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Abstract
We consider a stochastic multi-armed bandit setting and study the problem of constrained 
regret minimization over a given time horizon. Each arm is associated with an unknown, 
possibly multi-dimensional distribution, and the merit of an arm is determined by several, 
possibly conflicting attributes. The aim is to optimize a ‘primary’ attribute subject to user-
provided constraints on other ‘secondary’ attributes. We assume that the attributes can be 
estimated using samples from the arms’ distributions, and that the estimators enjoy suitable 
concentration properties. We propose an algorithm called Con-LCB that guarantees a loga-
rithmic regret, i.e., the average number of plays of all non-optimal arms is at most logarith-
mic in the horizon. The algorithm also outputs a boolean flag that correctly identifies, with 
high probability, whether the given instance is feasible/infeasible with respect to the con-
straints. We also show that Con-LCB is optimal within a universal constant, i.e., that more 
sophisticated algorithms cannot do much better universally. Finally, we establish a funda-
mental trade-off between regret minimization and feasibility identification. Our framework 
finds natural applications, for instance, in financial portfolio optimization, where risk con-
strained maximization of expected return is meaningful.
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1  Introduction

The multi-armed bandit (MAB) problem is a fundamental construct in online learning, 
where a learner has to quickly identify the best option (a.k.a., arm) among a given set 
of options. In the stochastic MAB problem, each arm is associated with an (a priori 
unknown) reward distribution, and a sample from this distribution is revealed each time 
an arm is chosen (a.k.a., pulled). The classical goal is to use these samples to quickly 
identify the arm with the highest mean reward. The most popular metric to evaluate the 
performance of a learning algorithm is regret, which defined as a weighted sum of the 
expected number of plays of suboptimal arms, with the weights being equal to the sub-
optimality gaps.

While the classical stochastic MAB formulation has been applied in various applica-
tion scenarios, including clinical trials, portfolio optimization, anomaly detection, and 
telecommunication (Bouneffouf & Rish, 2019), it ignores a key aspect of most real-
world decision-making problems—namely, that they have multiple criteria of interest. 
For example, when comparing testing kits in a clinical trial, one would want to keep 
track of the false-positive rate as well as the false-negative rate of each kit. Similarly, 
choosing the best financial portfolio involves balancing risk and reward. A wireless 
node deciding which channel to transmit on, or what transmission rate to use has to bal-
ance several criteria, including throughput, delay, and energy consumption. This multi-
criterion nature of decision making is not always adequately captured by the classical 
MAB approach of optimizing a one-dimensional reward signal.

The most common approach for incorporating multiple arm attributes into MAB for-
mulations is to define the reward as a suitable function (say a linear combination) of the 
attributes of interest. For example, risk-aware portfolio optimization can be cast as an 
MAB problem where the best arm is one that optimizes a certain linear combination of 
mean value and a suitable risk measure (such as standard deviation or Conditional Value 
at Risk) (see, for example, Sani et al. (2012), Vakili and Zhao (2016), Kagrecha et al. 
(2019)]. However, this approach assumes that the different attributes of interest can be 
expressed and compared on a common scale, which is not always reasonable. For exam-
ple, how does one ‘equate’ the impact a certain increment in risk to that of an another 
increment in the mean return of a portfolio?

A more natural approach for multi-criterion decision making is to instead pose the 
optimal choice as the solution of a constrained optimization. In other words, optimize 
one attribute subject to constraints on the others. However, despite the modest literature 
on multi-criterion MABs (surveyed below), little attention has been paid to formulating, 
and designing algorithms for constrained multi-criterion MABs. This paper seeks to fill 
this gap. Formally, we assume that each arm is associated with a D-dimensional prob-
ability distribution, and the best arm is the one that minimizes a certain arm attribute 
subject to constraints on m other attributes. For this setting, we pursue regret minimiza-
tion, i.e., we seek to minimize the average number of pulls of non-optimal arms.

To simplify the presentation, and to highlight the key aspects of this problem, we 
first consider a single constraint (i.e., m = 1 ). Each arm is associated with a probabil-
ity distribution, and we consider the problem of optimizing an objective attribute, sub-
ject to a single constraint attribute satisfying a user-specified constraint. The algorithm 
design and performance evaluation for this special case (with m = 1 ) generalize readily 
to the multi-criterion problem; see Sect. 5. An example that fits this template that is of 
significant interest in the finance community: the optimization of the expected return, 
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subject to a risk constraint. Here, the objective attribute is the mean of an arm distribu-
tion, while the constraint attribute measuring risk could be Conditional Value at Risk 
(CVaR).

For this problem, we propose an algorithm, called Constrained Lower Confidence 
Bound (Con-LCB), that guarantees logarithmic regret, i.e., the average number of plays of 
all non-optimal arms (including those that violate the constraint) is at most logarithmic in 
the horizon. If Con-LCB is presented with an infeasbile instance, i.e., an instance where 
all arms violate the specified risk constraint, the algorithm in effect relaxes this constraint 
just enough to make at least one arm compliant. Another feature of Con-LCB is that at the 
end of the horizon, it outputs a boolean flag that correctly identifies with high probability, 
whether or not the given instance was feasible.

Finally, we establish fundamental lower bounds on the performance of any algorithm 
on this constrained regret minimization problem. Our results demonstrate a fundamental 
tradeoff between regret minimization and feasibility identification, similar to the well-
known tradeoff between regret minimization and best arm identification in the classical 
(unconstrained) MAB problem (Bubeck et al., 2009).

The remainder of this paper is organized as follows. A brief survey of related literature is 
provided below. In Sect. 2, we introduce some preliminaries and formulate the constrained 
mean minimization problem. We present our algorithm (Con-LCB) and its performance 
guarantees in Sect. 3. Information-theoretic lower bounds on performance are discussed in 
Sect. 4. Finally, the general formulation for multi-criterion MABs is introduced in Sect. 5.

Related literature The literature related to multi-armed bandit problems is quite large. 
We refer the reader to Bubeck and Cesa-Bianchi (2012), Lattimore and Szepesvári (2020) 
for a comprehensive review. Here, we restrict ourselves to papers that consider (i) multi-
objective MAB problems with vector rewards, and (ii) risk-aware arm selection.

For multi-objective MAB problems with vector rewards, different notions of optimality 
are considered. For example, Drugan and Nowe (2013), Yahyaa and Manderick (2015) con-
sider the notion of Pareto optimality. In these papers, all dimensions are considered equally 
important and the aim is to play all Pareto-optimal arms an equal number of times. Another 
important notion of optimality is lexicographic optimality (see Ehrgott 2005). Here there 
is an order of importance among different dimensions. Tekin and Turğay (2018), Tekin 
(2019) consider the notion of lexicographic optimality for contextual bandit problems. In 
this line of work, the goal is to obtain higher reward in an important dimension and for tie-
breaking, use rewards obtained in dimensions of lower importance.

Turning now to the literature on risk-aware arm selection, Sani et al. (2012), Galichet 
et  al. (2013), Vakili and Zhao (2016), David and Shimkin (2016), Bhat and Prashanth 
(2019), Prashanth et al. (2020), Kagrecha et al. (2019) consider the problem of optimizing 
a risk metric alone or consider a linear combination of mean and a risk metric. Zimin et al. 
(2014) looks at the learnability of general functions of mean and variance, and Maillard 
(2013) proposes an optimization of the logarithm of moment generating function as a risk 
measure in a regret minimization framework. Cassel et al. (2018) look at path dependent 
regret and provides a general approach to study many risk metrics.

None of the above papers considers the constrained MAB problem, which frames the 
optimal arm as the solution of a constrained optimization problem. There has been some 
recent work for the constrained MAB problem. A constrained linear bandit setting is con-
sidered in Pacchiano et al. (2021) under the assumption that there is at least one arm which 
satisfies the constraints. The papers (Amani et al., 2019; Moradipari et al., 2019) consider 
the problem of maximizing the reward subject to satisfying a linear constraint with high 
probability. Constrained setting was also considered in David et  al. (2018) and Chang 
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(2020). Both these papers consider a single constraint on arm selection; David et al. (2018) 
considers a constraint on VaR, and Chang (2020) considers an average cost constraint 
(each arm has a cost distribution that is independent of its reward distribution). All the 
papers above implicitly assume that the instance presented is feasible, whereas we address 
the issue of encountering an infeasible instance.

Finally, we note that constraints appear in an entirely different context in the fam-
ily of bandit problems called “bandits with knapsacks." Here, the goal is to maximize 
rewards under (vector) budget constraints, where the learning agent ceases to pull arms 
(and accumulate reward) once any one of the budget components is exhausted. The prob-
lem was introduced in  Badanidiyuru et  al. (2018) and some recent work in this space 
includes (Agrawal & Devanur, 2016; Sankararaman & Slivkins, 2021).

2 � Problem formulation

In this section, we describe the formulation of our constrained stochastic MAB problem. To 
keep the exposition simple, we consider a single constraint (i.e., m = 1 ) for now; the gen-
eral formulation with multiple constraints (i.e., m ≥ 1 ) is discussed in Sect. 5. Informally, 
under the regret minimization objective considered here, the goal is to play, as often as 
possible, the arm that optimizes the objective, subject to a constraint on another attribute.

Formally, consider a multi-armed bandit problem with K arms, labeled 1, 2,… ,K. Each 
arm is associated with a (possibly multi-dimensional) probability distribution, with �(k) 
denoting the (joint) distribution corresponding to arm k ∈ [K]1. Suppose that �(k) ∈ C, the 
space of possible arm distributions. The objective and the constraint attributes are defined 
via functions g0 and g1 respectively, mapping C to ℝ. Additionally, the user provides a 
threshold � ∈ ℝ which specifies an upper bound on the attribute g1. An instance of the con-
strainted MAB problem is defined by (�, �), where � = (�(k), 1 ≤ k ≤ K) ∈ C

K (here, CK 
denotes the K-fold cartesian product of C ). The arms that satisfy the constraint g1(�(⋅)) ≤ � 
are called feasible arms; the set of feasible arms is denoted by K(�), and the set of arms 
that do not satisfy the constraint is denoted by K(�)c. The instance (�, �) is said to be feasi-
ble if K(�) ≠ �, and is said to be infeasible if K(�) = �.

Consider first a feasible instance. An optimal arm in this case is defined as an arm that 
minimizes g0(�(⋅)), subject to the constraint g1(�(⋅)) ≤ � . Denote the optimal value as 
g∗
0
= mink∈K(�) g0(�(k)). Arms which have g0(�(⋅)) larger than g∗

0
 (whether or not feasible) 

are referred to as suboptimal arms. Note that there can also exist infeasible arms with a 
smaller objective g0 than g∗

0
. We refer to such arms as deceiver arms; the set of deceiver 

arms is denoted by Kd(�), where Kd(𝜈) = {k ∈ [K] ∶ g1(𝜈(k)) > 𝜏, g0(𝜈(k)) ≤ g∗
0
}. For 

a suboptimal arm k,   the suboptimality gap is defined by 𝛥(k) ∶= g0(k) − g∗
0
> 0. (Note 

that the suboptimality gap is also defined for infeasible, non-deceiver arms). Finally, for an 
infeasible arm k,   the infeasibility gap is defined as 𝛥𝜏 (k) = g1(k) − 𝜏 > 0. Figure 1a pro-
vides a visual representation of a feasbile instance.

Next, consider an infeasible instance. The optimal arm in this case is defined 
in as the one with the smallest value of g1(�(⋅)). Let the optimal value be denoted by 
g∗
1
= mink∈[K] g1(𝜈(k)) > 𝜏. This is equivalent to requiring that if the algorithm is faced 

with an infeasible instance, it must ’relax’ the constraint just enough, until at least 

1  For a positive integer n,  we denote [n] ∶= {1, 2,… , n}.
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one arm satisfies the constraint. The constraint gap for an arm k that is not optimal is 
defined as 𝛥con(k) = g1(𝜈(k)) − g∗

1
> 0. Figure 1b provides a visual representation of an 

infeasbile instance.
For any (feasible or infeasible) instance (�, �), let the set of optimal arms be denoted 

by K∗(�). The total number of pulls (or horizon) is denoted by T. For an algorithm 
(a.k.a., policy) � , the number of pulls of an arm k over the first  t pulls, for t ∈ [T], is 
denoted by N�

k
(t), though we often suppress the dependence on � for simplicity.

Consistency We now define the notion of consistency of an algorithm in this set-
ting. A policy � is said to be consistent over a class of distributions C, given a pre-
specified constraint threshold �, if for all instances (�, �) such that � ∈ C

K , it holds that 
�
[
Nk(T)

]
= o(Ta) for all a > 0 and for all (non-optimal) arms in [K] ⧵K∗(�). This defi-

nition is in line with the definition of consistency in the classical unconstrained regret 
minimization setting (see Lai and Robbins 1985).

Regret The formal definition of regret in the present setting is as follows. For a feasi-
ble instance, there are two types of regret: suboptimality regret

which is the regret caused due to the sampling of feasible, suboptimal arms, and infeasibil-
ity regret

which is the regret caused due to the sampling of infeasible arms. For an infeasible 
instance, regret is caused by playing arms that are farther from the constraint boundary 
than the optimal arm. In this case, we define the constraint regret as

(Note that our analysis essentially provides upper and lower bounds on �
[
Nk(T)

]
 for all 

arms in [K] ⧵K∗(�). So alternative definitions of regret, involving linear combinations of 
the expected number of pulls of non-optimal arms, are also supported by our analysis.)

R���

T
∶=

∑
k∈K(�)⧵K∗(�)

�(k)�
[
Nk(T)

]
,

R���

T
∶=

∑
k∈K(�)c

�� (i)�
[
Nk(T)

]
,

R���

T
∶=

∑
k∈[K]⧵K∗(�)

�con(k)�
[
Nk(T)

]
.

Fig. 1   The two types of instances
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Infeasibility identification Next, we introduce an optional boolean flag called feasi-
bility_flag, that the policy may set at the end of T plays, to indicate post facto whether it 
considered the instance as feasible (by setting the flag as true) or infeasible (by setting the 
flag as false). For the algorithms proposed in this paper, we provide bounds on the prob-
ability that this flag erroneously flags a feasible instance as infeasible and vice-versa. We also 
provide fundamental lower bounds on the probability of error under any consistent policy.

Concentration inequalities on attribute estimators Natually, MAB algorithms must esti-
mate the attributes g0 and g1 corresponding to each arm using the data samples obtained by 
pulling that arm. We make the following assumption on concentration properties of these esti-
mators. Suppose that for i ∈ {0, 1}, and distribution F ∈ C, there exists an estimator ĝi,n(F) of 
gi(F) using n i.i.d. samples from F,  satisfying the following concentration inequality: There 
exists ai > 0 such that for all 𝛥 > 0,

Concentration inequalities of this form are available in a broad variety of settings. For 
example, if gi(F) = �

[
hi(X)

]
, where X is a random vector distributed as F,  then a concen-

tration inequality of the form (1) is readily obtained if hi(X) is bounded (using the Hoef-
fding inequality), or �-subGaussian. Similarly, if hi is Lipschitz and X is a subGaussian ran-
dom vector, concentration bounds of the form (1) can be obtained by invoking the results 
in Kontorovich (2014). Several examples where risk measures can be concentrated in this 
manner are provided in Cassel et al. (2018). Also, note that the specific form (1) of the con-
centration inequality is only assumed to simplify the description of our algorithms. Alter-
native forms of concentration guarantees (such as those known for the means of subexpo-
nential or heavy-tailed distributions) can also be supported by our algorithmic framework 
via trivial modifications to the confidence bounds.

3 � Constrained regret minimization

In this section, we present an algorithm for constrained regret minimization, and provide per-
formance guarantees for the same, assuming that we have estimators for each attribute that 
satisfy the concentration inequality (1).

The algorithm, which we refer to as constrained lower confidence bound (Con-LCB) algo-
rithm (formal description presented as Algorithm 1) is based on the well-known principle of 
optimism under uncertainty. Con-LCB uses lower confidence bounds (LCBs) on attribute g1 
of each arm to maintain a set of plausibly feasible arms, and uses LCBs for attribute g0 of the 
arms in this set to select the arm to be played. Note that LCBs are used for attribute g0 because 
we are dealing with minimization of g0. If, at some instant, the set of plausibly feasible arms 
maintained by Con-LCB becomes empty, the algorithm turns conservative and plays the arm 
which violates the constraint least, i.e., the one with the smallest LCB on g1 . Finally, at the end 
of T rounds, Con-LCB sets the feasiblity flag as true if the set of plausibly feasible arms is 
found to be non-empty, and false otherwise.

(1)��
(||ĝi,n(F) − gi(F)

|| ≥ 𝛥
)
≤ 2 exp(−ain𝛥

2).
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Algorithm 1 Con-LCB
procedure Con-LCB(T,K, τ)

Play each arm once
for t = K + 1, · · · , T do

Set K̂t =
{
k : ĝ1,Nk(t−1)(k)−

√
log(2T2)

a1Nk(t−1) ≤ τ

}

if K̂t �= ∅ then

Set L0(k) = ĝ0,Nk(t−1)(k)−
√

log(2T2)
a0Nk(t−1)

Play arm k†t ∈ argmink∈K̂t
L0(k)

else
Set L1(k) = ĝ1,Nk(t−1)(k)−

√
log(2T2)

a1Nk(t−1)

Play arm k†t ∈ argmink∈[K] L1(k)
end if

end for
if K̂T �= ∅ then

Set feasibility flag = true
else

Set feasibility flag = false
end if

end procedure

The remainder of this section is devoted to performance guarantees for Con-LCB. 
We consider feasible and infeasible instances separately.

Theorem 1  Consider a feasible instance. Under Con-LCB, the expected number of pulls of 
a feasible but suboptimal arm k (i.e., satisfying g0(𝜈(k)) > g∗

0
 and g1(�(k)) ≤ � ), is bounded 

by

The expected number of pulls of a deceiver arm k (i.e., satisfying g0(�(k)) ≤ g∗
0
 and 

g1(𝜈(k)) > 𝜏 is bounded by

The expected number of pulls of an arm k which is an infeasible non-deceiver (i.e., satisty-
ing g0(𝜈(k)) > g∗

0
 and g1(𝜈(k)) > 𝜏 ) is bounded by

The probability of incorrectly setting the feasibility_flag is upper bounded by

�
[
Nk(T)

]
≤

4 log(2T2)

a0�
2(k)

+ 5.

�
[
Nk(T)

]
≤

(
4 log(2T2)

a1[�� (k)]
2

)
+ 2.

�
[
Nk(T)

]
≤ min

(
4 log(2T2)

a0�
2(k)

,
4 log(2T2)

a1[�� (k)]
2

)
+ 5.
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The main takeaways from Theorem 1 are as follows.
∙ The upper bound on the expected number of pulls for feasible, suboptimal arms is 

logarithmic in the horizon T,   and inversely proportional to the square of the subopti-
mality gap. This is similar to bounds known for classical (unconstrained) MABs.

∙ For deceiver arms, the upper bound on the expected number of pulls, also logarith-
mic in T,   is inversely proportional to the square of the feasiblity gap. This is similar 
to the bound one would obtain in a pure g1 minimization problem for a hypothetical 
instance consisting of all the originally infeasible arms, and a single hypothetical (opti-
mal) arm having g1 equal to �.

∙  The bound on the expected number of pulls of non-deceiver, infeasible arms 
involves a minimum of the dominant terms in the above two cases. Intuitively, this is 
because these arms can disambiguated in two ways: via the suboptimality gap, and the 
feasibility gap.

∙ The probability that the feasiblity flag incorrectly identifies the instance as infea-
sible is upper bounded by a power law in the horizon T. Note that the specific form of 
the probability of mis-identification bound is not fundamental; a small modification in 
the algorithm would make this bound a faster decaying power law at the expense of a 
multiplicative bump in regret. However, that this probability is not much smaller (for 
example, exponentially decaying in the horizon T) is a consequence of an inherent ten-
sion between regret minimization and feasiblity identification.

A similar tension is known to exist between regret minimization and best arm iden-
tification in the unconstrained setting; see Bubeck et  al. (2009)). We provide lower 
bounds on the probability that any consistent algorithm makes a mistake in feasibility 
identification in Sect. 4.

Finally, we note that the suboptimality regret, as well as the infeasibility regret are 
logarithmic in the horizon T. Indeed, the suboptimality regret for a feasible instance is 
bounded as

which is similar to regret bounds in the classical unconstrained setting. To express the 
infeasibility regret compactly, let us interpret �(k) as 0 (and 1∕�(k) as ∞ ) for deceiver arms. 
With this notation, the infeasibility regret of a feasible instance is bounded as

Next, we move on to characterizing the performance of Con-LCB over infeasible instances.

Theorem 2  Consider an infeasible instance. Under Con-LCB, the expected number of pulls 
of a non-optimal arm k is bounded by

��(�����������_���� = �����) ≤
1

T
.

R���

T
≤

∑
k∈K(�)⧵K∗(�)

(
4 log(2T2)

a0�(k)
+ 5�(k)

)
,

R���

T
≤

∑
k∈K(�)c

5�� (k) +min

(
4�� (k) log(2T

2)

a0�
2(k)

,
4 log(2T2)

a1�� (k)

)
.

�
[
Nk(T)

]
≤

(
4 log(2T2)

a1[�con(k)]
2

)
+ K + 2.
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Moreover, the probability that the algorithm incorrectly flags the instance as feasible 
is bounded as ��(�����������_���� = ����) ≤

K

T
for T > T∗(𝜈), where T∗(�) is an 

instance-dependent constant.

For an infeasible instance, the upper bound on the expected number of pulls of a non-
optimal arm, logarithmic in the horizon, and inversely proportional to the square of the 
constraint gaps �con(k), is structurally similar to the bound one would obtain in pure g1 
minimization problem on the same instance. However, note that when faced with an 
infeasible instance, Con-LCB would only start playing the optimal arm regularly after 
all K arms appear to be infeasible; this explains the appearance of K in our bounds.

Here, the constraint regret is bounded as

Finally, as before, the probability that the feasibility flag wrongly identifies the infeasible 
instance as feasible decays as a power law in the horizon for T > T∗(𝜈); the threshold T∗ 
accounts for the time it takes for the algorithm to ‘detect’ that the instance is infeasibile 
with high probability.

4 � Information theoretic lower bounds

In this section, we establish fundamental limits on the performance of algorithms for 
constrained regret minimization. First, we show that the regret bounds obtained for 
Con-LCB are asymptotically tight upto universal multiplicative constants (on a class 
of Gaussian bandit instances). We then prove a lower bound on the probability that any 
consistent algorithm misidentifies a feasible instance as infeasible or vice-versa. This 
result illustrates an inherent tension between regret minimization and feasibility iden-
tification—consistent algorithms (recall that consistency means regret is o(Ta) for all 
a > 0 ) cannot have a misidentification probability that decays exponentially in the hori-
zon, and algorithms that enjoy a mid-identification probability that decays exponentially 
in the horizon cannot be consistent.

To state our information theoretic lower bound on regret, suppose that the class of 
arm distributions G is the class of 2-dimensional Gaussian distributions with covariance 
matrix � = diag(1∕2a0, 1∕2a1). Let attribute g0 be the mean of the first dimension, and g1 
be the mean of the second dimension. For the assumed covariance matrix structure, the 
standard empirical mean estimators for g0 and g1 satisfy the concentration properties 
stated in (1).

Theorem 3  Let � be any consistent policy over the class of distributions G given the thresh-
old � ∈ ℝ. Consider a feasible instance (�f , �), where �f ∈ G

K . For any feasible but subop-
timal arm k, 

For any deceiver arm k, 

R���

T
∶=

∑
k∈[K]⧵K∗(�)

(K + 2)�con(k) +
4 log(2T2)

a1�con(k)

lim inf
T→∞

�
[
N�
k
(T)

]
log(T)

≥
1

a0�
2(k)

.
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Finally, for any infeasible non-deceiver arm k, 

Similarly, for an infeasible instance (�i, �), such that �i ∈ G
K , for any non-optimal arm k, 

The proof of Theorem 3 can be found in “Appendix B”. Comparing the lower bounds 
in Theorem 3 with the upper bounds for Con-LCB in Theorems 1 and 2, we conclude that 
Con-LCB is asymptotically optimal on regret, up to universal multiplicative constants.2

Next, we address the fundamental tradeoff between regret minimization and feasibility 
identification.

Theorem 4  Consider a space of arm distributions C, and a threshold � such that C contains 
both feasible as well as infeasible arm distributions. There exists a feasible instance (�, �) 
and an infeasible instance (��, �) such that for any policy � that is consistent over C,

Theorem 4 states that for any consistent algorithm, the probability that (�, �) get misi-
dentified as infeasible, and the probability that (��, �) get misidentified as feasible, cannot 
both decay exponentially in the horizon. This is of course consistent with the power-law 
probability of misidentification under Con-LCB. In other words, slower-than-exponential 
decay of the probability of feasibility misidentification with respect to the horizon is an 
unavoidable consequence of the exploration-exploitation interplay in regret minimization. 
A similar tension between regret minimization and best arm identification was noted for 
the unconstrained MABs by Bubeck et al. (2009).

5 � General framework for constrained MABs

In this section, we provide a general formulation for constrained stochastic MABs with 
multiple criteria. We allow each arm to be associated with a D-dimensional probabil-
ity distibution, the goal being to optimize one (dominant) attribute associated with this 

lim inf
T→∞

�
[
N�
k
(T)

]
log(T)

≥
1

a1[�� (k)]
2
.

lim inf
T→∞

�
[
N�
k
(T)

]
log(T)

≥
1

2
min

(
1

a0�
2(k)

,
1

a1[�� (k)]
2

)
.

lim inf
T→∞

�
[
N�
k
(T)

]
log(T)

≥
1

a1[�con(k)]
2
.

lim sup
T→∞

−
1

T
log

(
ℙ�(�����������_���� = �����)

+ ℙ�� (�����������_���� = ����)
)
≤ 0.

2  Information theoretic lower bounds on the expected number of pulls of non-optimal arms can be derived 
(in terms of a certain optimization over KL divergences) for any general class of arm distributions; see 
“Appendix B.1”. We have specialized the statement of Theorem 3 to a class of Gaussian bandit instances to 
enable an easy comparison with our upper bounds for Con-LCB.
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distribution, subject to constraints on  m others. The algorithm design and performance 
evaluation performed in Sects. 2–4 for the special case of m = 1 extend naturally to this 
general formulation, which can in turn be applied in a variety of application scenarios. We 
illustrate a few here.

∙  For clinical trials, with the arms corresponding to various treatment protocols, the 
dominant attribute might, for example, correspond to the success/recovery probability, 
whereas the constraints might capture recovery time, severity of side effects, etc.

∙ For product/service rating, where the arms correspond to various service providers, 
the dominant attribute might correspond to product quality, with constraints capturing reli-
ability, pricing, customer service, etc.

∙ In wireless networks, the arms might correspond to various access networks or chan-
nels, with, for example, the dominant attribute corresponding to throughput, and con-
straints capturing delay, energy efficiency, etc.

Formulation Consider a set of K arms, each associated with a D-dimensional prob-
ability distribution, with �(k) denoting the joint distribution corresponding to arm k ∈ [K]. 
Suppose that �(k) ∈ C, the space of possible arm distributions. The objective and the con-
straints are defined by functions g0, g1,… , gm. Specifically, the optimal arm is defined as 
that arm k that minimizes g0(�(k)), subject to the constraints {gi(�(k)) ≤ �i}

m
i=1

 when the 
instance is feasible (i.e., at least one arm exists that satisfies the above constraints).

If the instance is infeasible, the optimal arm is defined via a ranked list of the con-
straints, that orders them by ‘importance’. Without loss of generality assume that the 
order of importance increases from (g1, �1) to (gm, �m). The idea is to relax the constraints 
one-by-one, starting with the least important, until a compliant arm is found. Formally, 
for a given infeasible instance � , for 2 ≤ i ≤ m, let Ki(�) denote the set of arms that sat-
isfy the constraints {gj(�(k)) ≤ �j}

m
j=i
. Let us also define Km+1(�) ∶= [K]. Now, let 

i∗(�) = min{k ∈ [m] ∶ Kk+1(�) ≠ �}. Here, i∗(�) is the fewest number of constraints one 
must relax, in order of increasing importance, in order to have at least one compliant arm. 
An optimal arm is then defined to be argmin{gi∗(�)(�(k)) ∶ k ∈ Ki∗(�)+1(�)}.

Similar to the case where m = 1, we make the following assumption to simplify algo-
rithm design. Suppose that for 0 ≤ i ≤ m, and � ∈ C, there exist an estimator ĝi,n(𝜈) for 
gi(�) using n i.i.d. samples from �, satisfying the following concentration inequality: There 
exists ai > 0 such that for all 𝛥 > 0,

Note that this is simply an extension of our assumption (1).
Algorithm and performance guarantees For the above problem formulation, we 

propose Multi-Con-LCB, a simple extension of the Con-LCB algorithm that we pre-
sented before for the case of m = 1. Multi-Con-LCB uses upper confidence bounds on 
constrained attributes {gi(�(k))}mi=1 for each arm k to maintain a set of plausibly feasible 
arms. The set of plausibly feasible arms for the constraint on function gi at time t ∈ [T] 
will be denoted by K̂

†

i,t
 for all values of i ∈ [m]. Using the sets of plausibly feasible arms 

for each constraint, we construct the set of arms that plausibly lie in the set K(�) and this 
set is denoted by K̂t for time instant t ∈ [T]. Formally, K̂t = ∩m

i=1
K̂

†

i,t
. As this set might 

be empty, for i ∈ {2,… ,m}, let the estimate for Ki(�) be K̂i,t = ∩m
j=i
K̂

†

j,t
. It is also pos-

sible that the most important constraint is not satisfied, therefore let K̂m+1,t = [K]. If the 
set K̂t is not empty, then the algorithm uses lower confidence bounds (LCBs) on g0 to 
select the arm to be played. If the set K̂t turns out to be empty, then the algorithm finds 
the smallest index î∗ such that the set K̂î∗+1,t is not empty. The algorithm then plays the 

(2)��
(||ĝi,n(𝜈) − gi(𝜈)

|| ≥ 𝛥
)
≤ 2 exp(−ain𝛥

2).
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arm with lowest LCB on gî∗ . Finally, at the end of T rounds, Multi-Con-LCB sets the 
feasibility flag as true if the set K̂T is not empty and false otherwise. The details are 
presented as Algorithm 2.

Algorithm 2 Multiple Constrained LCB
procedure Multi-Con-LCB(T,K, {τi}mi=1)

Play each arm once
for t = K + 1, · · · , T do

for i = 1, · · · ,m do

Set K̂†
i,t =

{
k : ĝi,Nk(t−1)(k) ≤ τi +

√
log(2T2)

aiNk(t−1)

}

end for
Set K̂t = ∩m

i=1K̂
†
i,t

if K̂t �= ∅ then

k†t+1 ∈ argmink∈K̂t
ĝ0,Nk(t−1)(k)−

√
log(2T2)

a0Nk(t−1)

Play arm k†t+1
else

î∗ = argmini∈{1,··· ,m} K̂i+1,t �= ∅

k†t+1 ∈ argmink∈K̂
î∗+1,t

ĝî∗,Nk(t−1)(k)−
√

log(2T2)
a
î∗Nk(t−1)

Play arm k†t+1
end if

end for
if K̂T+1 �= ∅ then

Set feasibility flag = true
else

Set feasibility flag = false
end if

end procedure

The remainder of this section is devoted to performance guarantees for Multi-Con-
LCB. The suboptimality gap for an arm k is given by �(k) = max(g0(�k) − g∗

0
, 0). The 

infeasibility gap of an arm k for constraint i is given by �i,�i
(k) = max(gi(�(k)) − �i, 0). 

We restrict our attention to feasible instances here; infeasible instances can be handled 
on similar lines as Theorem 2 for Con-LCB.

Theorem 5  Consider a feasible instance. Under Multi-Con-LCB, the expected number of 
pulls of a feasible but suboptimal arm k (i.e., satisfying g0(𝜈(k)) > g∗

0
 and gi(�(k)) ≤ �i for 

all i ∈ [m] ), is bounded by

The expected number of pulls of a deceiver arm k (i.e., satisfying g0(�(k)) ≤ g0(�(1)) and 
there exists a constraint indexed by j ∈ [m] such that gj(𝜈(k)) > 𝜏j ) is bounded by

�
[
Nk(T)

]
≤

4 log(2T2)

a0�
2(k)

+ 2m + 3.
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The expected number of pulls of a an arm k which is infeasible, but not a deceiver (i.e., 
satistying g0(𝜈(k)) > g0(𝜈(1)) and there exists a constraint indexed by j ∈ [m] such that 
gj(𝜈(k)) > 𝜏j ) is bounded by

The probability of incorrectly setting the feasibility_flag is upper bounded by

We omit the proof of Theorem 5 in the appendix because it is very similar to the proof 
of Theorem 1. However, we state the key takeaways from Theorem 5 below.

∙ Similar to Theorem 1, the upper bound on the expected number of pulls of suboptimal 
arms is logarithmic in T and is inversely proportional to the suboptimality gap squared. 
Moreover, the upper bound for a deceiver arm is also logarithmic in T but there is a mini-
mum over m terms because the deceiver arm can be identified by any of the constraints that 
the arm does not satisfy. Similarly, the upper bound for a non-deceiver, suboptimal arm 
is also logarithmic in T and there is a minimum over m + 1 terms because the arm can be 
identified as suboptimal, or infeasible for not satisfying one of the m constraints.

∙ With an increase in the number of constraints to m, the upper bounds on the expected 
number of pulls of non-optimal arms increase linearly in m and the probability of mis-
identification also gets scaled by a factor of m. The slight degradation in the guarantees is 
expected because with more constraints, the optimal arm has to satisfy more conditions, 
and it becomes harder to compare different arms.

6 � Numerical experiments

In this section, we present a simple experiment to show the numerical performance of our 
algorithm Con-LCB.

We consider an instance with four arms and two criteria. Each arm is associated with a 
(two-dimensional) multivariate Gaussian distribution, different arms having the same 
covariance matrix �, but different mean vectors. The means corresponding to the first 
dimension are 0.3, 0.4, 0.2, and 0.5 and the means corresponding to the second dimension 

are 0.4, 0.4, 1.0, and 1.0. The covariance matrix is given by � =

(
1 0.5

0.5 1

)
.

The goal is to maximize the pulls of the arm with the minimum mean of the first dimen-
sion, subject to a constraint on the mean of the second. Specifically, we require that the 
mean of the second dimension should be less than or equal to � ∶= 0.5. The instance is 
summarized in Table  1. We use empirical averages as the estimators for the means and 
standard confidence bounds based on sub-Gaussianity assumption. We run the algo-
rithm 1000 times for values of T in [10000, 100000]. The suboptimality regret Rsub

T
 and the 

infeasibility regret Rinf
T

 are plotted in Figure 2. Clearly, the regrets grow sub-linearly with 

�
[
Nk(T)

]
≤ min

i∈[m]

(
4 log(2T2)

ai[�i,�i
(k)]2

)
+ m.

�
[
Nk(T)

]
≤ min

(
4 log(2T2)

a0�
2(k)

, min
i∈[m]

(
4 log(2T2)

ai[�i,�i
(k)]2

))
+ 2m + 3.

��(�����������_���� = �����) ≤
m

T
.
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respect to the horizon. Also, in our experiments, the algorithm correctly detected the feasi-
bility of the instance in all of the 1000 runs.

We consider another instance where arms are Beta distributed. The goal here is to maxi-
mize the pulls of the arm with the minimum mean, subject to a constraint on the vari-
ance. Specifically, we require that the variance of the arms should be less than or equal 
to � ∶= 0.1. The instance is summarized in Table 2. We use the empirical average to esti-
mate the mean of the arms and the standard unbiased estimator of variance to estimate the 
variance of the arms. The concentration bounds we use are based on fact that underlying 
arms are bounded between 0 and 1. We run the algorithm  100 times for values of T in 
[10000, 100000]. The suboptimality regret Rsub

T
 and the infeasibility regret Rinf

T
 are plotted 

in Figure 3. Similar to the previous case, the algorithm correctly detected feasibility in all 
of the 100 runs.

We also compare Con-LCB with an algorithm designed to optimize a single ‘Lagrange 
relaxed’ objective of the form g0 + �g1. Since there is no systematic way of setting � such 
that the original (constrained) optimal arm also minimizes this metric, this approach is 
very fragile, as we demonstrate in Figure 4. The instance we use is the Beta distributed 
instance in Table 2, and we are plotting the sum of the infeasible regret and suboptimal 
regret. When � is small ( 𝛽 < 10∕7 here), a deceiver arm is optimal for the relaxed objec-
tive, and when � is large ( 𝛽 > 5 here), a suboptimal arm is optimal for the relaxed objec-
tive; the ‘correct’ range of � being instance dependent (and a priori unknown).

Table 1   Gaussian instance Arm Mean 1 Mean 2 Remarks

1 0.3 0.4 Optimal arm
2 0.4 0.4 Feasible, suboptimal
3 0.2 1.0 Deceiver
4 0.5 1.0 Infeasible, suboptimal

(a) Suboptimality regret (b) Infeasibility regret

Fig. 2   Regret of Gaussian instance
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7 � Concluding remarks

In this paper, we have introduced a general formulation of multi-criterion constrained MABs, 
which is applicable when there are multiple attributes of interest associated with each arm. We 
propose algorithms that incur logarithmic regret, and also provide information theoretic lower 
bounds on the performance of any algorithm. An interesting departure from the classical MAB 
formulation is the aspect of instance feasibility; our algorithms predict, post facto, with a prob-
ability of error that decays as a power law in the horizon, whether the instance presented was 
feasible. Interestingly, this illustrates a fundamental tradeoff between regret minimization and 
feasibility detection. Finally, our algorithms ‘auto-tune’ to an infeasible instance, relaxing the 
constraints on arm attributes (in order of increasing importance), until a compliant arm is found.

The proposed framework and our algorithms can be applied in a wide range of applica-
tion scenarios [see Bouneffouf and Rish (2019) for a survey]. Further, this work motivates the 
study of multi-criterion variants of other bandit formulations, including contextual bandits, 
combinatorial bandits, and correlated bandits.

Appendix A: Upper bounds

In this section, we prove Theorems  1 and 2. The bounds in Sections  “Feasible instance: 
upper bounding the expected pulls of deceiver arms”–Feasible instance: upper bound-
ing the probability of misidentification imply the statement of Theorem 1, and the bounds 

Table 2   Beta instance Arm Mean Variance Remarks

1 0.3 0.08 Optimal arm
2 0.4 0.06 Feasible, suboptimal
3 0.2 0.15 Deceiver
4 0.5 0.15 Infeasible, suboptimal
5 0.45 0.08 Feasible, suboptimal
6 0.3 0.15 Deceiver
7 0.6 0.15 Infeasible, suboptimal

(a) Suboptimality regret (b) Infeasibility regret

Fig. 3   Regret of Beta distributed instance
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in “Sections  Infeasible instance: upper bounding the expected pulls of non-optimal 
arms”–“Infeasible instance: upper bounding the probability of misidentification” imply the 
statement of Theorem 2.

A.1 Feasible instance: upper bounding the expected pulls of deceiver arms

For a deceiver arm k, we will define a good event G1,k where the estimator for g1 is concen-
trated enough and derive an upper bound on the number of pulls of the deceiver arm.

On G1,k, we can lower bound the estimator for g1 for the arm k as follows

If the lower bound is greater than � +
√

log (2T2)
a1n

, then arm k can’t be in K̂t. Hence, we can 

upper bound the number of pulls of an infeasible arm as follows

Event Gc
1,k

 is given by

(3)G1,k =

⎧⎪⎨⎪⎩
∀n ∈ [T] �ĝ1,n(k) − g1(k)� <

�
log

�
2T2

�
a1n

⎫⎪⎬⎪⎭

ĝ1,n(k) > g1(k) −

√
log

(
2T2

)
a1n

(4)
g1(k) −

�
log

�
2T2

�
a1n

≤ � +

�
log

�
2T2

�
a1n

⇒n ≤ vk ∶= ⌈∗⌉4 log(2T
2)
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Fig. 4   Comparison with the Lagrangian relaxation
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Using our assumption in Eq. 1 and a union bound, we can show

Now, let us upper bound the expected number of pulls of a deceiver arm k.

A.2 Feasible instance: upper bounding the expected pulls of feasible suboptimal 
arms

We will begin by showing that a feasible arm k remains in the set K̂t for t ∈ [T] when esti-
mator of g1 is concentrated enough. We define an event G1,k for a feasible arm as done in 
Eq. (3). When G1,k holds, the estimator for g1 is upper bounded by

Hence, arm k is in K̂t for t ∈ [T] when G1,k holds.
We are considering the case where an arm k is feasible but suboptimal. We will define 

a good event for arm k and bound the number of pulls on this good event. Without loss of 
generality, assume arm 1 is optimal.

Gc
1,k

=

⎧
⎪⎨⎪⎩
∃n ∈ [T] �ĝ1,n(k) − g1(k)� ≥

�
log

�
2T2

�
a1n
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(k)
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1
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4 log(2T2)
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√
log
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2T2

)
a1n

≤𝜏 +

√
log

(
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)
a1n

(∵ g1(k) ≤ 𝜏)

(5)

G0,k =

⎧
⎪⎨⎪⎩
g0(1) > max

n∈[T]
ĝ0,n(1) −

�
log

�
2T2

�
a0n

⎫
⎪⎬⎪⎭

∩
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log
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⎫⎪⎬⎪⎭
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a0𝛥
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We will show that if G0,k holds, then Nk(T) ≤ uk . We will also show that Gc
0,k

 holds with a 
small probability.

The proof is by contradiction. Suppose G0,k holds and Nk(T) > uk , then there exists a 
t ∈ [T] such that Nk(t − 1) = uk and At = k. Using the definition of G0,k,

Hence, At = argminjLCBj(t) ≠ k, which is a contradiction. Therefore, if G0,k occurs, 
Nk(T) ≤ uk.

Now, consider the event Gc
0,k
.

Let us bound the probability of the first term above.

Now, let us bound the second event above. By the choice of uk we have the following

Now,

LCBk(t − 1) = ĝ0,uk (k) −

√
log

(
2T2

)
a0uk

> g0(1) (Definition of G0,k)

> LCB1(t − 1) (Definition of G0,k)
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⎪⎨⎪⎩
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(Using Equation 1 and union bound)
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We can show that ��
(
Gc

1,1

)
≤ 1∕T and ��

(
Gc

1,k

)
≤ 1∕T like in the previous subsection. 

Hence,

Hence, we can upper bound the number of pulls of feasible but suboptimal arms as follows

A.3 Feasible instance: upper bounding the expected pulls of infeasible suboptimal 
arms

Consider arm k which is both suboptimal and infeasible. Define an event G0,k as done in 
Eq.  (5). Recall that the upper bound on the pulls of the deceiver arms on event G1,k is 
denoted by vk and the upper bound on the pulls of the feasible but suboptimal arms on 
event G0,k is denoted by uk.

On the event G0,k, if uk ≥ vk, then due to concentration of estimator of g1 , this arm 
can’t be played more than vk times. If uk < vk, then due to suboptimality, this arm can’t be 
played more than uk times. We can show that the probability of Gc

0,k
 is less than or equal to 

3∕T + 1∕T2 as we did before. Hence, we can upper bound the pulls of infeasible and subopti-
mal arms as follows

��
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A.4 Feasible instance: upper bounding the probability of misidentification

Feasibility is correctly detected if for at least one of the feasible arms, event G1,k as defined in 
Eq. (3) holds. We had seen in Appendix A.2 that if estimator of g1 is concentrated enough, a 
feasible arm always remains in the set K̂t of plausibly feasible arms.

Without loss of generality, assume that arm 1 is optimal. Then, we can lower bound the 
probability of correctly setting the flag as follows

This upper bounds the probability of incorrectly setting the flag

A.5 Infeasible instance: upper bounding the expected pulls of non‑optimal arms

In this section, we discuss the case when the given instance is infeasible. As defined before, 
the optimal choice for the algorithm is to play the arm with minimum g1 . We will upper bound 
the number of pulls of arms that have g1 greater than the minimum.

For all the arms, we define good events G1,k as in Eq.  (3) where the estimator for g1 is 
concentrated enough. Let Er = ∩K

k=1
G1,k. When event Er occurs, the set K̂t becomes empty 

after at most 
∑K

k=1
vk pulls where vk is defined in Eq. (4). The analysis is similar to given in 

Appendix A.1.
Once the set K̂t becomes empty, the algorithm starts pulling arms with minimum lower 

confidence bound on estimator of g1 . We will upper bound the number of pulls for the non-
optimal arms. Without loss of generality, assume that arm 1 has the lowest g1 . As we are deal-
ing with an infeasible instance, g1(1) > 𝜏. For a non-optimal arm k,  we define the following 
good event

One can check that wk is greater than vk because the gap �con(k) = g1(k) − g1(1) is smaller 
than �� (k) = g1(k) − �. It is easy to argue using LCB based arguments that if Gr,k occurs, 
then arm k can’t be pulled more than wk times. This is similar to the proof given in 
Appendix A.2.

Let us upper bound the probability of Gc
r,k
. Event Gc

r,k
 is given by

��(�����������_���� = ����) ≥ ��
(
G1,1

)

≥ 1 −
1

T
.

��(�����������_���� = �����) ≤
1

T
.

Gr,k =

⎧
⎪⎨⎪⎩
ĝ1,wk

−

�
log

�
2T2

�
a1wk

> g1(1)

⎫
⎪⎬⎪⎭
∩ Er

where wk = ⌈∗⌉4 log(2T
2)

a1𝛥
2
con

(k)
.
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Using analysis in Appendix A.1, we can show ��
(
E
c
r

)
≤ K∕T. Let us bound the probability 

of the first term above. By the choice of wk, we have

Now,

Hence, we can upper bound ��
(
Gc

r,k

)
 using a union bound

When the instance is infeasible, the expected number of pulls of non-optimal arms are 
upper bounded by

A.6 Infeasible instance: upper bounding the probability of misidentification

In this subsection, we will upper bound the probability of incorrectly setting the 
feasibility_flag.

Firstly, we define T∗ to be the minimum value of T for which the following holds:

Gc
r,k

=

⎧
⎪⎨⎪⎩
ĝ1,wk

−

�
log

�
2T2

�
a1wk

≤ g1(1)

⎫
⎪⎬⎪⎭
∪ E

c
r
.

�con(k) −

√
log

(
2T2

)
a1wk

≥

√
log

(
2T2

)
a1wk

��

⎛⎜⎜⎝
ĝ1,wk

−

�
log

�
2T2

�
a1wk

≤ g1(1)

⎞
⎟⎟⎠

= ��

⎛⎜⎜⎝
g1(k) − ĝ1,wk

≥ 𝛥con(k) −

�
log

�
2T2

�
a1wk

⎞⎟⎟⎠
(Use 𝛥con(k) = g1(k) − g1(1))

≤ ��

⎛⎜⎜⎝
g1(k) − ĝ1,wk

≥

�
log

�
2T2

�
a1wk

⎞⎟⎟⎠
(By the choice of wk)

≤
1

T2
(Using Equation 1)

��

(
Gc

r,k

)
≤

K

T
+

1

T2
≤

K + 1

T
.

�
�
Nk(T)

�
= �

�
�
�
Nk(T)�Gr,k

��
+ �

�
�

�
Nk(T)�Gc

r,k

��

≤ ⌈∗⌉4 log(2T
2)

a1�
2
con

(k)

�
1 −

K + 1

T

�
+ T ×

K + 1

T

≤
4 log(2T2)

a1�
2
con

(k)
+ K + 2
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T∗ exists because C log(T) = o(T) for a fixed C ∈ (0,∞).

For all the arms, we define good events G1,k as in Eq. (3) where the estimator for g1 is con-
centrated enough. Let Er = ∩K

k=1
G1,k. On event Er, for t > T∗, set of plausible feasible arms K̂t 

will remain empty.
We showed in the previous subsection that ��

(
Er

)
≥ 1 −

K

T
. Hence, we can bound the 

probability of incorrectly setting the feasibility_flag as

Appendix B: Lower bounds

In this section, we will prove Theorems 3 and 4. To prove Theorem 3, we will first prove a 
result which lower bounds the pulls of non-optimal arms when the arm distributions belong to 
a general distribution class and the attributes are not necessarily means. Theorem 3 is proved 
in “Appendix B.1”, Theorem 4 is proved in “Appendix B.2”, and subsequent subsections pro-
vide the proof for the intermediate results.

The proof technique to derive lower bounds for the constrained bandit setting is very sim-
ilar to the technique used for standard stochastic bandit setting. We begin by stating some 
important results that will be used later in the proofs.

We first state the divergence decomposition lemma for the constrained bandit setting. The 
proof of the lemma is similar to the proof of divergence decomposition for the standard setting 
and we leave it to the reader to verify the result [see Lemma 15.1, Lattimore and Szepesvári 
(2020)].

Lemma 1  Consider two instances (�, �) and (��, �), where � and �′ belong to a space of 
distributions CK . Fix some policy � and let ℙ� = ℙ(�,�),� and ℙ�� = ℙ(�� ,�)� be the probability 
measures on the constrained bandit model induced by the T-round interconnection between 
� and (�, �) (respectively, � and (��, �) ). Then

We also state the high probability Pinsker inequality [see Theorem 14.2, Lattimore and 
Szepesvári (2020)].

Lemma 2  Let P and Q be probability measures on the same measurable space (Ω,F) and 
let A ∈ F  be an arbitrary event. Then,

where Ac = Ω∕A is the complement of A.

T >

K�
k=1

vk ≥

K�
k=1

⌈∗⌉4 log(2T
2)

a1𝛥
2
𝜏
(k)

.

��(�����������_���� = ����) ≤
K

T
for T > T∗.

(6)KL(ℙ� ,ℙ�� ) =

K∑
k=1

𝔼�

[
Nk(T)

]
KL(Pi,P

�
i
)

P(A) + Q(Ac) ≥
1

2
exp(−KL(P,Q)),
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B.1 Lower bounding the pulls of non‑optimal arms for the Gaussian case

We first state an instance-dependent lower bound for the expected pulls of non-optimal 
arms under consistent algorithms for any class of distributions C and a threshold � ∈ ℝ. 
For a feasible instance (�f , �), where �f ∈ C

K , define, for each non-optimal arm k, 

Similarly, for an infeasible instance (�i, �), where �� ∈ C
K , define, for each non-optimal 

arm k, 

Theorem 6  Let � be a consistent policy over the class of distributions C given the threshold 
� ∈ ℝ. Then for a feasible instance (�f , �), where �f ∈ C

K , for any non-optimal arm k, 

For an infeasible instance (�i, �), where �� ∈ C
K , for any non-optimal arm k, 

The bounds in “Appendix B.3” and “B.4” imply Theorem 6. The main message here 
is that the ’hardness’ of a non-optimal arm k, which dictates the minimum number of 
pulls required on average to distinguish it from the optimal arm, is characterized by the 
reciprocal of the smallest perturbation in terms of KL divergence KL(�(k), ⋅) needed to 
‘make’ the arm optimal.

Now, we will use Theorem 6 to prove Theorem 3.
Consider two d-dimensional Gaussian distribution �1 and �2 with means �1 and �2, 

and covariances �1 and �2. The KL divergence between these distributions is given by

This is easy to derive but one can check Section 9 of these notes.
Let G be the class of 2-dimensional gaussian distributions with the covariance matrix 

� = diagonal(1∕2a0, 1∕2a1). Let attribute g0 be the mean of the first dimension, and g1 be 
the mean of the second dimension. Let �1, �2 ∈ G, then using Eq. 7, the KL divergence 
between �1 and �2 is given by

With C = G and attributes as defined in Theorem  3, we can use Eq.  8 to calculate 
�f (�f (k), g∗

0
, �, C) and �i(�i(k), g∗

1
, C). In particular, for a feasible but suboptimal arm k,  we 

have

𝜂f (𝜈f (k), g∗
0
, 𝜏, C) = inf

𝜈�(k)∈C
{KL(𝜈f (k), 𝜈�(k)) ∶ g0(𝜈

�(k)) < g∗
0
, g1(𝜈

�(k)) ≤ 𝜏}.

𝜂i(𝜈i(k), g∗
1
, C) = inf

𝜈�(k)∈C
{KL(𝜈i(k), 𝜈�(k)) ∶ g1(𝜈

�(k)) < g∗
1
}.

lim inf
T→∞

��

[
Nk(T)

]
log(T)

≥
1

�f (�f (k), g∗
0
, �, C)

,

lim inf
T→∞

��

[
Nk(T)

]
log(T)

≥
1

�i(�i(k), g∗
1
, C)

.

(7)KL(�1, �2) = log

(|�2|0.5
|�1|0.5

)
+

tr(�−1
2
�1) − tr(�−1

1
�1) + (�1 − �2)

T�−1
2
(�1 − �2)

2
.

(8)KL(�1, �2) = a0(g0(�1) − g0(�2))
2 + a1(g1(�1) − g1(�2))

2.
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for a deceiver arm k,  we have

and for an infeasible arm k which is not a deceiver, we have

Finally, for a non-optimal arm k for an infeasible instance, we have

Using the results above and combining them with Theorem 6, we get Theorem 3.

B.2 Disambiguating between feasible and infeasible instances

Consider a feasible instance (�, �) where Arm 1 is the only feasible arm and therefore, the 
only optimal arm. Let g†

1
= mink∈{2,…,K} g1(k) be the minimum value of g1 for the set of 

infeasible arms. For Arm 1 we define

Consider another instance (��, �) where ��(j) = �(j) for j ≠ 1 and ��(1) ∈ C such that 
KL(�(1), ��(1)) ≤ d1 + � and g1(𝜈�(1)) > g

†

1
, where d1 = �(�(1), g†

1
, C). Using divergence 

decomposition lemma, we have KL(ℙ�� ,ℙ�) ≤ 𝔼��

[
N1(T)

]
(d1 + �) and by using Lemma 2 

we have

Let event A = {feasibility_flag = false}. Taking logarithm on both sides and rear-
ranging gives

RHS goes to zero as T goes to infinity. This follows from the definition of consistency and 
the fact that for instance (��, �), arm 1 is suboptimal. Hence, we have

This shows that at least for one of the instances, the probability of incorrect detection 
decays slower than exponential in T.

B.3 Feasible instances

Consider a class of distributions C and a threshold � ∈ ℝ. For a feasible instance (�f , �), 
where �f ∈ C

K , define, for each non-optimal arm k, 

�f (�f (k), g∗
0
, �, C) = a0�

2(k),

�f (�f (k), g∗
0
, �, C) = a1[�� (k)]

2,

�f (�f (k), g∗
0
, �, C) = a0�

2(k) + a1[�� (k)]
2 ≤ 2max(a0�

2(k), a1[�� (k)]
2).

�i(�i(k), g∗
1
, C) = a1[�con(k)]

2.

𝜂(𝜈(1), g†
1
, C) = inf

𝜈�(1)∈C
{KL(𝜈�(1), 𝜈(1)) ∶ g1(𝜈

�(1)) > g
†

1
}.

ℙ�(A) + ℙ�� (A
c) ≥

1

2
exp(−KL(ℙ�� ,ℙ�)) ≥

1

2
exp(−𝔼��

[
N1(T)

]
(d1 + �)).

−
log(ℙ�(A) + ℙ�� (A

c))

T
≤

log(2) + (d1 + �)𝔼��

[
N1(T)

]
T

lim sup
T→∞

−
log(ℙ�(A) + ℙ�� (A

c))

T
≤ 0
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We will show that

Proof  Let dk = �f (�f (k), g∗
0
, �, C) and fix any 𝜀 > 0. Let (��, �) be a bandit instance with 

�� ∈ C
K , and ��(j) = �f (j) for j ≠ k be such that KL(�f (k), ��(k)) ≤ dk + �, g0(𝜈�(k)) < g∗

0
, 

and g1(��(k)) ≤ �. A distribution like ��(k) exists because of the definition of dk. Note that 
arm k is the unique optimal arm for bandit instance �′. Using divergence decomposition 
lemma, we have KL(ℙ�f ,ℙ�� ) ≤ 𝔼�

[
Nk(T)

]
(dk + �) and by using Lemma 2 we have

Let event A = {Nk(T) > T∕2}.

Rearranging and taking the limit inferior we get

The last equality follows from the definition of consistency. As an arm which is suboptimal 
or infeasible or both is played only o(Ta) times in expectation for all a > 0 , there exists a 
constant Ca for large enough T such that ��f

�
Nk(T)

�
+
∑

j≠k ���

�
Nj(T)

�
) ≤ CaT

a. This gives

As this holds for all a > 0 and � was an arbitrary constant greater than zero, we have the 
result. 	�  ◻

B.4 Infeasible instance

For an infeasible instance (�i, �), where �� ∈ C
K , define, for each non-optimal arm k, 

𝜂f (𝜈f (k), g∗
0
, 𝜏, C) = inf

𝜈�(k)∈C
{KL(𝜈f (k), 𝜈�(k)) ∶ g0(𝜈

�(k)) < g∗
0
, g1(𝜈

�(k)) ≤ 𝜏}.

lim inf
T→∞

��

[
Nk(T)

]
log(T)

≥
1

�f (�f (k), g∗
0
, �, C)

.

ℙ�(A) + ℙ�� (A
c) ≥

1

2
exp(−KL(ℙ�f ,ℙ�� )) ≥

1

2
exp(−𝔼�f

[
Nk(T)

]
(dk + �)).

𝔼�f

[
Nk(T)

]
+
∑
j≠k

𝔼��

[
Nj(T)

]
≥

T

2
(ℙ�f (A) + ℙ�� (A

c)),

≥
T

4
exp(−𝔼�f

[
Nk(T)

]
(dk + �)).

lim inf
T→∞

��f

�
Nk(T)

�
logT

≥
1

dk + �
lim inf
T→∞

log

�
T

4(�
�f [Nk(T)]+

∑
j≠k ���

�
Nj(T)

�
)

�

log T

=
1

dk + �

�
1 − lim sup

T→∞

log(��f

�
Nk(T)

�
+
∑

j≠k ���

�
Nj(T)

�
)

logT

�

=
1

dk + �
.

lim sup
T→∞

log(��f

�
Nk(T)

�
+
∑

j≠k ���

�
Nj(T)

�
)

logT
≤ lim sup

T→∞

Ca + a log(T)

log(T)
= a.
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We will show that for arm k

Proof  Let dk = �i(�i
k
, g∗

1
, C) and fix any 𝜀 > 0 . Let (��, �) be a bandit instance with 

��(j) = �i(j) for j ≠ k and ��(k) ∈ C such that KL(�i(k), ��(k)) ≤ dk + � and g1(��(k)) ≤ g∗
1
. 

A distribution like ��(k) exists because of the definition of dk. Observe that the instance 
(��, �) could be a feasible instance. Nonetheless, arm k is the unique optimal arm irrespec-
tive of the feasibility of instance (��, �). Using divergence decomposition lemma, we have 
KL(ℙ�i ,ℙ�� ) ≤ 𝔼�i

[
Nk(T)

]
(dk + �) and by using Lemma 2 we have

Let event A = {Nk(T) > T∕2}.

Rearranging and taking the limit inferior we get

The last equality follows from the definition of consistency. As �i is an infeasible instance, 
arm k is suboptimal and is played only o(Ta) times in expectation for all a > 0. For instance 
�′, arm k is the unique optimal arm. Therefore, all the other arms are played only o(Ta) 
times in expectation for all a > 0. Hence, there exists a constant Ca for large enough T such 
that ��i

�
Nk(T)

�
+
∑

j≠k ���

�
Nj(T)

�
) ≤ CaT

a. This gives

As this holds for all a > 0 and � was an arbitrary constant greater than zero, we have the 
result. 	�  ◻

𝜂i(𝜈i
k
, g∗

1
, C) = inf

𝜈�(k)∈C
{KL(𝜈i

k
, 𝜈�(k)) ∶ g1(𝜈

�(k)) < g∗
1
}.

lim inf
T→∞

��

[
Nk(T)

]
log(T)

≥
1

�i(�i
k
, g∗

1
, C)

ℙ�i (A) + ℙ�� (A
c) ≥

1

2
exp(−KL(ℙ�i ,ℙ�� )) ≥

1

2
exp(−𝔼�i

[
Nk(T)

]
(dk + �)).

𝔼�i

[
Nk(T)

]
+
∑
j≠k

𝔼��

[
Nj(T)

]
≥

T

2
(ℙ�i (A) + ℙ�� (A

c)),

≥
T

4
exp(−𝔼�i

[
Nk(T)

]
(dk + �)).

lim inf
T→∞

��i

�
Nk(T)

�
log T

≥
1

dk + �
lim inf
T→∞

log

�
T

4(�
�i [Nk(T)]+

∑
j≠k ���

�
Nj(T)

�
)

�

logT

=
1

dk + �

�
1 − lim sup

T→∞

log(��i

�
Nk(T)

�
+
∑

j≠k ���

�
Nj(T)

�
)

log T

�

=
1

dk + �
.

lim sup
T→∞

log(��i

�
Nk(T)

�
+
∑

j≠k ���

�
Nj(T)

�
)

logT
≤ lim sup

T→∞

Ca + a log(T)

log(T)
= a.
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