudolph, 2001) is often used as a replacement 
of Newton method to avoid computational cost in highly parameterized optimization 
problems.

Thus, here we employ an approximation of Hessian making use of the first-order 
information of the loss function (Chen, 2011). To this end, we follow an often used 
approach in Gauss–Newton algorithms (Schraudolph, 2001), whereby the Hessian can 
be approximated by the square of the Jacobian matrix (Nocedal & Wright, 2006; LeCun 
et  al., 2012). Thus, for a given loss function, L(wk) , and making use of the notation 
above, the approximation of the Hessian is given as follows:

Further, following (Zhu et al., 1999), we can use the diagonal of the approximated Hessian 
above as a scaling matrix (Oren & Luenberger, 1974). This allows us to use the diago-
nal elements of the approximated Hessian in a manner akin to that employed in Quasi-
Newton methods to weight the coefficients for the local models as they are aggregated into 
the global one. The major advantage of this use of the diagonal terms is that these pro-
vide information about the rate of convergence w.r.t weight parameters. The terms with 
large values indicate that the associated weight parameters are being learned rapidly. On 
the other hand, the terms that are zero or close to zero imply that their associated weight 
parameters have already reached critical points. As a result, we can aggregate each local 
model’s weight coefficients according to the diagonal terms of the approximated Hessian 
�̃k.

It is worth noting in passing that we use the Hessian matrix in a very different con-
text as compared to that in which it is being used in second order training methods. In 
these approaches, which are based Newton’s method, the inverse of Hessian is used to 
improve convergence by finding the steepest descent in the loss landscape. In contrast, 
here we use the Hessian to moderate the contributions of each client to the global model 
on particular target classes. This hinges on the notion that the Hessian is related to 
Fisher Information (Martens, 2020). It is worth noting in passing that the Fisher Infor-
mation is a Riemannian metric (Amari & Nagaoka, 2000) used as the basis for the natu-
ral gradient approach (Amari, 1998; Park et al., 2000) to speed up convergence.

Furthermore the Fisher Information can be interpreted as the expected Hessian of 
the loss function. Intuitively, if a local model has access to more instances of a specific 
target, it will be more reliable in its prediction and would be expected to generalise bet-
ter than that which has access to much less training data of the same class. This will be 
reflected in the diagonal of Hessian, through its connection to the Fisher Information 
matrix.

In our proposed approach, we employ the diagonal of the approximated Hessian in the 
aggregation function. Specifically, we replace the isotropic coefficients, nk

n
 , in Eq. (2) with 

the diagonal of �̃k . In this setting, each client k approximates the diagonal of �̃k making 
use of the Jacobian �

(

L(wk)
)

 and uploads both, the weights wk and the diagonal terms of 
the the approximated Hessian to the server holding the global model. If a particular param-
eter is learned faster on the locally available data, its corresponding term in �̃k will be large 

(3)wi+1 = wi −𝐇(wi)
−1∇wi

(4)�̃k = �
(

L(wk)
)T
�
(

L(wk)
)
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and vice versa. In this fashion, the parameters that are learned faster by the local models 
are treated with higher significance in the aggregation process at the central server.

In order to further reduce the communication cost and computational complexity, we only 
use our approach for the output layer weights wo . This also follows the notion that the feature 
maps across multiple hidden layers may be sparse, with the output layer often being a dense 
one due to the fully connected layer right before. Thus, the output layer’s Hessian information 
is more informative than those corresponding to the hidden layers. To illustrate this, in Fig. 2, 
we show the heat-map obtained from the diagonal of the Hessian model parameters after 10 
epochs of training on the MNIST dataset with non-IID Data Type I1 for the output, second and 

Fig. 2  Heat-map obtained from the diagonal of the Hessian of the model parameters for a sample client. In 
the heat-maps, the Hessian information is computed after 10 epochs of training on the MNIST dataset. All 
values are normalized before the heat-map computation

1 For a full description of non-IID Data Type I used in our experiments, please see Sect. 5
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first hidden layers of a sample client model. Note that, in contrast with the output layer, the 
heat-map is very much null for both hidden layers shown. Thus, after receiving the updates 
from all clients, the central server can perform a simple weighted average on all layers except 
the output one. Let the output layer weights for the kth client be denoted by wk

o , making use of 
the approximated Hessian, the output layer weights for the global model aggregated out of K 
clients are given by

where

is a diagonal matrix constructed making use of the approximated Hessian and 
�k =∥ �k ∥F +� is a normalisation coefficient. In these expressions, ∥ ⋅ ∥F denotes the 
Frobenius norm, � is a sufficiently small constant introduced to avoid numerical instabil-
ity and diag[�] is an operator that takes at input a square matrix � and yields at output a 
diagonal one whose diagonal corresponds to that of �.

As mentioned earlier, as the local models converge towards the critical points of the loss 
function, the diagonal coefficients of the Hessian are expected to become smaller. Therefore, 
we adopt a hybrid approach, whereby for aggregating particular weight parameters that meet 
critical points in the local models the average over the client model weights still applies to the 
global model. Thus, we combine Eqs. (2) and (5) so as to update the output layer weights for 
the global model as follows:

where 1
(

�k

)

 is an indicator function 1 ∶ X → {0, 1} defined as:

In this manner, we can perform robust aggregation while accounting for the possibility 
that, if the diagonal coefficients of the Hessian become null, i.e. �k = 0 , the model will still 
be aggregated as a result of the second term on the right hand side of the expression above.

The algorithm for our method, which we name HWA, for Hessian Weighted Aggregation, 
is shown in Algorithm 1. Note that, in the algorithm, in order to further reduce the communi-
cation cost and computational complexity, we only communicate the diagonal matrix �k for 
the output layer weights wo

k
 , not the Jacobian �

(

L
(

wo
k

))

 . This can greatly reduce the commu-
nication cost since only the diagonal elements of �k need to be communicated to the central 
server.
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4  Related work

As mentioned above, work presented in FedCurv (Shoham et  al., 2019) does tackle the 
non-IID case. FedCurv is one of many methods that have been proposed to address sta-
tistical heterogeneity. These methods often address the problem by modifying the client’s 
local loss or target function. For instance, FedProx (Li et al., 2020), SCAFFOLD (Karim-
ireddy et al., 2020), FedDANE (Li et al., 2019) and the method of Yao et al. (2019) add 
regularization terms in the local function to reduce model drifts. FedProx (Li et al., 2020) 
introduces a proximal term in local function that keeps local parameters close to the global 
model weights. SCAFFOLD (Karimireddy et  al., 2020) applies this proximal term with 
an additional gradient correction term for strongly convex functions. DANE (Reddi et al., 
2016) and its variant (Li et al., 2019) employ gradient correction terms in local functions to 
address data heterogeneity for both convex and non-convex functions.

Yurochkin et al. (2019) propose a probabilistic federated neural matching (PFNM) algo-
rithm to address permutation invariance properties in multilayer perceptron (MLP) mod-
els. Xiao and Cheng (2020) propose a Global Posterior Incorporated Federated Neural 
Matching (GPI-FNM) algorithm which is another variant of PFNM with an additional KL 
divergence penalty to integrate global posterior information. Singh and Jaggi (2020) intro-
duce optimal transport (Kantorovich, 2006; Peyré & Cuturi, 2019) in federated learning to 
match neurons between different models. In a related development aimed at eliminating 
bias in the global model as induced by the device heterogeneity, Wang et al. (2020) pro-
pose Federated normalized averaging (FedNova).

FedNova incorporates a normalized local gradient scheme before sending updates to the 
server. This treatment prevents global updates from diverging from the global objective. 
FedLin (Mitra et  al., 2021) overcomes device heterogeneity with client-specific learning 
rates and adds an extra gradient correction term to the local loss function to tackle data 
heterogeneity.

As mentioned earlier, here we note that local updates, on the other hand, cannot be 
treated equally since some clients may have more valuable training data than others. Unlike 
FedNova, our approach captures important information about local data from local updates 
and prioritizes each update based on its global impact. Moreover, of all the above, Fed-
Curv (Shoham et al., 2019) is the only method that considers the quality variations among 
local models and employs Fisher Information to evaluate model weights according to their 
global significance. Specifically, the authors control the regularization term of the local 
functions with the Fisher Information, which controls each parameter estimate according 
to its global importance. Here, in contrast, we use the Hessian to adjust the aggregation 
weights. Moreover, in FedCurv (Shoham et al., 2019), the authors adopt the Elastic Weight 
Consolidation (EWC) algorithm presented in Kirkpatrick et al. (2017) and incorporate it 
into the clients’ objective functions to control model drift. This is done in conjunction with 
the standard aggregation approach at the central server to produce a single global model. 
This is common to all the other methods mentioned above, including FedAvg. This is since 
the methods which address federated learning over statistically heterogeneous data often 
do it via a local objective function rather than a modification of the central aggregation 
scheme.

In our approach, we employ the second-order information provided by the Hessian 
matrix in the aggregation phase to combine local models into a single global update, 
directly addressing the impact of the training data’s statistical heterogeneity on the 
information contributed by the clients to the global model. This is also quite different 
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to FedCurv, where the central server requires access to the Fisher information matrix 
for all local models with each client involved in the following communication round. 
Conversely, our method does not reveal the second-order information to the cloud. 
Thus, there is only one way of communication of the diagonal terms of Hessian in our 
approach, where each of the clients is agnostic to the gradient information of all the 
others.

It is worth noting that there have been a number of methods elsewhere in the litera-
ture that have employed the Newton method in distributed ML. For example, Islamov 
et al. (2021) propose both, the Newton-Star and the Newton-Learn methods. These are 
communication-efficient distributed second order methods for distributed optimization 
problems. In Islamov et al. (2021), the authors reduce the communication overhead by 
assuming that the server has at its disposal the second-order information for the clients 
whereby each of these communicates gradient updates to the server, and the server 
then takes the Newton step via averaging. Despite being effective, these methods work 
on distributed optimization problems where data privacy is not a concern and, thus, 
they do not apply to FL since they require all clients to send their local data to the 
central server. Building on Islamov et al. (2021), Safaryan et al. (2021) proposed the 
Federated Newton Learn (FedNL) method. FedNL does not require the communication 
of training examples to the central server. In FedNL, each client does communicate 
gradient and compressed Hessian updates to the server, which computes the “global” 
Hessian by averaging these and then performs the Newton update.

Note, however, that our method is quite different to these in several ways. Firstly, 
these methods can be regarded as efforts to make Newton methods applicable to dis-
tributed optimization problems by employing compression techniques to reduce the 
communication overhead of the Hessian matrix. Each client hence has to communicate 
a compressed version of its local Hessian matrix to the server. The central server then 
employs an average of these local Hessians so as to compute a global Hessian for the 
Newton updates. Thus, these methods do not explicitly address client drift problems 
when data is non-IID. Our method, in contrast, does not require the explicit computa-
tion of the Newton updates at the central server for the global model parameter update. 
This is since we aim to address the client drift problem by using the Hessian informa-
tion for the local models to quantify the contribution of the coefficients of each model 
for their aggregation to the global one. Secondly, in our method, the server does not 
aim to compute a global Hessian from the local Hessian matrices, instead it uses each 
local Hessian independently to govern their contributions to the global model. Thirdly, 
instead of communicating gradient updates to the server, we employ a first-order opti-
mization method to optimize local models and communicate parameter updates for 
aggregation. This is a major difference since, by communicating weight updates rather 
than gradient updates after each local step, local clients can perform local update steps 
so as to substantially reduce the required communication rounds. This, again, contrast 
with the methods in Islamov et al. (2021); Safaryan et al. (2021), which require gradi-
ent and Hessian updates from all the clients after each local update. Finally, but not 
least, our method does not explicitly compute the complete Hessian matrix. This is 
even more important since it is often infeasible to compute and store the complete 
Hessian of medium-sized and large models. Since our approach is based on the diago-
nal of Hessian, which we approximate from the first-order information, the memory 
and computation requirements of our approach allow for large models to be used in 
practice.
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5  Experiments

To evaluate the approach proposed here in cross-silo FL setting, we have followed the 
experiment setting in McMahan et  al. (2017) and employed four publicly available 
datasets. These are MNIST, Fashion-MNIST, Federated Extended MNIST (FEMNIST) 
and CIFAR-10. Here, we compare our HWA method with four alternatives. These are 
FedAvg (McMahan et  al., 2017), FedProx (Li et  al., 2020), FedCurv (Shoham et  al., 
2019) and the recently proposed FedNL algorithm (Safaryan et al., 2021). Our choice 
of alternatives stems from the fact that FedAvg (McMahan et  al., 2017) is considered 
as the standard aggregation algorithm for Federated Learning whereas the other two 
alternatives proposed here explicitly address data heterogeinity. Moreover, recall that 
FedCurv (Shoham et al., 2019) is an aggregation method which employs the diagonal 
of the Fisher Information matrix to control the regularization term in the local objective 
function for each client. FedProx (Li et al., 2020), in the other hand, is a state of the art 
optimisation approach that introduces a regularization term in the local objective func-
tion. Finally, FedNL (Safaryan et al., 2021) is a Newton method that employs the Hes-
sian for the update of the central model.

For all our experiments in cross-silo FL setting, we employ 10 client models with a 
centralised one and have set the number of communication rounds R to 50 and adopted 
the assumption that all devices remain active in each round (no client sampling). Here, 
we consider both the statistically homogeneous (IID) and the statistically heterogene-
ous (non-IID) settings. In our experiments, these were setup as follows. For IID, data 
is shuffled and uniformly distributed between all clients. Thus, all clients have an equal 
amount of training samples from uniformly distributed instances across the 10 classes in 
MNIST, Fashion-MMINST or CIFAR-10. For non-IID settings, we further consider two 
different types. For non-IID type I, we use the following procedure to distribute data to 
each client, which will result in K different partitions. For each class label, we make a 
random draw from the Dirichlet distribution Dir(� = 0.1) . The resulting multinomial 
distribution will determine how many training examples each client will be allocated for 
that particular class label. Note this is slightly different from the more commonly used 
per-client random partitioning in Hsu et al. (2019). Note that, our partition procedure is 
such that allows clients to receive training data which varies not only in terms of class 
distribution but also in overall number of instances. This contrasts with the approach 
in Hsu et al. (2019), where the Dirichlet distribution induces variations on a per class 
basis. For the non-IID type II, we divide the sorted data into 20 equal partitions, where 
clients are randomly assigned 2 partitions from 2 classes.

Note that FedAvg (McMahan et al., 2017), FedProx (Li et al., 2020) and FedCurv (Sho-
ham et al., 2019) can employ multilayer perceptrons (MLPs) or convolutional neural net-
works (CNNs) in practice. However, it is practically infeasible to train these highly param-
eterised models using FedNL (Safaryan et al., 2021) due to the computational resources 
required. As a result, we have performed two sets of experiments. The first of these employs 
the standard model architectures in McMahan et al. (2017) to compare our method with 
FedAvg (McMahan et al., 2017), FedProx (Li et al., 2020) and FedCurv (Shoham et al., 
2019). In this setting, for the MNIST and Fashion-MNIST datasets, all the alternatives use 
a multilayer-perceptron (MLP) which consists of 2-Hidden layers with 200 hidden units, 
each with ReLu activations. For CIFAR-10, we use a convolutional neural network (CNN) 
model, which comprises 3-convolutional layers with 3 × 3 convolutional kernel (channel 
sizes 32, 64, and 128) followed by 2-fully connected layers.
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The second set of experiments shown here involves all the methods under consideration, 
including FedNL (Safaryan et  al., 2021), employing the regularized Logistic Regression 
(LR) model in Safaryan et al. (2021), with one local update for all methods. Our motiva-
tion in this case is to provide a fair comparison to FedNL, where we have used the model 
proposed by the authors and avoided any advantage the alternatives may have due to their 
capacity to perform local updates between communication rounds. In this setting we con-
vert the CIFAR-10 dataset into grayscale and resize each image to 28× 28 pixels. We used 
Rank-R (R = 2) compression technique for FedNL to communicate Hessian between the 
central server and the clients.

We first turn our attention to the first of the set of experiments where the client models 
are either MLPs (MNIST and Fashion-MNIST) or CNNs (CIFAR10). In this case, within 
each round, the parameters of the global model are copied to each client, and the client 
is allowed to independently run E = {5, 10} epochs to generate local parameter updates 
and the matrix �k . Each client then passes these on to the central server to develop the 
global model as described in Algorithm 1. For all the methods under consideration, the 
clients were trained with the same batch size of 32 making use of a SGD optimiser with 
momentum.

We have followed the approach taken by the authors in McMahan et al. (2017), tuning 
the hyper-parameters for FedAvg via cross-validation and using a learning rate set to 0.001, 
with 0.001 weight decay and momentum of 0.9. For FedProx, we have followed the experi-
mental setup suggested in Li et al. (2020) whereby we have done a search for the parameter 
� over the learning rate values of {0.1, 0.01, 0.001} . This search yielded a value of 0.01 for 
the learning rate with a � of 0.1. Finally, we use the identical settings for FedCurv that we 
did for our first baseline. As related to FedCurv, note this method has an additional hyper-
parameter � that controls the regularization terms in local loss functions. We have set this 
by cross validation at at � = 1.

Tables 1, 2 and 3 summarise the results obtained in our experiments. In the tables, the 
best performance is denoted in bold. The tables report the mean and standard deviation, 
together with the statistical significance (p-Value) of the test accuracy over 10 trails. Note 
that the methods under consideration are comparable when applied to IID data, with no 
statistically significant difference between them. However, when applied to non-IID data, 
HWA outperforms all baselines with a considerable amount. We show the test accuracy 
and loss as a function of communication rounds in Figures  3, 4, 5 and 6. The learning 

Table 1  Model accuracy (average 
± std) and statistical significance 
(p-Value) for the MNIST test data 
set over 10 trials. The p-value 
shown here corresponds to the 
one-way analysis of variance 
(ANOVA)

Bold values indicate the absolute best performance

Epochs Method IID non-IID (I) non-IID (II)

5 FedAvg 98.14± 0.040 93.46 ± 1.796 89.46 ± 1.332

FedProx 98.13 ± 0.026 93.45 ± 1.789 89.27 ± 1.425

FedCurv 98.10 ± 0.025 93.43 ± 1.770 89.44 ± 1.421

HWA 98.11 ± 0.066 94.30± 1.255 92.49± 0.618

p-Value 0.676 0.073 0.077 × 10−3

10 FedAvg 98.09 ± 0.037 90.0 ± 2.415 88.46 ± 0.746

FedProx 98.08 ± 0.032 93.0 ± 1.658 89.73 ± 0.798

FedCurv 98.07± 0.025 90.31 ± 2.384 88.54 ± 0.659

HWA 98.06 ± 0.020 93.36± 0.747 92.18± 0.449

p-Value 0.93 0.056 0.006 × 10−5
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curves in the figures show that HWA achieves faster convergence to a better global model. 
This pattern is consistent across the three datasets and different numbers of local training 
epochs.

In Figures 3, 4, 5 and 6 we show both, the test accuracy and loss as a function of com-
munication rounds for both, type I and type II non-IID data when 5 and 10 epochs are 
used for the local training. Note that, when applied to non-IID data, FedAvg and FedProx 
often perform better and converge faster at 5 rather than 10 epochs within each communi-
cation round. This is consistent with the results shown in Tables 1,  2 and 3. This is since, 
with non-IID data, local models tend to “drift” apart from one another with respect to the 
global model and adversely affect the aggregation (Li et  al., 2020). This behaviour also 
has an obvious adverse impact on the communication cost, requiring more communication 
rounds to converge. In comparison, our proposed HWA is much more robust to increasing 
the number of epochs.

We now turn our attention to the second set of experiments considered here which 
employs LR as a model for all the alternatives and includes the application of FedNL 
(Safaryan et al., 2021) to the datasets under consideration. In Figure 7a and b we display 
the learning curves of LR on the MNIST dataset. Note that, since FedNL is entirely based 
on the second-order method, it completely outperforms FedAvg and its variants except for 

Table 2  Model accuracy (average 
± std) and statistical significance 
(p-Value) for the Fashion-MNIST 
test data set over 10 trials. The 
p-value shown here corresponds 
to the one-way analysis of 
variance (ANOVA)

Bold values indicate the absolute best performance

Epochs Method IID non-IID (I) non-IID (II)

5 FedAvg 87.38 ± 0.162 72.51 ± 5.368 74.41 ± 3.332

FedProx 87.43± 0.123 72.45 ± 5.433 74.12 ± 3.474

FedCurv 87.39 ± 0.175 72.69 ± 5.115 72.55 ± 4.881

HWA 87.39 ± 0.176 76.60± 4.278 78.25± 2.809

p-Value 0.944 0.043 0.017
10 FedAvg 88.78 ± 0.132 70.17 ± 5.331 70.0 ± 5.907

FedProx 88.76 ± 0.139 70.54 ± 8.849 69.62 ± 6.323

FedCurv 88.85± 0.117 73.84 ± 5.290 70.04 ± 5.425

HWA 88.79 ± 0.261 77.45± 3.561 76.88± 1.410

p-Value 0.857 0.049 0.029

Table 3  Model accuracy (average 
± std) and statistical significance 
(p-Value) for the CIFAR-10 test 
data set over 10 trials

Bold values indicate the absolute best performance

Epochs Method IID non-IID (I) non-IID (II)

5 FedAvg 77.56 ± 0.416 64.86 ± 1.885 60.86 ± 1.190

FedProx 77.61± 0.461 64.53 ± 2.136 59.20 ± 1.055

FedCurv 77.54 ± 0.497 64.70 ± 2.442 62.03 ± 0.961

HWA 77.40 ± 0.388 67.21± 1.225 63.26± 0.947

p-Value 0.863 0.03 0.05 × 10−5

10 FedAvg 77.99± 0.289 64.05 ± 2.022 58.31 ± 3.116

FedProx 77.92 ± 0.245 64.74 ± 1.259 59.01 ± 2.328

FedCurv 77.88 ± 0.237 64.34 ± 2.230 59.62 ± 2.266

HWA 77.72 ± 0.156 67.15± 1.159 62.42± 1.504

p-Value 0.876 0.092 0.016
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HWA. FedNL, however, takes longer to converge than HWA. This behavior is consistent 
with the accuracy and loss plots for the Fashion-MNIST in Figure 7c and d. In the case 
of Fashion-MNIST, this is a slightly more complex dataset, whereby the convergence of 
FedNL deteriorates as compared with the plots for the MNIST dataset. Finally, in Fig-
ure 7e and f we show the test accuracy and loss as a function of communication rounds 
for the alternatives when applied to the resized, monochrome CIFAR10 dataset. Again, as 
observed in the plots for the other datasets under consideration, FedNL (Safaryan et  al., 
2021) somewhat struggles to converge. This contrasts with the other methods, of which 
HWA fairs the best of all.

We now proceed to investigate the degree of heterogeneity in local training data. Note 
that in previous experiments, we utilised a Dirichlet distribution with � = 0.1 to simulate 
a non-IID distribution. Now we explore the effect of various values of � to see how HWA 
reacts under extreme data heterogeneous situations. In Figure 8, we illustrate the underlying 

Fig. 3  Test accuracy, loss and training loss of the global model as a function of communication rounds 
when 5 epochs of local training between each communication round are applied on non-IID type I. The two 
top-most rows show the plots when a multi-layer perceptron (MLP) is trained on the MNIST and Fashion-
MNIST datasets, respectively. The bottom row corresponds to the learning curves yielded when a CNN is 
trained on the CIFAR-10 dataset



646 Machine Learning (2023) 112:633–654

1 3

label distribution using bar plots along with learning curves for all approaches with varied 
� values. In the bar plot, each bar corresponds to a client and each colour accounts for a 
class label. At � = 10 , from the bar plots shown in Figure 8a, we can conclude that the 
data distribution is close to IID. This is, every client has about the same number of classes 
and training samples. Therefore, all methods under consideration show equal performance 
at � = 10 . Figure 8a–d show that lowering � increases the degree upon which the underly-
ing data distribution diverges from IID becoming more non-IID. Clients are rarely allo-
cated more than three class labels when � = 0.05 is used to simulate data heterogeneity. 
However, even for large degrees of data heterogeneity, HWA not only outperforms the 
alternatives, but also increases its margin over the other methods under consideration

We now turn our attention to an experimental setting which naturally arises from 
a cross-device FL environment. To this end, we employ the federated extended MNIST 

Fig. 4  Test accuracy, loss and training loss of the global model as a function of communication rounds 
when 10 epochs of local training between each communication round are applied on non-IID type I. The 
two top-most rows show the plots when a multi-layer perceptron (MLP) is trained on the MNIST and Fash-
ion-MNIST datasets, respectively. The bottom row corresponds to the learning curves yielded when a CNN 
is trained on the CIFAR-10 dataset
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(FEMINIST) dataset obtained from the LEAF benchmark. LEAF is an open-source frame-
work (Caldas et  al., 2018) that provides datasets for federated learning. In LEAF, the 
extended MNIST dataset (Cohen et  al., 2017) is partitioned based on the writer of each 
character/digit. In this way, the partition of the dataset originates from a non-IID distribu-
tion whereby each writer has a unique writing style. FEMNIST is comprised of upper and 
lower-case letters, as well as numerals. As a result, there are a total of 62 classes avail-
able. FEMNIST consists of 805, 263 training examples which are distributed among 3, 550 
devices.

For the FEMNIST dataset, we have adopted the same model and settings as used in 
LEAF. The model consists of two convolutional layers with 5 × 5 convolutional kernel 
(channel sizes 32 and 64) followed by two fully connected layers. Thus, 5 epochs are 
used between each communication round and 10 devices are randomly selected for par-
ticipation in each communication round. Table 4 and Fig. 9 show the performance of 

Fig. 5  Test accuracy, loss and training loss of the global model as a function of communication rounds 
when 5 epochs of local training between each communication round are applied on non-IID type II. The 
two top-most rows show the plots when a multi-layer perceptron (MLP) is trained on the MNIST and Fash-
ion-MNIST datasets, respectively. The bottom row corresponds to the learning curves yielded when a CNN 
is trained on the CIFAR-10 dataset
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methods under consideration. Note that HWA demonstrate superior performance over 
its alternatives and this trend remain consistent throughout communication rounds. This 
is consistent with our experiments on the other datasets under consideration.

In order to determine the impact of applying our proposed aggregation scheme to 
the hidden layers of the model, we further conduct experiments on several variants of 
our HWA approach and show both the test accuracy and communication cost in Fig. 10. 
Note the performance of HWA did not improve much when extended to the last hid-
den layer. On the other hand, the application of the HWA to the whole network tends 
to degrade the performance. The reason for this could be the sparse nature of feature 
maps across hidden layers, which yields less informative Hessian information as shown 
in Fig. 2. Furthermore, note that the communication cost is noticeably greater when the 
Hessian information for all layers is communicated to the central server. The number of 

Fig. 6  Test accuracy, loss and training loss of the global model as a function of communication rounds 
when 10 epochs of local training between each communication round are applied on non-IID type II. The 
two top-most rows show the plots when a multi-layer perceptron (MLP) is trained on the MNIST and Fash-
ion-MNIST datasets, respectively. The bottom row corresponds to the learning curves yielded when a CNN 
is trained on the CIFAR-10 dataset
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bytes communicated to the central server also increases prominently when the last hid-
den layer is included with no noticeable increase in performance.

Finally, we investigate both, the robustness of our HWA approach against perturbations in 
local updates and Standard Differential Privacy at the client level. This is motivated by the 
notion that each client’s concern is to participate in a secure aggregation mechanism and, 
if necessary, cope with noise perturbations. To this end, we follow Triastcyn and Faltings 
(2019). To this end, in order to ensure secure communication between FL servers at the client 
level, each client perturbs its local update with Gaussian noise before communicating to the 
server. To do this, after each local training step, each client draws a vector equivalent to the 
size of the model parameters from a Gaussian distribution with zero mean and adds it to its 
local parameters. In the case of HWA, each client also perturbs its Hessian values as commu-
nicated to the server with a Gaussian distribution. In Fig. 11, we show the performance of all 
the methods under consideration when applied to the CIFAR-10 dataset with a non-IID Data 
type I whose Dirichlet distribution has been set to � = 0.01 . The plots show the test accuracy 
as a function of the noise standard deviation � . Note that HWA consistently outperforms its 
alternatives at every value of standard deviation � , with FedCurv particularly degrading when 
the standard deviation increases above 0.1.

Fig. 7  Test accuracy and loss for the global model as a function of communication rounds. Learning curves 
yielded when Logistic Regression (LR) is used for the clients and the server
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Fig. 8  Performance of alternatives when global model is trained on non-IID type I with various � values. 
Left panel shows the underlying distribution of data between clients at � = {10, 1.0, 0.2, 0.1, 0.05} . Other 
panels show the test accuracy as a function of communication rounds
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6  Discussion and conclusion

Note that, Among all methods under consideration, FedAvg is the most efficient method 
in terms of communication and computational complexity. However, FedAvg is prone to 
client drift problems under statistical heterogeneity. With the same cost of communica-
tion bandwidth, FedProx slightly increases the computation complexity since it incorpo-
rates a proximal term in the local loss function of each model. Further, FedProx has the 

Table 4  Model accuracy for the 
FEMNIST test data set

Bold values indicate the absolute best performance

Epochs Method Communication Rounds

50 250 500 750 1000

5 FedAvg 29.41 72.10 74.54 74.77 74.87
FedProx 29.96 71.92 74.46 74.66 74.78
FedCurv 29.54 72.48 74.82 75.00 75.08
HWA 43.85 73.16 77.66 77.83 78.02

Fig. 9  Test accuracy, test loss and training loss as a function of communication rounds are displayed for 
the global model. Global model is trained on Federated Extended MNIST (FEMNIST) which is taken from 
LEAF bench-marking tool

Fig. 10  Illustration of the performance of HWA when the proposed aggregation scheme is applied on dif-
ferent sets of model layers. Left-hand panel: test accuracy for each of these on MNIST dataset with non-
IID type I; Right-hand panel: Bar plot showing the number of bytes communicated by a local client to the 
global server at each round in bytes as a function of the layer-set used
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drawback of treating all parameters uniformly and penalizing large parameter changes 
in the central server with an isotropic term. Following the communication and compu-
tation complexity of FedCurv as discussed in Shoham et al. (2019), it becomes clear it 
is the most expensive method. This is since, in FedCurv, the central server and clients 
require back and forth communication of two additional loss terms equivalent to the size 
of model parameters. In addition to communication complexity, each client in FedCurv 
needs to reconstruct the data from the global updates so as to later on use it in the local 
loss function as a penalty term. This contrasts with HWA, where the clients only need to 
compute the diagonal of the Hessian of the last layer and communicate it to the server. 
Note that each client is agnostic about the Hessian information of other clients since 
only the central server performs the model aggregation. Moreover, a key concern could 
be the variable communication cost that depends upon the number of classes. Note, 
however that this would still be considerably less costly than that for alternatives like 
FedCuv (Shoham et al., 2019) since the output layer often has a small number of param-
eters as compared to the hidden layers.

Here, we propose a novel approach to address the challenge of statistical heterogene-
ity among client models in federated learning. To this end, we use the Hessian matrix 
to weight the aggregation of the client parameters into a global model. This is so as to 
take into account the varying evidential credence among client models by capturing the 
impact of data quality variations across local models. We show how this can be effected 
efficiently using the diagonal of the approximate Hessian. This also leads to a meagre 
increase in the communication cost, whereby only the diagonal terms of the approxi-
mate Hessian have to be shared by the clients with the local server. We also performed 
experiments that show that our method outperforms Federated Average (FedAvg), Fed-
Prox, Federated Curvature (FedCurv) and Federated Newton Learn (FedNL) for image 
classification on MNIST, Fashion-MNIST, and CIFAR-10 datasets when the client mod-
els are trained using statistically heterogeneous data.
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