
Vol.:(0123456789)

Machine Learning (2023) 112:571–610
https://doi.org/10.1007/s10994-022-06290-w

1 3

Efficient learning of large sets of locally optimal classification
rules

Van Quoc Phuong Huynh1 · Johannes Fürnkranz1 · Florian Beck1

Received: 14 October 2021 / Revised: 8 November 2022 / Accepted: 29 November 2022 /
Published online: 23 January 2023
© The Author(s) 2023

Abstract
Conventional rule learning algorithms aim at finding a set of simple rules, where each rule
covers as many examples as possible. In this paper, we argue that the rules found in this
way may not be the optimal explanations for each of the examples they cover. Instead,
we propose an efficient algorithm that aims at finding the best rule covering each train-
ing example in a greedy optimization consisting of one specialization and one generaliza-
tion loop. These locally optimal rules are collected and then filtered for a final rule set,
which is much larger than the sets learned by conventional rule learning algorithms. A new
example is classified by selecting the best among the rules that cover this example. In our
experiments on small to very large datasets, the approach’s average classification accuracy
is higher than that of state-of-the-art rule learning algorithms. Moreover, the algorithm is
highly efficient and can inherently be processed in parallel without affecting the learned
rule set and so the classification accuracy. We thus believe that it closes an important gap
for large-scale classification rule induction.

Keywords Rule learning · Classification · Machine learning · Data mining

1 Introduction

In the wake of the success of machine learning algorithms that learn inscrutable black-
box models—most notably deep neural networks—explainable and interpretable models
have gained again in importance. A popular line of work, pioneered by the algorithms

Editors: Krzysztof Dembczynski and Emilie Devijver.

 * Van Quoc Phuong Huynh
 vqphuynh@faw.jku.at

 Johannes Fürnkranz
 juffi@faw.jku.at

 Florian Beck
 fbeck@faw.jku.at

1 Institute for Application Oriented Knowledge Processing (FAW), Johannes Kepler University Linz,
Altenberger Straße 66B, 4040 Linz, Austria

http://orcid.org/0000-0002-7972-206X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-022-06290-w&domain=pdf

572 Machine Learning (2023) 112:571–610

1 3

Lime (Ribeiro et al., 2016) and Shap (Lundberg & Lee, 2017) is concerned with finding
local white-box explanations that approximate the learned global black-box model in
a given neighborhood of an example. Lore (Guidotti et al., 2018) is such an approach,
which has a particular focus on rule-based explanations.

However, there is also considerable criticism towards this approach. Most notably,
Rudin (2019) argues that instead of devoting more efforts to explaining black-box mod-
els, it might be preferable to focus on improving algorithms that learn white-box models
in the first place, most notably rule learning algorithms. Consequently, several new rule
learning algorithms have recently emerged, which we will briefly review in Sect. 2.4.
In fact, as the extracted local white-box models are typically not perfectly aligned with
the underlying black-box models, not even in their defined local neighborhood, it is not
entirely clear that such approximations can serve as a valid explanation. Algorithms
such as GLocaLX (Setzu et al., 2021) or TreeeXpLainer (Lundberg et al., 2019) aim
at constructing global white-box models out of local explanations, but these models
are typically less accurate than their underlying black-box models, and the question of
whether they outperform white-box models that have been directly learned from data is,
in our opinion, still open.

In this paper, we argue that one of the key insights that result from local explanation
algorithms like Lore is that each example gets its own individual explanation. This prop-
erty has, so far, hardly been exploited in predictive rule learning, which typically try to find
a concise set of rules that explain the examples with as few rules as possible. A notable
exception is the harmony algorithm (Wang & Karypis, 2006), which takes an instance-
centric view in that it aims at finding the best classification rule for each example. More-
over, historically, the first rule learning algorithms were example-based: AQ (Michalski,
1969, 1973) selected a random example and found the best rule that covers this example.
However, mostly for computational reasons, this was not repeated for every possible exam-
ple, but all examples that could be explained by the same rule were removed before the
selection of the next example. CN2 (Clark & Niblett, 1989) was among the first algorithms
that explicitly changed this strategy, from finding the best rule for a given example to find-
ing a rule that explains as many examples as possible. Note that for any given rule evalua-
tion measure, the rule found by such a strategy is not necessarily the best rule for any of the
examples that it covers.

Motivated by these observations, we propose a rule learning algorithm, named Lord
(Locally Optimal Rules Discoverer), that attempts to find the best rule for every training
example. It does that very efficiently, using N-lists (Deng & Lv, 2015), a state-of-the-art
data structure for frequent itemsets mining. From this data structure, for each training
example, the best rule covering this example is extracted using greedy search. The found
locally optimal rules are collected and filtered for a rule-based classifier, and new examples
are classified by selecting the best of the covering rules in the classifier. While the found
rule may still be a local optimum for covering an example, we nevertheless claim that the
objective of finding the best rule for each example already makes a difference in compari-
son to the common goal of finding a simple rule that is good for as many examples as pos-
sible, even if the found rule is maybe not the globally best. Our experiments demonstrate
that the algorithm compares well to state-of-the-art rule learning algorithms, not only in
terms of accuracy, but also with respect to efficiency, which we demonstrate by evaluating
it on very large datasets.

The remainder of the paper is organized as follows. Section 2 provides a brief founda-
tions and survey on recent work of rule learning. Section 3 presents our approach which
is then followed up with experiments and discussions in Sect. 4 and conclusion in Sect. 5.

573Machine Learning (2023) 112:571–610

1 3

2 Locally optimal rules

In this section, we will briefly recall the foundations of rule learning and our notational
conventions (Sect. 2.1), recall the basic principles of classic rule learning algorithms such
as aQ and cn2 (Sect. 2.2), which serve as the basis for the key idea behind our approach,
which will be introduced in Sect. 2.3. This section concludes with a brief review of rele-
vant work in inductive rule learning (Sect. 2.4), before we turn our attention to our efficient
implementation of the Lord algorithm in the next section.

2.1 Problem definition and notational conventions

The problem of rule learning assumes a number of labeled training examples
E = {e1,… , en} = {⟨x1, y1⟩,… , ⟨xn, yn, ⟩} . Each training example e = ⟨x, y⟩ con-
sists of an instance xi with its corresponding label yi ∈ C , where C is a nominal
class attribute. The instances xi are characterized with a set F of k binary features, i.e.,
xi = ⟨fi,1,… , fi,k⟩ ∈ {0, 1}k.

A rule r maps a subset Fr ⊂ F of the features to a label y ∈ C , i.e., it has the form

with the semantics that every example x , for which the features in Fr ⊂ F (the body of the
rule) are present (i.e., have the value 1), should be assigned the label y.1

Definition 1 (Rule Coverage) A rule r is said to cover an example x iff Fr ⊂ F
x
 , where

Fr ⊂ F are the conditions in the body of the rule, and F
x
⊂ F are the features of example x .

We denote the set of examples in E that are covered by the rule r with Er ⊂ E.

The learning problem consists of finding a set of rules R, which can be used to assign
the correct labels to new, unseen data. Examples assigned to the correct class are called
true positives and those assigned to a different class false positives.

In the following, we will assume tabular datasets that are based on a set of m cate-
gorical attributes Ai , i ∈ {1,… ,m} , each of which has a fixed set of possible values aij ,
j ∈ {1,… , |Ai|} . Note that this assumption is not crucial for the key idea of locally opti-
mal rule induction, but it will be exploited by the efficient implementation introduced in
Sect. 3. The set of features is then defined via all possible selectors.

Definition 2 (Selector) A selector sij is a single condition represented by Ai = aij which
selects examples (data rows) having value aij for attribute Ai from the input dataset.

The term selector goes back to Michalski (1973, 1983), who used it as a generalization
of any type of comparison of an attribute value with a constant. It can be thought of as a
binary feature, similar to the notion of an item in frequent pattern mining, but maintaining
the association to its defining attribute Ai . In the following, we will nevertheless often use
these two terms interchangeably.

(1)r ∶ Fr → y

1 Without loss of generality, we assume that features cannot be negated. If necessary, we can model nega-
tion by including for each possible feature also its negation into the feature set F.

574 Machine Learning (2023) 112:571–610

1 3

For simplicity, we simply ignore missing values, i.e., no selector will cover such a value,
but other, more elaborate techniques are possible (Wohlrab & Fürnkranz, 2011). Numerical
attributes can be handled by discretization (García et al., 2013).

2.2 Learning rule sets

Covering (aka separate-and-conquer) rule learning algorithms learn one rule at a time.
For doing so, it searches for a rule that optimizes some quality criterion. When a new
rule is found, all covered examples which satisfy all conditions in the body of the rule are
removed from the training set, and the rule learning continues with another rule until all
training examples are covered or the given stopping criteria are met. The difference among
algorithms in this family is mainly in the way a new rule is found. This crucially depends
on the search strategy (e.g., hill-climbing, beam search, or exhaustive search), and the heu-
ristic criterion h(.) that is used for evaluating rules (Fürnkranz, 1999).

E,F,h

Historically, aQ (Michalski, 1969) can be considered as the ancestor of this family of
algorithms. It proceeds by selecting a random example that is not yet covered by any of the
previously found rules, and search the space of all generalizations of this rule using a top-
down beam search for finding the best rule. An abstract pseudo-code of the general idea
behind aQ is shown in Algorithm 1. Note that line 5 aims at finding the rule that optimizes
the heuristic function h(.) for a randomly selected seed example.2 However, once such an
optimal rule has been found for the example x , all examples covered by this rule will also
be classified using this rule, and are thus removed from the training set (line 7). Note that
for any such example x′ ≠ x , a better rule than r may exist, but will not be searched unless
it also happens to cover x . So, in summary, aQ strives for finding optimal rules for some of
the given training examples, and uses those for classifying all other examples to which they
apply, regardless of whether they are the optimal rule for these examples or not.

cn2 (Clark & Niblett, 1989) took this one step further by combining the covering
loop of AQ with ideas from decision tree learning, which are optimized collectively
over all examples. The resulting algorithm is sketched as Algorithm 2. Instead of opti-
mizing rules for individual examples, the algorithm strives for finding the best overall

2 The fact that AQ uses greedy search to approximate this optimum is not relevant to our argument. The
inductive logic programming system Progol (Muggleton, 1995), e.g., uses essentially the same idea in a
first-order logic setting, but uses an efficient exhaustive best-first search to find the optimum.

575Machine Learning (2023) 112:571–610

1 3

rule for the current set of training examples. The crucial difference is that no seed exam-
ples are selected (line 4 of Algorithm 1), and the best rule is searched over all possible
rules that can be formed from all possible features and all possible classes (compare
line 4 of Algorithm 2 to line 5 of Algorithm 1). Again, the details of the algorithm differ
(e.g., later many of its successors optimize rules for each individual class y ∈ C instead
of optimizing over all classes, and the search for the best rule is in many cases greedy),
but the key idea is to find a generally good rule, as opposed to finding the optimal rule
for each individual example.

E,F,h

This strategy is essentially still in use by many state-of-the-art rule learning algo-
rithms. Most notably, the well-known ripper rule learning algorithm (Cohen, 1995) fol-
lows this strategy with some important enhancements. In particular, it does not solely
rely on the choice of a suitable heuristic for fighting overfitting, but employs additional
pruning and optimization techniques. Inspired by incremental reduced error pruning
(Fürnkranz and Widmer, 1994), ripper effectively deals with the over-fitting problem by
simplifying rules on a separate pruning set, and with additional loops of post-process-
ing for optimizing a rule set. Particularly, the key idea is to examine whether or not to
replace one rule from the previously learned rule set by a revised one which is formed
by a growth and then a pruning phase aiming at reducing error of the entire rule set. rip-
per can still be considered the state-of-the-art in inductive rule learning, and is hard to
beat in both predictive accuracy and the simplicity of the learned rule sets.

In general, the drawback of this family of techniques is that later rules are found just
based on gradually reduced parts of the training set, resulting in that rules are discov-
ered on insufficient statistic information. Also, the inherent sequence in the rule search
makes the techniques harder to tackle big datasets which usually require to be processed
in parallel.

2.3 Locally optimal rule learning

As we have seen in the previous section, common rule learning algorithms strive for find-
ing rules that classify many examples well, as opposed to finding rules that are optimal for
each individual example. Locally optimal rule discovery, as proposed in this paper, aims
at solving this problem by reverting back to the basic AQ algorithm. But instead of being
satisfied with finding the best rule for some of the examples, we compose an ensemble of
rules by finding the best rule for each training example. The resulting basic idea is sketched
in Algorithm 3.

576 Machine Learning (2023) 112:571–610

1 3

E,F,h

Note that there is no covering or removal of examples (as in line 7 of Algorithm 1 or line 6
of Algorithm 2), or selection of seed examples (as in line 4 of Algorithm 1). Instead, one
optimal rule is learned for each individual example. The resulting rule set thus, in principle,
consists of a set of rules, each being optimal locally for one of the training examples.

This basic intuitive idea has some obvious disadvantages. Most notably, it seems to be very
inefficient to search for the best rule for each example. To that end, we will propose an effi-
cient search technique, based on ideas from association rule discovery, which is able to greed-
ily find a best rule for each example in very much the same way as conventional rule learn-
ers like cn2 or ripper, but, by exploiting efficient data structures, can strive for finding the
optimum rule for every example instead of only a small subset of rules. Our experiments will
demonstrate that the resulting algorithm is able to deal with very large datasets, which cause
problems for state-of-the-art rule learning algorithms.

The other key problem is that the resulting rule set will be considerably larger than the
rule sets found by conventional rule learning algorithms. We note in passing that the size of
the rule set is not necessarily the same as the size of the example set, because the same rule
may be optimal for multiple examples, and will consequently only be added once to the set.
We will also introduce some mild pruning techniques for further reducing the size of the rule
set. Nevertheless, the interpretability of the remaining, large rule sets is still problematic.
However, we argue that this does not hold for the individual rules. Unlike, e.g., large rule sets
that are derived from random forests, our rule sets consist of locally optimal rules, which are
reminiscent of locally optimal explanations which have been recently proposed in explainable
machine learning. Algorithms such as Lime (Ribeiro et al., 2016) or Shap (Lundberg & Lee,
2017) strive to find local white-box explanations that approximate a learned global black-box
model in a given neighborhood of an example. In particular, Lore (Guidotti et al., 2018) learns
rule-based explanations from the data. While each of the found rules can be used for explain-
ing a single example, collectively, these explanations cannot be considered as an interpretable,
global explanation for the domain, and substantial efforts are required to extract an interpreta-
ble global rule-based model from local rule-based explanations (Setzu et al., 2021). While we
do not explicitly address the issue of interpretability in this paper, our approach was motivated
by these algorithms. The meaning of the entire rule set will be hard to grasp, but the individual
rules may serve as explanations for the examples for which they are optimal.

2.4 Related work

In this section, we briefly review additional work in inductive rule learning and relate it to
our approach. It is not necessary for understanding the key contribution of this paper, the

577Machine Learning (2023) 112:571–610

1 3

quick reader may safely skip forward to Sect. 3, where we introduce our efficient imple-
mentation of the Lord algorithm.

Rule-based methods are among the popular technique classes in data mining and
machine learning (Fürnkranz et al., 2012). The methods generally can be categorized into
two types, descriptive and predictive rule learning that are based on the purpose of use
of discovered rules. Descriptive rule learning aims at discovering patterns catching rela-
tions between a target variable and a set of explaining ones known as subgroup discovery
(Klösgen, 1996; Atzmüller, 2015), or co-occurrences of sets of items with other sets of
items known as association rule discovery (Agrawal et al., 1993; Hipp et al., June 2000).
Predictive rule learning tries to generalize the training data into a collection of rules that
can make predictions for new examples. While descriptive rule learning aims at statistical
validity of the found rules, predictive rule learning focuses on predictive performance. Our
method introduced here belongs to the category of predictive rule learning, which can be
discriminated into two main families, rule set construction, where rules are incrementally
added to a target theory, and rule set selection, where first a large set of rules is learned
which is then filtered into a small set of classification rules.

2.4.1 Covering algorithms

Covering algorithms, aka separate-and-conquer learning, construct a rule set by learning
one rule at a time, removing all covered examples, and repeating until all examples are
covered. The aQ, cn2, and ripper algorithms discussed above are their main proponents,
but the family of algorithms is very large (Fürnkranz, 1999). We note that the covering
approach may be viewed as a special case of additive learning algorithms such as boosting,
where the weights of the examples are not restricted to be 1 (uncovered) or 0 (covered),
but can take arbitrary values. This approach was pioneered by algorithms such as Lri
(Weiss and Indurkhya, 2000) and SLipper (Cohen and Singer, 1999), the general framework
of gradient boosting for rule learning was most clearly defined in ender (Dembczyński
et al., 2010). Recent additions to this family include Boomer (Rapp et al., 2020), which
generalizes this approach to learning multi-label rules, and the algorithm of Boley et al.
(2021), which replaced the greedy search for the best addition to the rule set with an effi-
cient exhaustive search.

2.4.2 Associative classification

Most prominent among the rule set selection techniques is associative classification (see,
e.g., (Liu et al., 1998, 2000; Li et al., 2001; Yin and Han, 2003)). These algorithms gener-
ally search for association rules with target classes in their head, which are then filtered by
certain pruning conditions or heuristic measurements to form a predictive rule set for the
classification. Note that this filtering is often essentially equivalent to a covering loop. For
example, cBa sorts all rules according to a heuristic h(.), and then selects one rule at a
time until all examples are covered. A common disadvantage of this family of algorithms
is that the classification performance depends strongly on the input parameter support. In
principle, smaller supports provide higher classification accuracy, but often the number of
patterns and so the time complexity and found rules for some datasets explode as well.
The diversity in the number of frequent patterns among datasets makes it hard to select an
appropriate support for the trade-off between the classification performance and calcula-
tion resources.

578 Machine Learning (2023) 112:571–610

1 3

ddpmine (Cheng et al., 2008) uses a modified version of Fp-GrowTh to search for a set
of discriminative patterns, as measured by information gain. The algorithm applies a prun-
ing method in which searching on a conditional database can be ignored if the upper bound
information gain from the conditional database is not greater than the information gain
of the currently best frequent itemset. All examples supporting the result itemset will be
removed from the current FP-tree, and another iteration continues until the current FP-tree
is empty. The resulting discriminative itemsets can then be used as input features for train-
ing a subsequent classifier, such as a support vector machine. It remains unclear whether
they can also be used as a stand-alone rule set.

The harmony algorithm (Wang & Karypis, 2006) is quite similar to our approach in
that it shares the general idea of finding the best rule for each training example. However,
while our work is based on ideas in classical classification rule learning, harmony is firmly
rooted in association rule discovery. At its core, harmony exhaustively enumerates all
possible rules that satisfy a given minimum support threshold, and checks for each rule
whether it has a higher confidence than the current best rule for each of its covered exam-
ples. By introducing several effective pruning methods, harmony has shown efficient exe-
cution and higher classification accuracy than the covering algorithm FoiL (Quinlan, 1990)
and the associative classification algorithm cpar (Yin and Han, 2003). However, like all
associative classification algorithms, the performance of harmony crucially depends on
the chosen support threshold, which essentially defines a trade-off between the optimiza-
tion quality and the efficiency of algorithm: lower support values will lead to an expo-
nential growth in the search space that is covered exhaustively whereas higher minimum
support values may miss optimal rules that have a low coverage (the importance of low-
coverage rule was first observed by Holte et al. (1989)). Thus, harmony copes with the
exponential size of the hypothesis space by reducing it with a suitable choice of the mini-
mum support threshold and finding instance-based global optima in this reduced space,
whereas our approach, Lord, deals with the complexity by replacing the exhaustive search
for the global optimum with an efficient greedy search for a local optimum. Obviously,
both approaches may miss the globally best rule, but in very different ways, and it will
eventually depend on the domain which one is more effective. However, we argue that
Lord is considerably more flexible, in that it, e.g., allows for easy parallelization, as the
search of the optimum for each example is independent of all other examples, or facilitates
the use of arbitrary rule learning heuristics whereas harmony’s pruning heuristics depend
on the use of support and confidence, which are not particularly well suited for classifica-
tion rule learning (Fürnkranz & Flach, 2005).

2.4.3 Modern rule learning algorithms

In the wake of the success of deep learning, some efforts also went into the design of effi-
cient rule learning algorithms that optimize a given loss function. Many recent approaches
(Dash et al., 2018; Su et al., 2016; Wang et al., 2017; Wang and Rudin, 2015; Yang et al.,
2017; Letham et al., 2015) limit their work to binary classification rules, but instead of
finding rules based on heuristic measures, they optimize the learned rule collection (set or
list) according to an objective function with a search procedure aiming at finding a sparse
rule set. Because the proposed optimization methods are computationally expensive, and
the size of the search spaces explodes, they often operate on truncated search spaces in
a greedy fashion. This loses the guarantee that the output rule collections are globally

579Machine Learning (2023) 112:571–610

1 3

optimal. Also, the search for Boolean rules can take very long on large datasets, which lim-
its their applicability to big data.

idS (Lakkaraju et al., 2016) forms a rule set (a decision set in their terminology) by
sampling on a candidate rule space corresponding to the cross product between the set of
frequent itemsets and the set of classes. A candidate rule is selected based on optimizing
a joint objective function that combines multiple criteria such as accuracy, rule count, rule
length, coverage, etc. for the learned rule set. Like idS, other methods are also related to
associative classification, but use alternative techniques for searching for an optimized rule
set (or list) from pre-mined rules. BrL (Letham et al., 2015) produces a Bayesian posterior
distribution over permutations of a set of Bayesian association rules, each of which defines
a prior distribution over classes for its rule head rather than a single class. From this, deci-
sion lists with high posterior probability are selected to classify new examples. Its succes-
sor, SBrL (Yang et al., 2017) further improves BrL’s computational efficiency. Highly
similar to BrL, FrL (Wang and Rudin, 2015) also learns a rule list. BrS (Wang et al.,
2017) searches for an optimal rule set by first generating association rules from positive
examples w.r.t. one out of two classes of the target binary attribute. To reduce the num-
ber of candidate rules, the association rules are filtered with some criteria such as apply-
ing an upper bound on rule length, ensuring that the false positive rate is smaller than the
true positive rate, or maximizing information gain. A simulated annealing algorithm with a
prior probability-based objective function is applied to search for an optimal rule set in the
space of subsets from the candidate rules.

The approach by Su et al. (2016) applies integer programming to formulate a Hamming-
distance-based objective function and performs block coordinate descent or linear pro-
gramming relaxation to search for an optimized Boolean rule set. In a similar way, the cG
rule learning algorithm (Dash et al., 2018) finds a Boolean rule set which minimizes the
sum of the number of positive examples classified incorrectly and the number of clauses
(rule bodies) in the space of all possible clauses covering negative examples. The com-
plexity of the resulting rule sets, which is quantified as the sum of length of the rules, is
bounded by a given input parameter to control the complexity and avoid over-fitting. Since
this approach is only suitable for very small datasets, column generation (Barnhart et al.,
1998) is used for tackling larger datasets, which allows to generate only a small subset of
all possible rules explicitly.

All these recent techniques have in common that they strive for finding a minimal rule
set, for the sake of interpretability. As argued at the end of the previous section, this is not
our main objective: instead we aim for high predictive accuracy and scalability to large
datasets. For this, we also embark on ideas from association rule learning, which are dis-
cussed in the next section.

3 The LORD algorithm

In this section, we describe Lord, our efficient implementation of locally optimal rule dis-
covery, which allows us to find the best rule for each training example.

Like many other state-of-the-art algorithms (cf. Sect. 2.4), Lord draws upon some ideas
from association rule learning. In particular, we make use of PPC-trees and N-lists, which
can efficiently summarize counts of conjunctive expressions. N-lists are a data structure
which was originally proposed to efficiently discover frequent itemsets from a dataset of
transactions via the state-of-the-art algorithm prepoST+ (Deng et al., 2012; Deng & Lv,

580 Machine Learning (2023) 112:571–610

1 3

2015). We adapt the N-list structure to tabular datasets with attributes Ai , i ∈ {1,… ,m} by
using selectors as features, and to classification problems with the last attribute Am as the
nominal class attribute. We also assume that the first m − 1 predictive attributes Ai , (i < m)
are nominal, i.e., numeric attributes will be discretized beforehand, but can be missing
(value nuLL).

In the following, we describe our adaptation of PPC-trees (Sect. 3.2) and N-lists
(Sect. 3.3) to a classification setting. In Sect. 3.4, we show how these structures can be
used for implementing an efficient rule learning algorithm, which combines advanced
ideas from algorithms such as cn2 or ripper to learn, prune, and optimize large rule sets,
for which we present an efficient representation in Sect. 3.5. All introduced definitions and
concepts are illustrated with an example in Sect. 3.6 and Fig. 1. Finally, the complexity of
the algorithm is analyzed in Sect. 3.7.

3.1 Initialization

In a first pass, the dataset is scanned to count the frequency of all distinct selectors. Selec-
tors from the predictive attributes (group 1) and those from the class attribute (group 2)
are sorted locally in the ascending order of their frequencies. The sorted group 2 is then
appended to the end of sorted group 1, yielding a global order O of selectors. We use sym-
bol ≺ to express the order relationship between two selectors, e.g. s1 ≺ s2 means s1 precedes
s2 in the order O. We assume that sets of selectors will always be ordered according to O.

Definition 3 (Selector-set) A selector-set is a set of selectors in which selectors are in a
predefined order O and there are no two selectors from the same attribute. A k-selector-set
s1s2 ⋯ sk is a selector-set having k selectors in the order O, s1 ≺ s2 ≺ ⋯ ≺ sk.

The selected order O of selectors does not influence the correctness of calculating the
support count of selector-sets, but it will affect the memory efficiency of the PPC-tree and
N-lists (presented in the next sections). Because the support count of a rule is always cal-
culated after the support count of the rule body, it is helpful to place selectors of group 1
before selectors of group 2 so that the support count calculations for the rule can utilize the
previously computed results for the rule body (cf. also Definition 7 below).

3.2 PPC‑trees

In a second pass, the dataset is scanned to construct the so-called PPC-tree structure, a
prefix tree. The PPC-tree consists of so-called PPC-nodes, which contain a distinct selec-
tor that it associates, as well as frequency information which accumulates the number of
examples (selector-sets) passing through the node when they are inserted into the tree.

Definition 4 (PP-code and PPC-node) A PPC-node stores the following components:

– a selector to which the node is associated
– a PP-code ⟨pre, post⟩ , which encodes in what place the node is encountered in a pre-

order or post-order traversal of the tree respectively
– a frequency count (freq), which encodes how many examples pass through this node in

the tree

581Machine Learning (2023) 112:571–610

1 3

In addition, it also needs to store pointers to its parent and children nodes.

Fig. 1 A running example from an example dataset to the result rule set

582 Machine Learning (2023) 112:571–610

1 3

The PPC-tree is built up incrementally. Each example e is represented with a sorted
selector-set Se . Note that it is possible that |Se| < m because e can contain nuLL values for
some attributes, which are simply ignored. From the tree root, selectors in Se are inserted
sequentially into the tree structure in the reverse order of O. When inserting a selector at
a tree node, the child node registering the same selector is found and the frequency of the
child node is increased by one. If there is no child node for the next selector, a new child
node registering this selector is created with frequency initialized at 1. The inserting pro-
cess continues with the next selector and the current node changed to the child node.

After all examples have been already inserted into the tree, the PP-codes are computed
from a pre-order and post-order traversal of the tree. These allow to efficiently determine
whether PPC-nodes are on the same path or not, using the following property of PP-codes
(Deng and Lv 2015):

Property 1 Given two N-nodes N1 and N2 with their respective PP-codes ⟨pre1, post1⟩ and
⟨pre2, post2⟩ , N2 is an ancestor of N1 (and thus N1 is a descendant of N2) iff pre2 < pre1 and
post2 > post1.

We will denote the sets of ancestors and descendants of a node N with ANC(N) and
DESC(N) , respectively.

PPC-trees are similar to FP-trees (Han et al., 2004), which have also been adapted to
supervised learning (Atzmüller and Puppe, 2006). Both are prefix trees constructed from a
list of items ordered in increasing order of their global frequencies, with a similar way of
inserting an example into the trees. Nodes of both trees contain an associated item and a
frequency count. However, while each node of a PPC-tree contains a PP-code that allows
to determine whether two nodes stay in the same path without looking at the tree structure,
each node of an FP-tree contains a link to the next node of the same item, which allows
to form a chain of nodes for each distinct item. Thus, an FP-tree has to maintain a header
table to access the first nodes of node chains which supports to create conditional FP-trees.
For this reason, FP-trees must also be retained throughout the entire process whereas the
memory for PPC-trees can be freed after computing the more compact N-lists as described
in the following section.

3.3 N‑list generation

The PPC-tree is used for constructing the N-list of each selector, which effectively sum-
marizes the frequency of occurrence of this selector. Thus, we associate with each selector
a list of N-nodes, which collectively capture all matches of this selector in the data. After
the generation of the N-list, the PPC-tree is no longer needed, and its memory can be freed.

Definition 5 (N-node) An N-node is a reduced version of a PPC-node which only retains
the PP-code and freq, denoted as ⟨pre, post⟩∶ freq.

Definition 6 (N-list of a selector) The N-list of a selector is a list of all N-nodes associated
with this selector. The N-nodes are sorted in increasing order of pre.

By a pre-order traversal in the built PPC-tree, an N-node is created from each visited tree
node and added to the end of the N-list of the selector registered by the tree node. Complet-
ing the tree traversal, an N-list for each distinct selector is generated. No rearrangements

583Machine Learning (2023) 112:571–610

1 3

to N-nodes in N-lists are performed since N-nodes were added in ascending order of pre
while traversing the tree.

Property 2 Sorting the N-nodes in an N-list according to increasing pre, also sorts them
according to increasing post.

To see this, assume that the pre of two nodes in the N-list increases, but their post
decreases. According to Property 1, the two nodes then have an ancestor-descendant rela-
tionship, i.e., they are on the same path in the PPC-tree. However, all nodes in an N-list
share the same distinct selector, and therefore they all have to be on different paths of the
PPC-tree, refuting the assumption.

The N-lists for single selectors, which can also be called 1-selector-sets, essentially cor-
respond to the 1-itemsets in an Apriori-like association rule learning algorithm. However,
as we see in the following, they contain all necessary information for constructing the
N-lists for combinations of selectors.

For computing the N-list of a k-selector set, we use two different approaches:

Definition 7 (N-list of k-selector-set, k ≥ 2) The N-list NL of the k-selector-
set s1s2 ⋯ sk−2sk−1sk is calculated from the N-lists NL1 of the (k − 1)-selector-set
s1s2 ⋯ sk−2sk−1 , and NL2 of either

 (i) the (k − 1)-selector-set s1s2 ⋯ sk−2sk , or
 (ii) the selector sk,

as follows

Thus, by this definition, the N-nodes in NL sharing the same PP-codes will be combined
into a single N-node with the same PP-codes and the sum of the frequency of the N-nodes.

The N-list calculation in Definition 7(i) provides sufficient information for an exhaustive
search for frequent itemsets in which itemsets are enumerated in a unique order satisfying
the input conditions for the calculation. However, in our greedy approach, we will need
to be able to query and compute the support counts of arbitrary selector-sets, without the
complete layer-wise enumeration of all itemsets that is typical for association rule discov-
ery. For this reason, we use case (i) only if the N-list of (k − 1)-selector-set s1s2 ⋯ sk−2sk
has already been computed from previous results. If it is not yet available, we use case (ii)
the N-list of selector sk which is always available and better suited for greedy search.

In (2), a new N-node N is added to the result N-list NL for each pair of two nodes
N1 ∈ NL1 and N2 ∈ NL2 that satisfies the ancestor-descendant relationship (cf. Property 1).
NL2 is always an ancestor of NL1 because N1 and N2 associate with selectors sk−1 and sk
respectively and sk−1 ≺ sk (cf. Definition 3). The new node N receives the frequency count
of N1 (because it is the number of paths containing both N1 and N2) and the PP-code of N2
(so that N-list of the selector-set reduces its length quickly thanks to node combinations
at ancestor nodes while the selector-set grows, consequently reducing both memory con-
sumption and computation time).

(2)
NL =

�
⟨N2.pre,N2.post⟩∶

�

N1∈NL1∩

DESC(N2)

N1.freq
����
N2 ∈ NL2

�

584 Machine Learning (2023) 112:571–610

1 3

For implementing this, we define a recursive function CalculateNList (Algorithm 4),
which can calculate the N-list of any selector-set s1s2 ⋯ sk as follows: NListSet is a hash
map that caches generated N-lists and maps a selector-set to its N-list for fast access to
N-lists of a given input selector-set. It initially contains all N-lists of every distinct selector
(Definition 6). The function first checks if the N-list of the input selector-set has been cal-
culated to return the N-list. Otherwise, it calculates recursively the N-list NL1 of sub-selec-
tor-set s1s2 ⋯ sk−2sk−1 in lines 6-9. For lines 10-13, the N-list NL2 will be the N-list of sub-
selector-set s1s2 ⋯ sk−2sk (Definition 7(i)) if it has been calculated and previously cached
in NListSet; otherwise, NL2 is assigned to the N-list of selector sk (Definition 7(ii)) which
is usually longer than the N-list of selector-set s1s2 ⋯ sk−2sk but avoids another branch of
recursive calculation. At line 14, function GenerateNlist generates the N-list NL from NL1
and NL2 based on Equation (2). All intermediate results are stored in NListSet so that the
recursion stops as soon as a retrieved N-list is encountered.

For the correct and efficient calculation of the heuristic values for rule evaluations with-
out the need of re-counting frequencies in the database, the following property is crucial:

Property 3 The support count of a k-selector-set constructed according to Definition 7 is
the sum of frequencies of the N-nodes in its N-list.

Note that this property is not trivial and does not hold for arbitrary ways of combining
N-lists. Counter-examples and a proof for Definition 7(ii), which builds upon a previous
proof of Definition 7(i) by Deng et al. (2012), Proposition 4, can be found in Appendix 1,
so the property generally holds for Lord.

3.4 Rule learning

This subsection presents the proposed rule learning algorithm Lord (Locally Optimal
Rules Discoverer). It first builds up the N-list structure for each distinct selector from
the training set E as discussed in the previous sections, which allows it to efficiently
obtain the N-list and thus the coverage counts for an arbitrary rule body (Algorithm 4).
This is used in a greedy search for a locally optimal rule, in a similar way as classical

585Machine Learning (2023) 112:571–610

1 3

algorithms such as cn2 and ripper, as shown in Algorithm 5. In particular, the algo-
rithm searches for a locally best rule for each training example in two phases, lines 6–13
for rule growth and lines 14–21 for rule pruning.

Rule evaluation. For comparing the quality of candidate rules, we use a heuristic
function h, and coverage and class frequency for tie breaking.

Definition 8 (Rule comparison) Given two rules r1 and r2 , r1 is better than r2 , denoted
as r1 ≻ r2 if (i) h(r1) > h(r2) or (ii) h(r1) = h(r2) and r1.p > r2.p or (iii) h(r1) = h(r2) and
r1.p = r2.p and r1.head ≺ r2.head.
where h(r) is the heuristic value, r.p is the number of covered positive examples (true posi-
tives) of the rule r, and r.head is the rule head of rule r. In the rare case that the heuristic
value and the number of covered true positives are equal, we favor the rule with the minor-
ity class, because it covers a higher percentage of the positive examples of this class.

As a heuristic, we use the m-estimate, which has been proposed by Cestnik (1990)
and used in cn2 (Clark and Boswell, 1991) and related algorithms (Džeroski et al.,
1993). The m-estimate value of a rule r ∶ B → c is calculated as

586 Machine Learning (2023) 112:571–610

1 3

where
m = a settable parameter in the range [0, + ∞)
r.p = the number of true positives of rule r
r.n = the number of false positives of rule r
P = the number of positive examples in E w.r.t. class c
N = the number of negative examples in E w.r.t. class c
The m-value is a tunable parameter that provides an excellent trade-off between

weighted relative accuracy, which is frequently used in descriptive rule learning, and preci-
sion, the main target for predictive learning (Fürnkranz & Flach, 2005). It also has been
shown to perform very well in a broad empirical comparison of various rule learning heu-
ristics (Janssen & Fürnkranz, 2010). In Lord, we use comparably low values of m (the
default is 0.1), which result in a bias towards more specific and less general rules. This is
analyzed in somewhat more depth in Sect. 4.7.

All counts can be efficiently obtained from the corresponding N-lists (Algorithm 4): For
example, the number of true positives (r.p), or the total coverage of the rule (r.p + r.n) of
rule r can be computed efficiently from the support count of selector-sets B ∪ {c} and B
that are derived from their corresponding N-list structure according to Property 3. Simi-
larly, P, the count of positive examples w.r.t class c, can be derived from the N-list of selec-
tor c.

The CalculateNList function defined above (Algorithm 4) is called frequently at lines 7
and 15 of Algorithm 5 to determine the support counts of selector-sets. In our implementa-
tion, the scope of the NListSet input of the function is limited to the search for the best rule
of each example and not re-used across examples. However, these additional computational
costs are compensated by the memory saved and the completely independent search for the
best rule among examples, which allows for easy parallelization. This is empirically ana-
lyzed below, in Sect. 4.6.

Rule growth. In the rule growth phase, the rule body is first initialized with an empty
set, and iteratively extended with the selector among the remaining selectors Se that results
in the best improvement according to Definition 8. Note that, contrary to the similar search
in algorithms like cn2 or ripper, the set of possible selectors does not contain all possible
features, but only those that are pertinent for the current example, so that the complexity
of this phase is bounded by the number of attributes m, and not by the considerably larger
number of selectors that are derived from these attributes. The growth process finishes
when the rule is no longer improved or Se is empty.

Rule pruning. In the pruning phase, selectors are iteratively pruned from the rule body
so that the improvement in each step is maximized based on Definition 8. This is analogous
to the incremental reduced error pruning technique (Fürnkranz and Widmer, 1994), which
is used as in ripper, with the difference that all possible conditions are considered for prun-
ing (not only final sequences), and the resulting rules are re-evaluated on the training set,
not on a separate pruning set. The pruning phase completes when the rule cannot be further
improved or when only two selectors remain in the rule body. In this case, we do not have
to prune further, because all rules with a single condition have already been validated in
the growing phase, and can therefore not have a higher heuristic value than the current rule.

As one of our astute reviewers has suggested, rules could be further improved by repeat-
ing multiple phases of rule specialization (growing) and generalization (pruning), or even a

(3)hm(r) =
r.p + m

P

P+N

r.p + r.n + m

587Machine Learning (2023) 112:571–610

1 3

general bi-directional hill-climbing, which has, e.g., been tried in the JoJo algorithm (Fen-
sel and Wiese, 1993). Empirically, however, this may not be necessary. The rules found in
the growth phase often already achieve the highest heuristic value, so the chance to prune
a selector from a rule in the pruning phase is small, and consequently, the chance to further
improve the rule in a second growing phase (after the pruning phase) is even smaller. We
will return to this issue in experiments reported in Sect. 4.8.

Efficient Forward Rule Selection. In order to reduce the computational complexity of
Lord, we also implemented and tested a variant, Lord*, which only learns a rule when a
training example is not correctly classified by the existing rule set. More precisely, Lord*
does the following for each training example:

– If no rule in the current rule set covers the example, a new rule for the training example
is learned and added to the current rule set.

– If the training example is mis-classified by the current rule set, a new rule is learned,
and if the found best rule is better than the selected classifying rule, it is added to the
current rule set.

– If the training example is correctly classified, no new rule is learned.

Note that a consequence of this is that the final rule set learned by Lord* is somewhat
affected by the input order of training examples. However, under the assumption of a ran-
dom order, it seems that the technique works well, as we will see in Sect. 4.

Rule Filtering. ripper introduced a very effective but rather expensive rule optimiza-
tion phase. Lord also implements an optimization phase, in the form of a very simple filter
that removes rules which have been superseded by better rules. All found best rules are col-
lected in a rule set R which is then filtered to the final rule set R′ in lines 24–28. cLaSScov-
erinGruLeS computes the set Re ⊂ R of all rules that cover e and whose rule head equals
the class label of e. The best rule from a group of rules is selected based on Definition 8.
Selecting the best rule r from Re further reduces the rule variances and therefore also the
number of rules. Assume that there is a group of k training examples sharing a global best
rule. In the search phase, however, because of the greedy search, a different locally optimal
rule may be found for each of the k examples, e.g., a total of l rules (l ≤ k) with the best
rule r0 . Then in the filter phrase, all the k examples adopt r0 as their best covering rule and
the other l − 1 rules will be eliminated. Our experiments (Table 8) will show empirically
that this hypothesis seems to hold and will underline the effectiveness of the rule filter.
Generally, the larger the number of examples in the training set is, the higher is the chance
that such a rule r0 is actually the best rule. Finally, the default rule which has an empty
body and predicts the majority class, is added to R′ to guarantee that every testing example
is covered by at least one rule.

Classification with the Learned Rule Set. In the classification phase, the best rule is
chosen from a group of rules covering the example based on Definition 8 to classify an
unseen example. If no covering rule is found for the example, the default rule is used.

3.5 R‑tree

For classifying a new example, Lord looks for the best rule among all rules that cover
this example. In order to speed up this process, we index the result rule set via a so-called
R-tree, a prefix tree of rule bodies whose selectors are in the same predefined order O as
the selector-sets (Definition 3). Each node (excluding the root node) of an R-tree associates

588 Machine Learning (2023) 112:571–610

1 3

with a distinct selector and may or may not contain a reference to a rule. Its child nodes are
also in the order O. Selectors of a rule body are inserted into the tree in the reverse order
of O. Thus, the tree serves as an index structure that allows to efficiently find the covering
rules of an example whose corresponding selectors are also in the order O. The structure
of an R-tree is quite similar to that of an FPO-tree (Huynh & Küng, 2020), which provides
optimal compactness and efficient aggregations for very large numbers of local frequent
itemsets. A minor difference is that the R-tree indexes references to rules whereas the FPO-
tree records support counts of itemsets. Figure 1e shows an example of an R-tree.

3.6 Example

Figure 1 illustrates the entire process from an example dataset in Fig. 1a to the resulting
rule set in Fig. 1e. The example dataset includes three predictive attributes A1 , A2 and A3 ,
and the class attribute C. The right-most column in Fig. 1a depicts the selector-sets cor-
responding to examples. Figure 1b shows all distinct selectors in the predefined order O
(Sect. 3.1) after the first data scan. Figure 1c depicts the corresponding PPC-tree (Sect. 3.2)
built from the example dataset shown in Fig. 1a.

The left column in Fig. 1d enumerates the N-lists (Sect. 3.3) of all single selectors that
can be derived directly from the example PPC-tree in Fig. 1c. These basic N-lists are then
combined to N-lists of selector-sets and their corresponding support counts. The middle
and the right columns in Fig. 1d respectively show the generated N-lists and the corre-
sponding candidate rules estimated while finding the best rule for the first example with
its representative set of selectors { s31, s21, s11 } and the class selector s1 . The best rule ini-
tializes with an empty body (∅ → s1) and is then extended with each of the three possible
selectors s31, s21, s11 . For the selector s31 , with the candidate rule s31 → s1 , the calculation is
as follows:

1. Compute the N-list of selector-set s31s1 from that of s31 and s1 (Definition 7). N-node
⟨10, 6⟩∶1 is a successor of N-node ⟨7, 11⟩∶3 because it comes after ⟨7, 11⟩∶3 in the
pre-order traversal (10 > 7) and before ⟨7, 11⟩∶3 in the post-order traversal (6 < 11).
Consequently, a new N-node ⟨7, 11⟩∶1 is formed from the PP-codes of the ancestor and
the frequency of the successor.

2. Compute the m-estimate (3) of the rule, yielding h1(s31 → s1) = 0.6875 for m = 1.

The same calculation is applied for selectors s21 and s11 , and eventually rule s21 → s1 is
selected as the currently best rule because its heuristic value of 0.8437 is the highest. s31
and s11 are then considered as extensions. The evaluation of h1 for the extended rules trig-
gers the computation of the N-lists of s31s21 and s31s21s1 (for the extended rule s31s21 → s1)
and of s21s11 and s21s11s1 (for s21s11 → s1). Their heuristic values, 0.6875 and 0.8437
respectively, do not exceed h1(s21 → s1). As a consequence, the rule growth stops. Also, the
rule pruning is skipped in this case because the rule body length is 1.

In this way, the search for a locally best rule for each of the remaining examples is per-
formed. All found rules are listed in the left two columns in Fig. 1e. Note that the first three
examples share the same locally best rule s21 → s1 . A filter step is then applied to the rule
set in which rule s12s32 → s2 of example #7 is removed because the example adopts rule
s32s22 → s2 of example #8 as its new best rule. The filtered rule set is then complemented
with a default rule, which has an empty body and predicts the majority class s2.

589Machine Learning (2023) 112:571–610

1 3

The right-most column in Fig. 1e illustrates an R-tree which has been constructed from
the result rule set on its left. If none of these rules covers a new example, the default rule
will be used to classify the example.

3.7 Complexity analysis

For the following analysis of Lord’s computational complexity, we assume a dataset with
n examples and m attributes. Furthermore, we use k to denote the maximum length of a
rule. Note that k can be bounded in various ways. For example, obviously k ≤ m , as each
attribute is tested at most once. We can also assume that O(k) ≤ O(log n) , assuming that
each condition reduces the number of examples covered by the rule by a certain fraction.
Finally, k can of course be bounded in practice by allowing only rules up to a certain fixed
length k.

The number of rule evaluations in the growth phase is obviously
∑k−1

j=0
(m − j) =

m ⋅ k − (k − 1)k∕2 as the jth selector added to the rule body has (m − j) options. Simi-
larly, the pruning phase requires at most

∑k−2

j=0
(k − j) = (k − 1)k − (k − 2)(k − 1)∕2 =

(k − 1)k∕2 + 1 rule estimations. Therefore, the total number of rule evaluations is O(m ⋅ k) ,
which is considerably less than the O(2m) , the number of all possible rules.3

A key factor for Lord’s efficiency is that the rule evaluations do not have to be per-
formed on data, but using the N-lists stored in memory. For computing the heuristic value
of a candidate rule, s1s2 … sk → c , we need the N-lists of the two selector-sets s1s2 … sk
and s1s2 … skc . First, the N-list of s1s2 … sk is calculated recursively by Algorithm 4 which,
in the worst case, must calculate the N-lists of k − 1 selector-sets s1s2,⋯ , s1s2 … sk−1 ,
s1s2 … sk based on Definition 7. Since the PP-codes of the N-nodes in an N-list are in
order, the calculation of the N-list of the k-selector-set in Definition 7 is linear in the length
l of the N-lists. Secondly, the N-list of s1s2 … skc can be calculated directly from N-lists
of s1s2 … sk and c based on Definition 7(ii) (note that the N-list of c has only one N-node).
Overall, the computational complexity of a rule estimation for a rule s1s2 … sk → c is
O(k ⋅ l). Note that l is bounded by the number of examples covered by the body of the rule
and therefore depends on the density of the corresponding selectors in the dataset.

The overall computational complexity of Lord, therefore, is O(n ⋅ m ⋅ k2 ⋅ i ⋅ l) . Note that
the search for a local best rule for a training example is inherently independent of the other
examples’ searches. This allows the rule search to be parallelized massively with multi-
workers, e.g. shared memory with multi-threads and/or distributed environment, in a work-
pool model for high load balance. Thus, the total time complexity of Lord is
O(

1

q
⋅ n ⋅ m ⋅ k2 ⋅ i ⋅ l) , where q is the number of parallel rule search workers.

3 In Sect. 4.8, we will discuss overLord, a variant which does multiple iterations of growing and pruning
instead of a single one. This increases the complexity to O(m ⋅ k ⋅ i) , if i iterations are performed. It is hard
to find a theoretical bound for the number of iterations (in the worst case it could be O(n)). However, in our
experiments, we found that on average only 5.4% of the training examples need more than one iteration of
growing and pruning for finding a locally optimal rule in this setting, i.e., the average case of i seems to be
only slightly larger than 1.

590 Machine Learning (2023) 112:571–610

1 3

4 Experiments

In this section, we report on the experimental evaluation of the Lord algorithm. The main
goals of this study is to show that the algorithm is able to efficiently learn rule sets for very
large databases, with an accuracy that is not worse and often better than that of other state-
of-the-art algorithms (Sect. 4.2). We also compare the algorithms w.r.t. runtime (Sect. 4.3)
and rule complexity (Sect. 4.4), and ensure that Lord’s discretization does not give the
algorithm an unfair advantage (Sect. 4.5). Furthermore, we do extensive experiments to
analyze the scalability of Lord dealing with very large datasets (Sect. 4.6) and investi-
gate the impact of the parameter m of the m-estimate heuristic on the classification accu-
racy (Sect. 4.7), the potential of using multiple successive growing and pruning phases
(Sect. 4.8), as well as the effect and potential of rule filtering on the rule sets learned by
Lord (Sect. 4.9).

4.1 Experimental setup

Table 1 gives a brief characterization of the 24 UCI datasets (, 2017) used in the experi-
ments. The first 12 datasets are small, and the remaining 12 range from medium to big
volumes up to several millions of examples. The datasets are also quite diverse in terms of
number and type of attributes, as well as their completeness and class distributions. The
gas-sensor-12 (Huerta et al., 2016) dataset contains data of gas sensors reacting to stimuli
(wine, banana), and gas-sensor-11 is a version of gas-sensor-12 after removing the time-
offset attribute for the duration between the start of the stimulus emission and the sensor
operation that cannot be recorded as an input in the practice of gas detection. The dataset at
row 23 is a cleaned version of pamap2 (Reiss and Stricker, 2012) with 3,850,505 instances
and 54 attributes, for physical activity monitoring, that was processed according to recom-
mendations of the dataset’s authors. The other datasets are used as they are.

In principle, any discretization method could be used to discretize numeric attributes,
such as FuSinTer (Zighed et al., 1998), or the well-known mdLp (Fayyad and Irani, 1993).
We selected the former because in our experiments, it ran faster than mdLp, and Lord can
provide slightly higher prediction performance on discretized datasets by FuSinTer com-
pared to that by mdLp. In Sect. 4.5, we double-check that the discretization did not give
Lord an unfair advantage over the other algorithms.

We have compared Lord, encoded in Java, with a classification association rule learn-
ing algorithm cmar (Li et al., 2001), the classic heuristic rule learning algorithm rip-
per (Cohen, 1995), and the two recent algorithms idS (Lakkaraju et al., 2016) and cG
(Dash et al., 2018). Despite its age, ripper is still among the state-of-the-art algorithms
and is well known for its high accuracy, the simplicity of the learned rule sets, and its fast
execution times. We use Jrip, an implementation of ripper, that can be found in the weka
library.4 idS and cG are two rule learning algorithms proposed recently. For cG, we used
the source code provided by the authors.5 For idS, we also started with the authors’ source
code,6 but soon found that the idS algorithm ran too slowly for our machine. It could not
complete a cross-validation fold with the time-out setting, even on the small datasets. This

4 weka is available at https:// waika to. github. io/ weka- wiki/.
5 https:// github. com/ Trust ed- AI/ AIX360.
6 https:// github. com/ lvhim abindu/ inter preta ble_ decis ion_ sets.

https://waikato.github.io/weka-wiki/
https://github.com/Trusted-AI/AIX360
https://github.com/lvhimabindu/interpretable_decision_sets

591Machine Learning (2023) 112:571–610

1 3

is because the calculation for selecting a rule formed from frequent itemsets and classes
makes idS sensitive to the total number of frequent itemsets. A similar observation was
also made by Filip and Kliegr (2019) who have customized idS by allowing it to select
only the top k association rules instead of all. As their customized algorithm, pyidS,7 runs
much faster, we have used it in our experiments, even though it cannot guarantee the same
prediction performance as the original. For cmar, we considered two implementations,
respectively from the libraries SPMF8 and LUCS-KDD9 and report the results of the latter,
which performed better in both runtime and accuracy.

We have performed a 10-fold cross-validation with a time-out of 72 hours for an algo-
rithm execution on a dataset. For datasets pamap2 and susy, the algorithms were only
tested on the first fold of the 10-fold cross-validation. The same train-test splits are used for
all algorithms. cmar and pyidS run on the same discretized datasets as Lord. The input
order of the training examples for Lord* is kept as it is in each cross-validation fold. All

Table 1 Datasets used in experiments

Datasets # Exs. # Attr. Attr. types Missing values Class distributions (%)

1 Lymph 148 19 Categorical No 54.7; 41.2; 2.7; 1.3
2 Wine 178 14 Numeric No 33.2; 39.9; 26.9
3 Vote 435 17 Categorical Yes 54.8; 45.2
4 Breast-cancel 699 10 Numeric Yes 65.5; 34.5
5 Tic-tac-toe 958 10 Categorical No 65.3; 34.7
6 German 1,000 21 Mix No 70; 30
7 Car-eval 1,728 7 Categorical No 22.3; 3.9; 70; 3.8
8 Hypo 3,163 26 Mix Yes 95.2; 4.8
9 kr-vs-kp 3,196 37 Categorical No 52.2; 47.8
10 Waveform 5,000 22 Numeric No 33.2; 32.9; 33.9
11 Mushroom 8,124 23 Categorical Yes 51.7; 48.3
12 Nursery 12,960 9 Categorical No 33.3; 32.9; 31.2; 2.5; 0.01
13 Adult 48,842 14 Mix Yes 76; 24
14 Bank 45,211 17 Mix No 11.7; 88.3
15 Skin 245,057 4 Numeric No 20.7; 79.3
16 s-mushroom 61,069 21 Mix Yes 44.5; 55.5
17 Connect-4 67,557 42 Categorical No 65.8; 24.6; 9.6
18 PUC-Rio 165,632 19 Mix No 28.6; 26.2; 7.5; 7.1; 30.6
19 Census 299,285 41 Mix Yes 93.8; 6.2
20 Gas-sensor-11 919,438 11 Numeric No 32.9; 29.8; 37.3
21 Gas-sensor-12 919,438 12 Numeric No 32.9; 29.8; 37.3
22 Cover-type 581,012 55 Mix No 36.4; 48.8; 6.2; 0.5; 1.6; 3; 3.5
23 pamap2 1,942,872 33 Numeric Yes 9.9; 6; 9.5; 5.4; 2.5; 9.8; 12.3;

9; 5.1; 12.3; 8.5; 9.7
24 Susy 5,000,000 19 Numeric No 54.2; 45.8

7 The authors’ source code can be found at https:// github. com/ jirifi lip/ pyIDS.
8 https:// www. phili ppe- fourn ier- viger. com/ spmf/.
9 https:// cgi. csc. liv. ac. uk/ ~frans/ KDD/ Softw are/.

https://github.com/jirifilip/pyIDS
https://www.philippe-fournier-viger.com/spmf/
https://cgi.csc.liv.ac.uk/%7efrans/KDD/Software/

592 Machine Learning (2023) 112:571–610

1 3

experiments were run on two Xeon Quad-core CPUs X5570 @2.93GHz, hence eight cores,
and 46 GB of available memory.

Besides the above rule learners, we also compared Lord with a black-box approach, i.e.
SMO (Platt, 1998), Weka’s sequential minimal optimization algorithm for training a SVM
classifier. The default and the best settings on each data set were used for the comparison.
We selected the best performance among multiple values of the complexity parameter C
for SMO. In terms of accuracy, Lord beats SMO on the larger datasets (12–23), but loses
on most of the smaller datasets (7 out of 1–10), and sets a tie on mushroom dataset. With
respect to runtime, there is not much difference between Lord and SMO on the small data-
sets since both run in lesser than 1 s, but the runtime on larger datasets grows enormously
for SMO, e.g. SMO cannot complete its learning on susy dataset in the time-out setting.
On average over the datasets (1–23), Lord is better than SMO for both runtime (in s) and
accuracy, i.e. with the default setting, (354, 0.9297) for Lord vs. (7825, 0.8749) for SMO,
and with the best settings, (354, 0.9339) vs. (21019, 0.8773).

4.2 Predictive accuracy

Table 2 shows the classification accuracy of the algorithms. Lord is implemented to
execute in parallel for the rule discovery phase with the thread count equals the detected
number of cores of a machine. It runs with a fixed/default m-estimate parameter setting
of m = 0.1 , as shown in column 3. We also show the results of the setting for which Lord
achieved its best accuracy10 and the setting for enhanced execution performance Lord*
(Sect. 3.4) with the default m = 0.1 in column 5.

ripper is generally used with its default settings, but we tried different settings for the
number of optimization runs o with 0, and 2 (the default value), which are shown respec-
tively in columns 6, and 7. This parameter is important, as these optimization runs have a
large positive effect on ripper’s accuracy, but are also quite expensive. cmar in column
8 and cG in column 9 were used in their default settings recommended by the authors, and
pyidS with two settings using k = 50 and k = 150 association rules is respectively shown
in columns 10 and 11. cG is for binary classification only, therefore in column 9 there are
no results (//) for this algorithm on multi-class datasets.

In order to compare the algorithms, we group the values in Table 2 according to the
basic algorithm, and highlight a value in bold if it outperforms the best values of other
algorithms, but not necessarily other parameter settings of the same algorithm. This allows
to also compare, e.g., the parameter setting of Lord with a fixed parameter m = 0.1 to all
competitors, which would not be possible if we had only marked the best in each line,
because Lord (best m) is always at least as good as Lord (m = 0.1). Because many experi-
ments with the competitive algorithms could not be completed on the two largest data-
sets pamap2 and susy, the average accuracy is derived from a main group of the first 22
datasets. Another average accuracy is calculated from a subgroup of datasets which can be
processed successfully by cG. It’s obvious that Lord gives the highest average rank and
accuracy for all the three settings on the datasets winning 11/22 (m = 0.1), 13/22 (best m)

10 We searched manually for the best m value for each dataset, usually with increments of 1 in the range
[0, 10] until a local optimum was found, which was then refined in a few 0.1 steps. On average, no more
than 10 configurations were tested for each dataset in column 4.

593Machine Learning (2023) 112:571–610

1 3

Ta
bl

e
2

 T
he

 a
cc

ur
ac

y
of

 a
lg

or
ith

m
s p

er
fo

rm
in

g
on

 th
e

da
ta

se
ts

#
D

at
as

et
s

Lo
r

d
(m

 =
 0

.1
)

Lo
r

d
(b

es
t m

)
Lo

r
d

*
(m

 =
 0

.1
)

r
ip

pe
r
(o

 =
 0

)
r

ip
pe

r
(o

 =
 2

)
C

M
A

R
C

G
Py

ID
S

(k
 =

50
)

Py
ID

S
(k

 =
 1

50
)

1
Ly

m
ph

0.
81

09
0.

83
09

0.
81

09
0.

70
95

0.
73

76
0.

81
66

//
0.

54
76

0.
54

76
2

W
in

e
0.

94
41

0.
95

55
0.

94
41

0.
93

82
0.

92
71

0.
95

00
//

0.
88

20
0.

94
37

3
Vo

te
0.

94
27

0.
94

73
0.

94
50

0.
95

18
0.

95
41

0.
94

26
0.

95
64

0.
88

26
0.

91
74

4
B

re
as

t
0.

95
56

0.
96

13
0.

95
70

0.
94

84
0.

95
2

0.
96

42
0.

96
13

0.
95

27
0.

94
99

5
Ti

c-
ta

c-
to

e
0.

98
74

0.
99

16
0.

98
74

0.
97

39
0.

97
18

0.
99

16
0.

99
58

0.
79

74
0.

81
31

6
G

er
m

an
0.

75
00

0.
75

10
0.

74
89

0.
72

10
0.

71
10

0.
73

90
0.

71
40

0.
69

70
0.

69
30

7
C

ar
-e

va
l

0.
89

98
0.

90
22

0.
90

04
0.

83
50

0.
85

99
0.

79
62

//
0.

76
96

0.
80

84
8

H
yp

o
0.

98
29

0.
98

45
0.

98
29

0.
99

11
0.

99
08

0.
97

8
0.

98
4

0.
95

22
0.

95
22

9
kr

-v
s-

kp
0.

99
56

0.
99

59
0.

99
53

0.
98

96
0.

98
99

0.
93

64
0.

94
36

0.
68

77
0.

70
74

10
W

av
ef

or
m

0.
77

98
0.

81
19

0.
78

06
0.

77
36

0.
79

60
0.

82
16

//
0.

36
21

0.
44

72
11

M
us

hr
oo

m
1.

0
1.

0
1.

0
0.

99
98

1.
0

0.
99

43
0.

99
64

0.
93

04
0.

93
41

12
N

ur
se

ry
0.

98
49

0.
98

52
0.

98
51

0.
96

14
0.

97
09

0.
89

59
//

0.
74

72
0.

74
45

13
A

du
lt

0.
85

20
0.

85
59

0.
85

13
0.

83
65

0.
84

50
0.

83
35

0.
82

56
0.

77
13

0.
77

40
14

B
an

k
0.

89
49

0.
89

59
0.

89
28

0.
89

38
0.

89
94

0.
88

30
0.

89
28

0.
88

29
0.

88
31

15
Sk

in
0.

99
71

0.
99

71
0.

99
70

0.
99

91
0.

99
91

0.
88

92
0.

96
11

0.
79

24
0.

79
82

16
Se

c-
m

us
hr

oo
m

0.
99

93
0.

99
93

0.
99

92
0.

99
69

0.
99

78
0.

92
39

0.
91

31
0.

60
41

0.
72

13
17

C
on

ne
ct

-4
0.

81
86

0.
82

06
0.

81
77

0.
72

80
0.

75
40

0.
67

01
//

0.
65

84
0.

65
84

18
Pu

c-
rio

0.
95

34
0.

95
67

0.
95

33
0.

98
29

0.
98

69
0.

78
00

//
0.

44
45

0.
49

57
19

C
en

su
s

0.
95

14
0.

95
14

0.
95

16
0.

94
81

0.
95

06
0.

93
79

Er
ro

r
0.

93
79

0.
93

79
20

G
as

-s
en

so
r-1

1
0.

97
67

0.
97

71
0.

97
68

0.
92

55
0.

94
74

0.
18

84
//

0.
39

04
0.

41
00

21
G

as
-s

en
so

r-1
2

0.
99

65
0.

99
65

0.
99

65
0.

99
92

0.
99

94
0.

19
72

//
0.

39
12

0.
40

60
22

C
ov

er
-ty

pe
0.

91
52

0.
91

61
0.

91
18

0.
85

64
0.

89
43

0.
59

28
//

0.
48

82
0.

48
92

23
Pa

m
ap

2
0.

99
55

0.
99

63
0.

99
53

O
O

M
O

O
M

0.
26

57
//

O
O

M
O

O
M

24
Su

sy
0.

77
73

0.
78

60
0.

76
69

O
O

M
O

O
M

0.
74

77
O

O
T

0.
54

88
0.

55
66

A
vg

. a
cc

. (
3–

6,
 8

–9
, 1

1,
 1

3–
16

)
0.

94
16

0.
94

36
0.

94
15

0.
93

65
0.

93
74

0.
91

6
0.

92
22

0.
81

37
0.

83
12

A
vg

. a
cc

. (
1–

22
)

0.
92

68
0.

93
11

0.
92

66
0.

90
73

0.
91

52
0.

80
56

//
0.

70
77

0.
72

87
A

vg
. r

an
ks

 (1
–2

2)
3.

14
1.

84
3.

3
4.

48
3.

59
5.

2
//

7.
57

6.
89

O
O

M
 O

ut
 o

f m
em

or
y,

 O
O

T
O

ut
 o

f t
im

e

594 Machine Learning (2023) 112:571–610

1 3

and 11/22 (Lord*) over the competitors. For pamap2 and susy, the performance of Lord is
also superior to the competitors who could complete these tasks. The differences in aver-
age accuracy among the algorithms grows when moving from the subgroup to the main
group of datasets. For example, the performance differences of the three settings of Lord
compared to the second best ripper with (o = 2) increase from [0.42%, 0.62%, 0.41%] to
[1.16%, 1.59%, 1.14%], and even more for the other algorithms.

The second best algorithm, ripper, wins 4/22 and 6/22 for its two settings. cG and
cmar both winning 2/22 respectively come at the third and the fourth place, and pyidS
with no wins positions at the last place. On average, pyidS achieves a higher accuracy for
larger values of k, but this is not consistent across all datasets (e.g., breast, german).

In order to assess whether these differences are statistically significant, we do a Fried-
man test (Demšar, 2006) based on the average ranks on the first 22 datasets. cG is not
ranked because of its incompleteness for many datasets. The result shows a significant
difference (p-value = 2.027e − 18) in accuracy, indicating that the null hypothesis that all
algorithms have the same performance can be confidently rejected. The post-hoc Nemenyi
test is visualized in Fig. 2 with the critical distance CD = 2.24 at significance level 0.95.
It can be seen that the highest accuracy group includes Lord with the three settings and
ripper (o = 2) in which the accuracy of Lord (best m) is consistently higher than ripper
(o = 2) but not enough to indicate a significant difference by the test. Lord (best m) is
significantly more accurate than the remaining algorithms, ripper without its optimization
runs (o = 0), cmar, and pyidS.

4.3 Runtime comparison

Table 3 shows the average (derived from 10-fold cross-validation) runtime of all algo-
rithms on each of the datasets. The last lines show the average of these values and the
average rank of each method (after rounding the runtime at precision of 0.1 s) for the first
22 datasets. It is obvious that pyidS is the slowest algorithm, and that its runtime increases
fast with the number of considered rules k. On the small datasets, Lord and ripper run very
fast, in less than 1 s, while cmar and cG typically take a bit longer.

On the larger datasets, Lord is much faster than both ripper and cG. Without the opti-
mization runs, ripper (m = 0) is faster than Lord in some cases but slower than Lord*
(m = 0.1) for all the datasets. The optimization of ripper is necessary to improve its accu-
racy, and this makes ripper (o = 2) considerably slower than Lord in all the cases. Note
that the average accuracy and rank of Lord* (m = 0.1) are also higher than that of ripper
(o = 2). We can see that Lord* runs faster than Lord, especially much faster for the last

Fig. 2 Nemenyi test on accuracy of algorithms on the first 22 datasets, CD = 2.24, � = 0.05

595Machine Learning (2023) 112:571–610

1 3

Ta
bl

e
3

 T
he

 ru
nt

im
e

(in
 s)

 o
f a

lg
or

ith
m

s p
er

fo
rm

in
g

on
 th

e
da

ta
se

ts

#
D

at
as

et
s

Lo
r

d
(m

 =
 0

.1
)

Lo
r

d
(b

es
t m

)
Lo

r
d

*
(m

 =
 0

.1
)

r
ip

pe
r
(o

 =
 0

)
r

ip
pe

r
(o

 =
 2

)
C

M
A

R
C

G
py

id
S

(k
 =

 5
0)

py
id

S
(k

 =
 1

50
)

1
Ly

m
ph

0.
02

0.
02

0.
02

0.
01

0.
03

13
.2

//
9.

1
10

93
2

W
in

e
0.

03
0.

03
0.

02
0.

01
0.

02
52

.1
//

11
.6

26
41

3
Vo

te
0.

04
0.

05
0.

02
0.

01
0.

02
29

.3
6.

4
12

.5
14

82
4

B
re

as
t

0.
04

0.
04

0.
03

0.
02

0.
05

0.
2

9.
3

12
6

34
65

5
Ti

c-
ta

c-
to

e
0.

06
0.

07
0.

03
0.

02
0.

05
0.

14
7.

1
10

.1
70

5
6

G
er

m
an

0.
11

0.
11

0.
07

0.
08

0.
13

9.
5

36
.5

9.
9

87
6

7
C

ar
-e

va
l

0.
06

0.
06

0.
03

0.
05

0.
19

0.
05

//
10

.6
11

95
8

H
yp

o
0.

16
0.

18
0.

08
0.

05
0.

11
10

.9
14

.4
33

.2
58

41
9

kr
-v

s-
kp

0.
65

0.
65

0.
14

0.
07

0.
23

8.
7

5.
7

70
.2

24
08

10
W

av
ef

or
m

0.
64

0.
59

0.
42

0.
48

1.
5

4.
5

//
17

.1
80

2
11

M
us

hr
oo

m
0.

36
0.

36
0.

09
0.

07
0.

19
70

.5
24

.8
56

.9
38

96
12

N
ur

se
ry

0.
58

0.
58

0.
23

0.
49

13
.9

0.
32

//
20

.8
17

76
13

A
du

lt
4.

8
4.

8
1.

5
2.

6
16

.0
32

.5
28

5
75

.5
85

3
14

B
an

k
10

.5
10

.5
1.

7
1.

3
7.

7
14

6
60

6
74

.1
10

93
15

Sk
in

1.
1

1.
1

0.
79

7.
2

15
0

0.
8

29
41

34
0

19
19

16
Se

c-
m

us
hr

oo
m

4.
0

4.
0

0.
87

6.
8

17
4

14
.9

56
19

94
.6

11
42

17
C

on
ne

ct
-4

67
.0

67
.9

35
.5

27
.8

55
1

81
.2

//
10

7
99

3
18

Pu
c-

rio
33

.7
33

.5
22

.1
11

1
15

78
23

9
//

25
0

13
35

19
C

en
su

s
37

8
37

8
65

.5
10

8
86

8
46

5
Er

ro
ra

63
8

82
23

20
ga

s-
se

ns
or

-1
1

49
.6

51
.9

20
.5

23
3

16
17

3.
7

//
13

79
48

91
21

G
as

-s
en

so
r-1

2
56

.2
57

.3
21

.2
49

8
71

29
4.

1
//

13
41

54
32

22
co

ve
r-t

yp
e

14
60

14
80

52
3

65
28

17
80

34
13

66
//

13
57

44
49

23
pa

m
ap

2
60

63
60

44
38

6
O

O
M

O
O

M
50

.4
//

O
O

M
O

O
M

24
su

sy
52

59
2

51
21

8
15

35
0

O
O

M
O

O
M

97
.4

O
O

T
94

35
29

,1
09

A
vg

. r
un

tim
e

(1
–2

2)
94

95
.1

31
.5

34
2

86
42

.8
11

6
//

27
4.

7
25

68
.6

A
vg

. r
an

ks
 (1

–2
2)

3.
5

3.
75

1.
73

2.
95

5.
09

4.
89

//
6.

27
7.

82
O

O
M

 O
ut

 o
f m

em
or

y,
 O

O
T

O
ut

 o
f t

im
e

a Th
e

er
ro

r h
ap

pe
ns

 w
hi

le
 b

in
ar

iz
in

g
at

tri
bu

te
s b

y
’fi

t’
fu

nc
tio

n
of

 c
la

ss
 ’F

ea
tu

re
B

in
ar

iz
er

’ i
n

th
e

C
G

 a
lg

or
ith

m
 so

ur
ce

 c
od

e
by

 th
e

au
th

or
s

596 Machine Learning (2023) 112:571–610

1 3

three largest datasets, without losing much of the predictive accuracy of its counterpart
Lord (m = 0.1).

For the average runtime over the first 22 datasets, Lord and Lord* are obviously the
fastest ones, but over all 24 datasets, cmar is faster than Lord* and Lord. This change
comes mainly from the long runtime of Lord and Lord* on the susy dataset. cmar runs
the fastest for some large datasets (gas-sensor-11, gas-sensor-12, pamap2, and susy), but
its accuracy on these datasets is much lower than that of Lord*. The reason is that these
datasets are very sparse resulting in a low amount of generated frequent patterns and class
association rules. Moreover, the chosen implementation LUCS-KDD of cmar applies
additional limitations on the number of found frequent patterns, rules and their length. The
original version by Li et al. (2001) in which Fp-GrowTh is used to discover frequent pat-
terns, as implemented in SPMF, can result in long runtimes or memory overflow caused by
large numbers of conditional pattern trees for dense datasets mined at the default minimum
support 0.01, e.g. census, connect-4, kr-vs-kp.

In summary, Lord* is the fastest followed by ripper (o = 0), Lord, cmar, ripper
(o = 2) and pyidS. Thus, Lord and Lord* find a better balance between accuracy and
runtime than the other competitors.

4.4 Rule complexity

In terms of the rule complexity reported in Table 4, without considering cG, pyidS is
the best algorithm; however, for this advantage it sacrifices too much classification perfor-
mance. ripper comes at the second place with a much better balance between the rule com-
plexity and performance. The rule sets by Lord and Lord* are larger than those found by
ripper, cG, and pyidS but can be competitive to those by cmar. For example, the rule
sets found by Lord* are even smaller than those by cmar for 14 out of the 24 datasets.
Although the average rule lengths by Lord are shorter than those of ripper for some large
datasets, the sizes of the found rule sets are, again, orders of magnitude larger than those of
ripper. This was to be expected because Lord searches for a locally optimal rule for each
training example, and thus, its rule sets are likely to contain many groups of rule variants
and are typically much larger than sparse rule sets learned by conventional rule learners.
However, the more complex rule sets by Lord are often compensated by more accurate
classifications.

4.5 Influence of discretization

A possible trivial reason for the performance difference between Lord and the other algo-
rithms on mixed or numerical datasets could be that Lord uses pre-discretized data (as do
cmar and pyidS), whereas ripper and cG use their own internal discretization. In order
to investigate this possibility, we also performed experiments where ripper and cG were
used on the same discretized datasets as Lord.

Table 5 reports the results. Each tabular cell shows the average execution time (in s)
on top and the average accuracy below. The values in parentheses show the correspond-
ing values on the original datasets, which we duplicate here for convenience. The bet-
ter values for the discretized datasets are highlighted in bold. After the discretization,
the accuracy of ripper decreases for most of the datasets, except for adult and bank
with (o = 0) and sec-mushroom. Similarly, cG loses accuracy for 5 out of 7 datasets,
and gains for adult and hypo. For census, it results in a similar error message as on the

597Machine Learning (2023) 112:571–610

1 3

Ta
bl

e
4

 T
he

 ru
le

 c
om

pl
ex

ity
 o

f a
lg

or
ith

m
s p

er
fo

rm
in

g
on

 th
e

da
ta

se
ts

, r
ul

e
co

un
t o

n
th

e
le

ft
an

d
av

er
ag

e
ru

le
 le

ng
th

 o
n

th
e

rig
ht

 o
f e

ac
h

ce
ll

#
D

at
as

et
s

Lo
r

d

(m
 =

 0
.1

)
Lo

r
d

(b

es
t m

)
Lo

r
d

*

(m
 =

 0
.1

)
r

ip
pe

r

(o
 =

 0
)

r
ip

pe
r

(o
 =

 2
)

C
M

A
R

C
G

py
id

S

(k
 =

 5
0)

py
id

S

(k
 =

 1
50

)

1
Ly

m
ph

33
.4

2.
58

33
.4

2.
58

32
.9

2.
56

6.
3

1.
48

6.
1

1.
46

18
9.

6
3.

66
//

16
.7

1.
95

51
.5

1.
97

2
W

in
e

16
.9

1.
93

16
.7

1.
97

16
.9

1.
93

4.
1

1.
28

3.
9

1.
26

11
8.

0
2.

55
//

16
.0

1.
93

49
.1

1.
97

3
Vo

te
39

.1
3.

08
39

.1
3.

05
37

.4
3.

08
3.

4
1.

45
2.

3
0.

73
24

5.
3

3.
79

3.
2

2.
42

16
.0

2.
00

53
.1

2.
00

4
B

re
as

t
56

.2
2.

60
54

.6
2.

58
52

.2
2.

57
6.

1
1.

78
5.

5
1.

67
32

8.
2

3.
31

3.
4

2.
81

17
.5

2.
87

50
.8

2.
87

5
Ti

c-
ta

c-
to

e
29

.1
3.

78
28

.7
3.

27
28

.0
3.

73
11

.2
2.

99
10

.3
2.

88
25

0.
1

4.
03

8.
2

3.
20

17
.4

3.
00

51
.7

3.
00

6
G

er
m

an
29

6.
2

3.
38

29
6.

2
3.

39
28

9.
5

3.
37

6.
5

2.
73

4.
2

1.
86

17
84

.7
3.

80
5.

4
3.

70
15

.9
1.

99
49

.7
2.

00
7

C
ar

-e
va

l
22

0.
3

4.
82

22
0.

3
4.

82
20

8.
3

4.
80

31
.6

3.
93

32
.5

3.
72

17
8.

8
2.

40
//

17
.6

2.
18

49
.5

2.
73

8
H

yp
o

11
9.

4
2.

41
12

7.
3

2.
38

10
8.

9
2.

36
3.

5
1.

72
2.

4
1.

29
30

0.
4

3.
47

3.
9

1.
25

17
.5

1.
84

51
.0

1.
96

9
kr

-v
s-

kp
48

.3
4.

62
48

.9
4.

53
45

.7
4.

68
15

.9
3.

21
15

.8
2.

99
23

2.
9

2.
95

2.
4

2.
65

18
.9

1.
98

49
.3

1.
98

10
W

av
ef

or
m

14
28

.2
3.

21
10

65
.4

2.
93

13
91

.3
3.

21
26

.2
5.

02
27

.8
4.

49
20

14
.5

2.
79

//
16

.9
2.

00
53

.0
2.

00
11

M
us

hr
oo

m
26

.4
1.

71
26

.4
1.

71
26

.2
1.

71
8.

9
1.

39
8.

5
1.

43
20

2.
6

3.
04

3.
0

1.
66

17
.3

1.
91

51
.4

1.
97

12
N

ur
se

ry
57

2.
2

5.
28

57
1.

7
5.

29
56

5.
1

5.
26

12
2.

2
4.

29
12

1.
7

4.
56

44
2.

4
3.

19
//

14
.4

1.
98

50
.1

1.
95

13
A

du
lt

82
13

.0
4.

66
76

14
.3

4.
68

33
60

.0
4.

57
28

.1
5.

79
16

.7
4.

28
68

53
.7

4.
58

2.
0

2.
55

15
.6

1.
97

50
.6

1.
98

14
B

an
k

66
66

.0
4.

67
66

43
.2

4.
69

32
45

.1
4.

52
14

.6
3.

99
13

.8
3.

07
12

41
3.

2
4.

26
1.

0
1.

00
16

.7
2.

00
50

.2
1.

99
15

Sk
in

22
58

.4
2.

31
22

38
.5

2.
30

20
47

.1
2.

33
39

.9
5.

36
36

.5
5.

33
13

3.
4

1.
58

2.
0

4.
00

15
.9

2.
00

51
.8

2.
00

16
Se

c-
m

us
hr

oo
m

47
8.

6
2.

82
47

8.
6

2.
82

47
3.

6
2.

78
95

.7
3.

76
85

.2
3.

64
21

44
.1

3.
65

19
.1

2.
71

15
.9

1.
90

52
.0

1.
95

17
C

on
ne

ct
-4

14
34

1.
1

6.
41

14
39

6.
6

6.
39

13
37

0.
9

6.
31

13
8.

4
6.

39
12

8.
8

5.
45

23
76

.0
2.

98
//

15
.2

2.
00

49
.6

2.
00

18
Pu

c-
rio

11
81

2.
9

3.
14

10
22

3.
8

3.
18

11
41

6.
4

3.
12

23
8.

8
6.

13
24

3.
8

6.
02

60
35

.4
2.

93
//

16
.8

2.
00

51
.6

2.
00

19
C

en
su

s
19

23
0.

4
5.

23
19

23
0.

4
5.

23
44

55
.4

4.
61

53
.9

6.
96

48
.3

5.
97

50
11

.6
2.

92
Er

ro
r

19
.6

1.
95

49
.5

1.
98

20
G

as
-s

en
so

r-1
1

20
22

4.
5

2.
07

19
87

8.
0

2.
08

18
04

2.
4

2.
07

72
.3

6.
80

73
.1

6.
42

22
.0

1.
23

//
17

.2
1.

90
51

.1
1.

96
21

G
as

-s
en

so
r-1

2
17

17
4.

2
2.

12
17

07
1.

7
2.

13
16

32
4.

6
2.

12
18

0.
5

5.
92

18
1.

8
5.

89
23

.8
1.

25
//

15
.6

1.
88

45
.5

1.
97

22
C

ov
er

-ty
pe

81
30

8.
8

5.
02

81
44

7.
3

5.
01

64
40

8.
9

5.
00

11
92

.2
8.

28
13

85
7.

89
14

91
.6

2.
92

//
19

.1
1.

99
47

.4
1.

98
23

Pa
m

ap
2

16
82

7
3.

07
14

13
7

3.
09

15
82

4
3.

05
O

O
M

O
O

M
48

6
2.

54
//

O
O

M
O

O
M

24
Su

sy
16

11
85

6
4.

30
1,

20
1,

33
8

4.
10

97
6,

52
2

4.
30

O
O

M
O

O
M

63
7

1.
40

O
O

T
18

2.
0

63
2.

0

A
vg

. v
al

ue
s (

1–
22

)
83

90
.6

3.
54

82
61

.4
3.

5
63

61
.2

3.
49

10
4.

6
4.

12
11

1.
5

3.
74

19
45

.1
3.

06
//

16
.8

2.
06

50
.4

2.
1

A
vg

. r
an

ks
 (1

–2
2)

6.
82

5.
86

6.
39

5.
82

5.
25

4.
95

2.
73

5.
16

2.
23

3.
95

6.
45

4.
86

//
1.

91
2.

45
4.

23
2.

93

O
O

M
 O

ut
 o

f m
em

or
y,

 O
O

T
O

ut
 o

f t
im

e

598 Machine Learning (2023) 112:571–610

1 3

original dataset. cG runs slightly faster for some discretized datasets but much slower
for skin and sec-mushroom. ripper also takes a longer runtime for most of the discre-
tized datasets. In 4 cases, it also ran out of memory (in particular in the default setting
with 2 optimization runs).

Table 6 shows the runtime of the Lord algorithm including the data discretization time
compared to the runtime of ripper and cG on 4 datasets. For the other datasets, the dis-
cretization time is negligible, typically some tens to hundred milliseconds. In comparison
to ripper’s default configuration with two optimization runs, Lord still does not lose its
advantage in execution time with the additional discretization time.

In summary, discretization does not generally improve the performance of cG and rip-
per, so that we can conclude that the discretization does not provide an unfair advantage to
Lord. Note that we also have not spent much effort on optimizing the discretization.

Table 5 Experimental results of ripper and CG algorithms on mixed and numerical datasets discretized by
FuSinTer. The numbers in parentheses repeat the evaluations on the original datasets

OOM Out of memory

Datasets ripper (o = 0) ripper (o = 2) CG

2 Wine (0.01)
(0.9382)

0.12
0.8611

(0.02)
(0.9271)

0.21
0.9111

// //

4 Breast (0.02)
(0.9484)

0.14
0.9457

(0.05)
(0.9527)

0.14
0.9428

(9.3)
(0.9613)

6.9
0.9527

6 German (0.08)
(0.721)

0.17
0.708

(0.13)
(0.711)

0.28
0.697

(36.5)
(0.714)

36.0
0.706

8 Hypo (0.05)
(0.9911)

0.19
0.9873

(0.11)
(0.9908)

0.29
0.9873

(14.4)
(0.9841)

22.0
0.9898

10 Waveform (0.48)
(0.7736)

0.42
0.7190

(1.49)
(0.7962)

1.2
0.7412

// //

13 Adult (2.6)
(0.8365)

3.7
0.8404

(16.0)
(0.8451)

28.4
0.8424

(285)
(0.8256)

278
0.8496

14 Bank (1.3)
(0.8938)

1.9
0.8973

(7.7)
(0.8994)

11.5
0.8982

(606)
(0.8928)

433
0.8928

15 Skin (7.2)
(0.9991)

40.3
0.9895

(150)
(0.9991)

10360
0.9910

(2941)
(0.9611)

4033
0.9296

16 Sec-mushroom (6.8)
(0.9969)

8.7
0.9987

(174)
(0.9978)

326
0.9991

(5619)
(0.9131)

7019
0.8692

18 Puc-rio (111)
(0.9829)

229
0.9017

(1578)
(0.9869)

12245
0.9427

// //

19 Census (108)
(0.9481)

125
0.9465

(868)
(0.9506)

655
0.9489

Error Error

20 Gas-sensor-11 (233)
(0.9255)

1223
0.7222

(1617)
(0.9474)

OOM // //

21 Gas-sensor-12 (498)
(0.9992)

OOM (7129)
(0.9994)

OOM // //

22 Cover-type (6528)
(0.8564)

12,248
0.6716

(178034)
(0.8943)

OOM // //

599Machine Learning (2023) 112:571–610

1 3

4.6 Scalability analysis

This section analyzes the scalability of Lord which is potentially affected by two fac-
tors, data size and the number of threads running in the rule learning phase. For these
experiments, we use the susy dataset with subsets increasing in size, up to 5,000,000
examples. Figure 3a and b respectively show the memory consumption and the runtime
of Lord w.r.t. the number of examples. While the memory consumed in the first phase
(before the rule learning phase) and by the data structures increases approximately lin-
early with the data size, the total memory peak and the runtime show a super-linear
increase. The runtime differences between 1 and 2 million data points is approximately
2.17 times smaller than the corresponding increase between 4 and 5 million. For data
sizes from 1 to 3 million, the total memory peak is the memory peak in the rule learning
phase which is greater than that in the first phase; but for data sizes from 4 to 5 million,
the total memory peak is the memory peak in the first phase, where in addition to the
PPC-tree, we also need to store N-lists of selectors and re-code the training examples as
arrays of selector IDs.

In the second phase, the memory for PPC-trees is freed, and the memory required
for storing the N-lists of selectors and the R-tree is much smaller and also increases
at a slower rate than the memory consumed by the PPC-tree. The main reason for this
is that the N-nodes in N-lists contain only a PP-code and the corresponding frequency
(Definition 5), whereas the PPC-nodes additionally store a selector, a children list and a
reference to a parent to maintain the tree structure (Definition 4). This also allows for a
more efficient implementation as a 2-dimensional array (3 × l), where each of the three
components of the l N-nodes in the list is stored in a separate dimension.

The memory used by the data structures (i.e., PPC-tree, N-lists of selectors, R-tree) only
depends on the data size but not on the number of threads for learning rules. Even though
there is only a single master copy of distinct selectors, which is read-only and shared
among the threads, each rule learning thread maintains a local NListSet for caching the
N-lists of selector-sets that it encounters while finding the best rule for each single exam-
ple. Thus, the memory peak used in the rule learning phase increases w.r.t. the number of
rule-finding threads and may eventually overtake the consumed memory peak used in the
first phase. We verify this assumption with experiments on the full susy dataset shown in
Fig. 3c. The memory peak used in the learning phase increases linearly with the number of
threads, but remains smaller than the memory occupied by the PPC-tree. Therefore, for a
modest number of threads (we could experiment with up to 8 threads), the total consumed
memory peak used by Lord is the memory peak during the construction of the PPC-tree
and N-lists of selectors, which does not depend on the number of threads.

Table 6 Data discretization time (in s) included in the runtime of Lord and Lord* compared to others’

OOM Out of memory, OOT Out of time

Datasets Lord
(m = 0.1)

Lord
(best m)

Lord*
(m = 0.1)

ripper
(o = 0)

ripper
(o = 2)

CG

20 gas-sensor-11 628 630 598 233 1617 //
21 gas-sensor-12 1929 1930 1894 498 7129 //
23 pamap2 53291 53272 47614 OOM OOM //
24 Susy 79488 78114 42246 OOM OOM OOT

600 Machine Learning (2023) 112:571–610

1 3

Figure 3d shows the runtime of Lord on the full susy dataset w.r.t. the number of
threads. We can see that it is very close to an optimal speed-up, which would be achieved if
increasing the number of threads by a factor of 2 roughly reduces the runtime by a factor of
2. This comes from the fact that the single-thread construction of the PPC-tree and N-lists
runs comparably fast, so that the parallel rule learning phase takes most of the runtime of
the Lord algorithm. This, in turn can run in parallel with very high load balance thanks to
the inherent independence of finding the best rule for each single example.

In summary, it can be seen that Lord can confront memory-related scalability as effi-
ciently as PPC-trees or similar tree structures such as FP-trees.

4.7 Influence of m‑estimate Heuristic

Figure 4 shows the impact of parameter m of the m-estimate heuristic on the classi-
fication accuracy performance on a representative subset of the 24 datasets from our
main experiments. The optimal value range of the m parameter can vary among datasets
but all accuracy curves share the characteristic of a single peak value with a gradual
reduction of the accuracy on both sides. This is not surprising, as it is known that the
m-parameter provides a flexible trade-off between precision, which is known to over-
fit, and weighted relative accuracy, which is known to overgeneralize in predictive rule
learning (Fürnkranz and Flach 2005; Janssen and Fürnkranz 2010). A special case is
mushroom which is noise-free and thus has a flat peak, retaining a perfect accuracy of 1

Fig. 3 Influence of data sizes and thread counts on the consumed memory and the runtime

601Machine Learning (2023) 112:571–610

1 3

for the value range [0, 10] of m. In general, we can see that the accuracy changes in sim-
ple shapes w.r.t the values of parameter m, hence it is easy to find the best value of m.

4.8 Analysis of hill‑climbing variants

Recall from Sect. 3.4 that Lord’s rule refinement process consists of a single greedy rule
growing phase, followed by a single greedy rule pruning phase, as has also been realized in
many other rule learning algorithms such as ripper. Lord thus finds a local optimum with
respect to this 2-phase optimization procedure. However, one may rightfully argue,11 that
this local optimum could be further improved with additional pruning and growing steps,
and that, in fact, a 2-phase local optimum may not necessarily be optimal in that case.

To check this, we have implemented overLord, a variant that adds another greedy
refinement phase in the opposite direction if the previous one has resulted in an improve-
ment of the current local optimum. Thus, if the pruning phase of Lord improves the local
optimum of the previous growing phase, overLord follows up with another growing
phase, which, in case it further improves the local optimum, is followed with another prun-
ing phase, etc. The process terminates when the last phase did not achieve any improve-
ment. As the phase before the last one has also not yielded further improvements into the
opposite direction (which is why there was a switch in direction), the found rule is locally
optimal w.r.t. both, specialization and generalization.

We have experimentally compared Lord and overLord on all 24 datasets of Table 1.
On 13 datasets, the results were exactly the same (except for minor differences in runtime).
Table 7 summarizes the results in terms of accuracy, rule complexity, and runtime on the
remaining 11 (medium to very large) datasets. We show the results of two settings, the
default m = 0.1 and the best m for each dataset. The better accuracy is highlighted in bold.
The runtime of the two versions is similar for the first 9 datasets, but for the last 2 very big
ones the additional runtime for overLord is noticeable.

In cases where a difference is noticeable, it is typically less than 1% . Also, maybe
somewhat surprisingly, it is not the case that the improved local optimum on the
training data consistently improves the performance on the test data. For m = 0.1 , we
observed 4 wins for Lord and 5 wins for overLord (with a total of 15 ties, including
the 13 datasets that are not shown), and for the best m on each dataset Lord was ahead
on 6 datasets and overLord on 4 datasets, with 14 ties. We explain this with a some-
what increased tendency towards overfitting, because the rule lengths of overLord are
typically slightly longer than those of Lord, in that the rules that are further refined
after the first pruning phase, obviously become more complex, thus apply to fewer data
points, and are rarely ever further improved with a second pruning phase. As this is a
result of the search procedure, it may also be viewed as an instance of over-searching
(Quinlan and Cameron-Jones, 1995; Janssen and Fürnkranz, 2009). In any case, the
differences are only very small and occur without a clear pattern.

In general, we conclude from these experiments that two optimization phases,
one for growing and one for pruning, are sufficient, and that additional phases can be
applied as an optional setting for slightly better performance in some cases, but may
also reduce the performance in others.

11 We are indebted to one of our reviewers for this observation.

602 Machine Learning (2023) 112:571–610

1 3

4.9 Analysis of rule filtering

Finally, we take a closer look at the high number of rules that are learned by Lord. In
principle, Lord tries to identify the best rule for every single example. However, many of
these rules are duplicates, already when they are found, and others are removed in a post-
processing phase. We look at the magnitude of these reductions and evaluate whether such
a high number of rules is necessary.

Columns 3 and 4 of Table 8 show the number of instances, and the number of best rules
discovered from these instances. We see that on average, the number of rules is about 18%
of the number of examples, which means that approximately five examples share the same
best rule after our first greedy search phase. However, the exact values vary considerably,
ranging from less than 1% in the easy mushroom dataset to more than half in the large susy
dataset. This seems to relate to semantic or distributional properties of the dataset, as no
clear relation to characteristics such as the size of the dataset is recognizable.

Furthermore, as mentioned in Sect. 3.4, Lord has an additional filtering phase which
somewhat compacts the resulting rule sets by removing rules for all examples for which a
better rule can be found in the learned set of rules. The last two columns of Table 8 show
the effect of this strategy. The highest reduction happens for pamap2, where 86.77% of
the learned rules are filtered out. On average, about 38% of the rules found in the learning
phase will be eliminated in the filter phase, even though every rule has been a local opti-
mum for at least one training example in the rule search phase. This means that there exists
a large portion of training examples which abandon their own local best rule and adopt a
local best rule of another training example as a better one. Thus, the negative effects of a
greedy search for local optima are greatly reduced by this additional simple filter.

However, the remaining numbers of rules are still extremely large. For example, for
the 5 million examples of susy, more than 2.8 million different rules are found in the first
place, which are reduced to ca. 1.6 million rules after filtering. An obvious question is
whether this large number of rules can be further reduced. While we cannot give a definite

Fig. 4 Influence of m-estimate heuristic on the classification accuracy. The x-axes and y-axes indicate the
values of m parameter of m-estimate heuristic and classification accuracy respectively

603Machine Learning (2023) 112:571–610

1 3

Table 7 Comparison between Lord and overLord on the 11 datasets, where performance differences were
noticeable. Each cell shows (from top to bottom) the runtime (in s), the average accuracy, the number of
generated rules, and the average rule length

Datasets m = 0.1 Best m

Lord overLord Lord overLord

10 waveform 0.64
0.779800
1428.2
3.2111

0.64
0.779800
1428.2
3.2111

0.59
0.811999
1065.4
2.9377

0.64
0.810600
1074.1
2.9474

13 adult 4.8
0.852053
8213.0
4.6638

5.1
0.852135
8216.1
4.6657

4.8
0.855923
7614.3
4.6864

5.2
0.855943
7618.6
4.6898

14 bank 10.5
0.894937
6666.0
4.6726

10.6
0.894915
6666.3
4.6745

10.5
0.895932
6643.2
4.6988

10.6
0.895932
6642.7
4.7014

17 connect-4 67.0
0.818627
14341.1
6.4189

68.3
0.818627
14335.8
6.4230

67.9
0.820625
14396.6
6.3927

68.6
0.820462
14391.6
6.3966

18 puc-rio 37.7
0.953427
11812.9
3.1432

37.7
0.953409
11810.9
3.1435

37.5
0.956729
10223.8
3.1842

37.9
0.956536
10280.0
3.1939

19 census 378
0.951447
19230.4
5.2372

379
0.951450
19231.4
5.2426

378
0.951447
19230.4
5.2372

379
0.951450
19231.4
5.2426

20 gas-sensor-11 49.6
0.976782
20224.5
2.0794

50.1
0.976772
20224.6
2.0799

51.9
0.977138
19878.0
2.0899

52.3
0.977124
19874.6
2.0909

21 gas-sensor-12 56.2
0.996519
17174.2
2.1239

56.5
0.996514
17164.9
2.1240

57.3
0.996548
17071.7
2.1305

57.7
0.996544
17058.0
2.1308

22 cover-type 1460
0.915249
81308.8
5.027

1493
0.915375
81338.2
5.0349

1480
0.916129
81447.3
5.0191

1497
0.916258
81491.6
5.0264

23 pamap2 6063
0.995517
16827
3.0705

7158
0.995527
16777
3.0706

6044
0.996314
14137
3.0926

7051
0.996397
14063
3.1072

24 susy 52592
0.777344
1611856
4.3078

54002
0.777346
1611940
4.3079

51218
0.786064
1201338
4.1061

52447
0.786026
1215561
4.1147

Avg. accuracy 0.901063 0.901079 0.905895 0.905752

604 Machine Learning (2023) 112:571–610

1 3

answer, we try to shed some light on this question by looking at the prediction quality with
a varying rule quality threshold.

Figure 5 depicts the classification performance of Lord against the percentage of best
rules in rule sets for the 12 medium and big datasets.12 Every data point in the figure shows
the accuracy of a rule set consisting of the p% of the rules with the highest evaluation. Even
though the increments in the first steps are larger than the increments in the later steps, we
can see that in most cases, the accuracy of Lord continues to increase with increasing sizes
of the rule sets, as can, e.g., be clearly observed for the two gas-sensor datasets, as well as
for cover-type or PUC-Rio, the most notable exception being census and bank. This implies
that even though better rules seem to contribute more to the overall predictive accuracy, the

Table 8 Reduction on the number of rules in the learning and the filtering phase

Datasets # Exs. Original # Rules Reduction
(% of Exs.)

Kept # Rules Reduction
(% of Orig.)

1 lymph 148 48 67.57 35 27.08
2 wine 178 18 89.89 16 11.11
3 vote 435 46 89.43 38 17.39
4 breast-cancel 699 70 89.99 58 17.14
5 tic-tac-toe 958 201 79.02 31 84.58
6 german 1000 472 52.80 298 36.86
7 car-eval 1728 233 86.52 218 6.44
8 hypo 3163 214 93.23 121 43.46
9 kr-vs-kp 3196 139 95.65 46 66.91
10 waveform 5000 2332 53.36 1363 41.55
11 mushroom 8124 33 99.59 26 21.21
12 nursery 12,960 752 94.20 591 21.41
13 bank 45,211 10,644 76.46 6584 38.14
14 skin 245,057 2310 99.06 2179 5.67
15 sec-mushroom 61,069 1377 97.75 476 65.43
16 adult 48,842 12,101 75.22 8507 29.70
17 connect-4 67,557 24,921 63.11 14,404 42.20
18 PUC-Rio 165,632 20,217 87.79 11,884 41.22
19 census 299,285 35,976 87.98 19,241 46.52
20 gas-sensor-11 919,438 30,669 96.66 20,422 33.41
21 gas-sensor-12 919,438 28,712 96.88 17,290 39.78
22 cover-type 581,012 143,271 74.34 82,548 42.38
23 pamap2 1,942,872 127,149 93.46 16,827 86.77
24 susy 5,000,000 2,880,375 42.40 1,611,856 44.04
Average reduction 82.64 37.93

12 The same experiments on the small datasets give similar results with the same trend but the accuracy
increase is not as smooth as that on the medium and big datasets because of fluctuations caused by the
small numbers of test examples.

605Machine Learning (2023) 112:571–610

1 3

rules that contribute to improving the classification performance are distributed throughout
the range of the ordered rule set, and that seemingly weaker rules are also necessary for
maintaining a high classification performance.

This result seems to reflect that higher quality rules which recognize usual and common
cases are not enough to discriminate all cases well. Lower quality rules (with low cover-
age and in large quantity) are responsible for recognizing rare and exceptional cases that
should also be in rule sets for better classification accuracy. This is reminiscent of the result
by Holte et al. (1989), who observed that small disjuncts (i.e., rules with a low coverage)
make up a fair percentage of the overall accuracy of a classifier, and that their removal may
be futile.

In any case, we note that the number of covering rules for an unseen example is much
smaller than the total number of rules in the rule sets, and the examination of the set of
rules that cover an example is much easier and more focused than for the complete set of
rules. When it comes to interpretation, one only has to deal with a small percentage of best
rules which recognize popular cases for general principles. In this way, the complexity of
interpreting rule sets can be reduced. In fact, unseen examples are always classified with
a single rule (cf. Definition 8), which yields a natural justification for the predicted class.
Nevertheless, clearly, interpretability is not the main focus of the Lord rule learner.

5 Conclusion

With the Lord algorithm, we have introduced a new approach to predictive rule learning in
which a locally optimal rule is found for each training example, and the best covering rule
of a new example is chosen for the classification. Although a large percentage of training
examples share their local optima after a final filtering phase, the number of rules discov-
ered by Lord is larger than that by conventional rule learners. Nevertheless, the rule sets

Fig. 5 Classification performance of Lord against the percentage of best rules remained in rule sets pro-
duced from medium and big datasets

606 Machine Learning (2023) 112:571–610

1 3

learned by Lord outperform state-of-the-art rule learners in terms of predictive accuracy.
More importantly, despite the large number of found rules, it is very efficient and can be
applied to very large databases that cause problems for its competitors. This is primarily
due to the adoption of efficient data structures, which have been developed in association
rule discovery, to a classification learning setting. Lord also features an inherently parallel
search for rules, which could be transformed to a massively parallel architecture for dealing
with big data.

We have also seen that even though better rules contribute more to the predictive accu-
racy, the rules contributing on the improvement of classification performance are distrib-
uted throughout the range of an ordered rule set, so that a further filtering of the rules
appears to be non-trivial. Although the remaining rules in a rule set after the filter step
are a local optimum for at least one training example, it is still possible that rules can be
removed without changing the performance on a given test set. A closer investigation of
this issue, as well as a method for detecting such redundant rules will help to reduce the
rule set complexity, and improve the interpretability of the found rule sets.

So far, we have not given much thought to the classification phase of the algorithm.
Currently, we use the best (according to the training set performance) rule among all rules
that cover a test example. Other rule selection methods, or possibly also voting techniques
might further improve the prediction performance. In particular, we are also considering
to adapt the method to a transductive setting, where the best rule for each test example is
learned on the fly and—if it is a new local optimum—added to the rule set. However, this
problem turns out to be harder than expected, and a straight-forward adaptation of Lord,
which for each possible class forms the best rule covering the test example, performed
worse than Lord.

Appendix: Lemma for Property 3

Lemma 1 The N-list of a k-selector-set generated with Definition 7 (ii) is identical to the
N-list of the k-selector-set generated with Definition 7 (i)

Proof We prove the lemma by induction over the selector-set length k:

1. For k = 2 , the two N-lists of 2-selector-set S = s1s2 calculated based on Definition 7 (i)
and (ii) are trivially identical because they are both generated from the same two N-lists
of single selectors s1 and s2.

2. Assume that the lemma holds for k − 1 , i.e., both, Definition 7 (i) and (ii), generate the
same N-list NLk−1 for the (k − 1)-selector-set S = s1s2 ⋯ sk−1 . So we have:

(*) that NLk−1 contains N-nodes (associated with selector sk−1) which convey infor-
mation about the number of all paths (from the tree root to leaves) which contain all
the selectors in the sequence s1 , s2 , ..., sk−1 going up to the root.

3. We need to prove that the lemma also holds for k. In other words, we prove that NLk
calculated from NLk−1 and N-list NL of (k − 1)-selector-set s1s2 ⋯ sk−2sk via Equation (2)
and NL′

k
 calculated from NLk−1 and N-list NL′ of selector sk via Equation (2) are identi-

cal. We have:

607Machine Learning (2023) 112:571–610

1 3

(**) that NLk is NL′
k
 or a subset of NL′

k
 because they both share the same input N-list

NLk−1 in the calculation method (2), and NL is a subset of NL′.
(***) that NL′

k
 contains N-nodes (associated with selector sk) which convey infor-

mation about the number of all paths which contain all the selectors in sequence s1 ,
s2 , ..., sk going up to the root, because NL′

k
 is formed by (2) with the following two

N-lists:

– NLk−1 with property (*) at step 2
– NL′ contains all N-nodes associated with selector sk.

 Assume now that the subset relation in (**) is proper, i.e. that there exists an N-node
in NL′

k
 that is not in NLk . In other words, the sum of the frequency counts of all nodes

in NLk is less than that of NL′
k
 . However, (***) implies that the sum of the frequency

counts of all nodes in NL′
k
 is the support count of the k-selector-set s1s2 ⋯ sk . This

infers that Property 3 does not hold for N-lists generated with Definition 7(i), which is
a contradiction. Therefore, NLk = NL�

k
 , and the lemma holds. ◻

Note that this is not a trivial result. In fact, Property 3 does not necessarily hold for all pos-
sible ways of joining two N-lists. Some counter-examples can be found in Fig. 1:

Example 1 s12s22 → {⟨2, 4⟩∶1, ⟨14, 17⟩∶2} s32s2 → {⟨13, 18⟩∶2} The N-list of selector-
set s12s32s22s2 generated from the above N-lists of s12s22 and s32s2 using equation (2) of
Definition 7 is {⟨13, 18⟩∶2} . This does not correctly capture the number of paths that con-
tain all four selectors, because while two paths go through s12s22s2 in the right-hand branch
of the PC-tree, only the center path also goes through s32 . The correct N-list would thus be
{⟨13, 18⟩∶1}.

Example 2 s12s22 → {⟨2, 4⟩∶1, ⟨14, 17⟩∶2} s11 → {⟨5, 3⟩∶1;⟨8, 10⟩∶3;⟨18, 16⟩∶1} The
N-list of selector-set s12s11s22 generated from the above N-lists of s11 and s12s22 using equa-
tion (2) of Definition 7 is {⟨2, 4⟩∶1;⟨14, 17⟩∶1} which does not correctly capture the num-
ber of paths containing all three selectors. The reason is that two of the five paths that reach
s11 in the PPC-tree go through s22 , but neither of them continues through s12 . The correct
N-list would thus be {}.

Acknowledgements The authors are very grateful to the editor and three very thorough reviewers, whose
detailed comments and suggestions substantially helped to improve this paper.

Author contributions Van Quoc Phuong Huynh conceived the basic idea behind the proposed algorithm
and implemented it. Johannes Fürnkranz placed the algorithm in the context of prior work in rule learning.
All authors contributed to the design of the experiments, the interpretation of the results and the write-up of
the paper.

Funding Open access funding provided by Johannes Kepler University Linz.

Data availability The datasets we used can be found at https:// archi ve. ics. uci. edu/ ml/ index. php.

Code availability The code of the Lord algorithm can be found at https:// github. com/ vqphu ynh/ LORD.

Declarations

Conflict of Interest All auhtor declares no conflict of Interest.

https://archive.ics.uci.edu/ml/index.php
https://github.com/vqphuynh/LORD

608 Machine Learning (2023) 112:571–610

1 3

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Agrawal, R., Imieliński, T. & Swami, A. (1993). Mining association rules between sets of items in large
databases. In Proceedings of the 1993 ACM SIGMOD International Conference on Management of
Data (pp. 207–216).

Atzmüller, M. (2015). Subgroup discovery. Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, 5(1), 35–49.

Atzmüller, M., & Puppe, F. (2006). SD-Map—A Fast Algorithm for Exhaustive Subgroup Discovery. In J.
Fürnkranz, T. Scheffer, & M. Spiliopoulou (Eds.), Proceedings of the 10th European Conference on
Principles and Practice of Knowledge Discovery in Databases (PKDD) (pp. 6–17). Springer.

Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W., & Vance, P. H. (1998). Branch-and-
price: Column generation for solving huge integer programs. Operations Research, 46(3), 316–329.

Boley, M., Teshuva, S., Bodic, P. L., & Webb G. I. (2021). Better short than Greedy: Interpretable models
through optimal rule boosting. In C. Demeniconi & I. Davidson (Eds.), Proceedings of the 2021 SIAM
International Conference on Data Mining (SDM) (pp. 351–359). SIAM.

Cestnik, B. (1990). Estimating probabilities: A crucial task in machine learning. In L. Aiello (Ed.), Proceed-
ings of the 9th European Conference on Artificial Intelligence (ECAI90) (pp. 147–150). Pitman.

Cheng, H., Yan, X., Han, J., & Philip, S. Y. (2008). Direct discriminative pattern mining for effective clas-
sification. In: Proceedings of 24th IEEE International Conference on Data Engineering (ICDE) (pp.
169–178). IEEE.

Clark, P., & Boswell, R. (1991). Rule induction with CN2: Some recent improvements. In Proceedings of
the 5th European Working Session on Learning (EWSL-91) (pp. 151–163). Springer-Verlag.

Clark, P., & Niblett, T. (1989). The CN2 induction algorithm. Machine Learning, 3(4), 261–283.
Cohen, W. W. (1995). Fast effective rule induction. In A. Prieditis, & S. Russell (Eds.), Proceedings of the

12th International Conference on Machine Learning (ML-95) (pp. 115–123).Morgan Kaufmann.
Cohen, W. W., & Singer, Y. (1999). A simple, fast, and effective rule learner. In Proceedings of the 16th

National Conference on Artificial Intelligence (AAAI99) (pp. 335–342). AAAI/MIT Press.
Dash, S., Günlük, O., & Wei, D. (2018). Boolean Decision Rules via Column Generation. In S. Bengio, H.

M. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, & R. Garnett (Eds.), Advances in Neural
Information Processing Systems 31 (NeurIPS) (pp. 4660–4670). Canada: Montréal.

Dembczyński, K., Kot Lowski, W., & lowiński, R. S. (2010). ENDER: a statistical framework for boosting
decision rules. Data Mining and Knowledge Discovery, 21(1), 52–90.

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learn-
ing Research, 7, 1–30.

Deng, Z.-H., & Lv, S.-L. (2015). PrePost+: An efficient N-lists-based algorithm for mining frequent item-
sets via children–parent equivalence pruning. Expert Systems with Applications, 42(13), 5424–5432.

Deng, Z.-H., Wang, Z. H., & Jiang, J. J. (2012). A new algorithm for fast mining frequent itemsets using
N-lists. Science China Information Sciences, 55(9), 2008–2030.

Dua, D., & Graff, C. (2017). UCI machine learning repository.
Džeroski, S., Cestnik, B., & Petrovski, I. (1993). Using the m-estimate in Rule Induction. Journal of Com-

puting and Information Technology, 1, 37–46.
Fayyad, U., & Irani, K. (1993). Multi-interval discretization of continuous-valued attributes for classifi-

cation learning. In Proceedings of the 13th International Joint Conference on Artificial Intelligence
(IJCAI) (pp. 1022–1029).

Fensel, D., & Wiese, M. (1993). Refinement of rule sets with JoJo. In P. Brazdil (Ed.), Proceedings of the
6th European Conference on Machine Learning (ECML-93). Springer (pp. 378–383).

Filip, J., & Kliegr, T. (2019). PyIDS - Python Implementation of Interpretable Decision Sets Algorithm by
Lakkaraju, et al. (2016). In A. Soylu, S. Moschoyiannis, G. Governatori, M. Simkus, P. Stefaneas, A.

http://creativecommons.org/licenses/by/4.0/

609Machine Learning (2023) 112:571–610

1 3

Steen, & A. Giurca (Eds.), Proceedings of the 13th RuleML+RR 2019 Doctoral Consortium and Rule
Challenge. CEUR Workshop Proceedings 2438. Bolzano.

Fürnkranz, J. (1999). Separate-and-conquer rule learning. Artificial Intelligence Review, 13(1), 3–54.
Fürnkranz, J., & Flach, P. A. (2005). ROC ‘n‘ rule learning - towards a better understanding of covering

algorithms. Machine Learning, 58(1), 39–77.
Fürnkranz, J., Gamberger, D., & Lavrač, N. (2012). Foundations of rule learning. Springer.
Fürnkranz, J., & Widmer, G. (1994). Incremental reduced error pruning. In W. W. Cohen, & H. Hirsh

(Eds.),Proceedings of the 11th International Conference on Machine Learning (ML-94) (pp. 70–77).
Morgan Kaufmann.

García, S., Luengo, J., Sáez, J. A., López, V., & Herrera, F. (2013). A survey of discretization techniques:
Taxonomy and empirical analysis in supervised learning. IEEE Transactions on Knowledge and Data
Engineering, 25(4), 734–750.

Guidotti, R., Monreale, A., Ruggieri, S., Pedreschi, D., Turini, F., & Giannotti, F. (2018). Local rule-
based explanations of black box decision systems. arXiv 1805.10820.

Han, J., Pei, J., Yin, Y., & Mao, R. (2004). Mining frequent patterns without candidate generation: A
frequent-pattern tree approach. Data Mining and Knowledge Discovery, 8(1), 53–87.

Hipp, Jochen, Güntzer, Ulrich, & Nakhaeizadeh, Gholamreza. (2000). Algorithms for association rule
mining—A general survey and comparison. ACM SIGKDD Explorations Newsletter, 2(1), 58–64.

Holte, R., Acker, L., & Porter, B. (1989). Concept learning and the problem of small disjuncts. In Pro-
ceedings of the 11th International Joint Conference on Artificial Intelligence (IJCAI-89) (pp. 813–
818). Morgan Kaufmann.

Huerta, R., Mosqueiro, T., Fonollosa, J., Rulkov, N. F., & Rodriguez-Lujan, I. (2016). Online decorrela-
tion of humidity and temperature in chemical sensors for continuous monitoring. Chemometrics
and Intelligent Laboratory Systems, 157, 169–176.

Huynh, V. Q. P., & Küng, J. (2020). FPO tree and DP3 algorithm for distributed parallel Frequent Item-
sets Mining. Expert Systems with Applications, 140, 112874.

Janssen, F., & Fürnkranz, J. (2009). A re-evaluation of the over-searching phenomenon in inductive rule
learning. In H. Park, S. Parthasarathy, H. Liu, & Z. Obradovic (Eds.), Proceedings of the SIAM
International Conference on Data Mining (SDM-09) (pp. 329–340). Sparks, Nevada.

Janssen, F., & Fürnkranz, J. (2010). On the quest for optimal rule learning heuristics. Machine Learning,
78(3), 343–379.

Klösgen, W. (1996). Explora: A multipattern and multistrategy discovery assistant. In Advances in
knowledge discovery and data mining (pp. 249–271).

Lakkaraju, H., Bach, S. H., & Leskovec, J. (2016). Interpretable decision sets: A joint framework for
description and prediction. In B. Krishnapuram, M. Shah, A. J. Smola, C. C. Aggarwal, D. Shen, &
R. Rastogi (Eds.), Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD-16) (pp. 1675–1684). ACM.

Letham, B., Rudin, C., McCormick, T. H., & Madigan, D. (2015). Interpretable classifiers using rules
and Bayesian analysis: Building a better stroke prediction model. The Annals of Applied Statistics,
9(3), 1350–1371.

Li, W., Han, J., & Pei, J. (2001). CMAR: Accurate and efficient classification based on multiple
class-association rules. In Proceedings of the IEEE Conference on Data Mining (ICDM-01) (pp.
369–376).

Liu, B., Hsu, W., & Ma, Y. (1998). Integrating classification and association rule mining. In R. Agrawal,
P. Stolorz, & G. Piatetsky-Shapiro (Eds.), Proceedings of the 4th International Conference on
Knowledge Discovery and Data Mining (KDD-98) (pp. 80–86).

Liu, B., Ma, Y., & Wong, C.-K. (2000). Improving an exhaustive search based rule learner. In D. A. Zighed,
H. J. Komorowski, & J. M. Zytkow (Eds.),Proceedings of the 4th European Conference on Principles
and Practice of Knowledge Discovery in Databases (PKDD-2000), Lyon, France (pp. 504–509).

Lundberg, S. M., Erion, G. G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., Katz, R., Himmelfarb,
J., Bansal, N., & Lee, S. (2019). Explainable AI for trees: From local explanations to global under-
standing. arXiv 1905.04610.

Lundberg, S. M., & Lee, S. (2017). A unified approach to interpreting model predictions. In I. Guyon,
U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan, & R. Garnett (Eds.),
Advances in neural information processing systems 30 (pp. 4765–4774). Long Beach.

Michalski, R. S. (1969). On the quasi-minimal solution of the covering problem. In Proceedings of
the 5th International Symposium on Information Processing (FCIP-69) (Vol. A3, pp. 125–128)
(Switching Circuits).

610 Machine Learning (2023) 112:571–610

1 3

Michalski, R. S. (1973). AQVAL/1—Computer implementation of a variable-valued logic system VL1
and examples of its application to pattern recognition. In Proceedings of the 1st International Joint
Conference on Pattern Recognition (pp. 3–17).

Michalski, R. S. (1983). A theory and methodology of inductive learning. Artificial Intelligence, 20(2),
111–162.

Muggleton, S. H. (1995). Inverse entailment and progol. In New Generation Computing 13.3,4. Special
Issue on Inductive Logic Programming, (pp. 245–286).

Platt, J. (1998). Fast training of support vector machines using sequential minimal optimization. In B.
Schoelkopf, C. Burges, & A. Smola (Eds.), Advances in kernel methods - support vector learning.
MIT Press.

Quinlan, J. R. (1990). Learning logical definitions from relations. Machine Learning, 5, 239–266.
Quinlan, J. R., & Cameron-Jones, R. M. (1995). Oversearching and layered search in empirical learning.

In C. Mellish (Ed.), Proceedings of the 14th International Joint Conference on Artificial Intelli-
gence (IJCAI-95) (pp. 1019–1024). Morgan Kaufmann.

Rapp, M., Loza Mencía, E., Fürnkranz, J., Nguyen, V.-L., & Hüllermeier, E. (2020). Learning gradient
boosted multi-label classification rules. In F. Hutter, K. Kersting, J. Lijffijt, & I. Valera (Eds.), Pro-
ceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases
(ECML/PKDD), Part III (pp. 124–140). Springer-Verlag.

Reiss, A., & Stricker, D. (2012). Introducing a new benchmarked dataset for activity monitoring. In Pro-
ceedings of the 16th IEEE International Symposium on Wearable Computers (pp. 108–109). IEEE.

Ribeiro, M. T., S. Singh, and C. Guestrin (2016). ‘Why Should I Trust You?’: Explaining the Predictions of
Any Classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD). Ed. by B. Krishnapuram, M. Shah, A. J. Smola, C. C. Aggarwal,
D. Shen, and R. Rastogi. San Francisco, CA, USA: ACM, pp. 1135–1144.

Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use
interpretable models instead. Nature Machine Intelligence, 1, 206–215.

Setzu, M., Guidotti, R., Monreale, A., Turini, F., Pedreschi, D., & Giannotti, F. (2021). GLocalX - From
local to global explanations of black box AI models. Artificial Intelligence, 294, 103457.

Su, G., Wei, D., Varshney, K. R., & Malioutov, D. M. (2016). Learning sparse twolevel boolean rules. In
Proceedings of the 26th IEEE International Workshop on Machine Learning for Signal Processing
(MLSP) (pp. 1–6). IEEE.

Wang, F., & Rudin, C. (2015). Falling rule lists. In Proceedings of the 18th International Conference on
Artificial Intelligence and Statistics (AISTATS) (pp. 1013–1022). PMLR.

Wang, J., & Karypis, G. (2006). On mining instance-centric classification rules. IEEE Transactions on
Knowledge and Data Engineering, 18(11), 1497–1511.

Wang, T., Rudin, C., Doshi-Velez, F., Liu, Y., Klampfl, E., & MacNeille, P. (2017). A Bayesian frame-
work for learning rule sets for interpretable classification. The Journal of Machine Learning Research,
18(1), 2357–2393.

Weiss, S. M., & Indurkhya, N. (2000). Lightweight rule induction. In P. Langley (Ed.), Proceedings of the
17th International Conference on Machine Learning (ICML), Stanford, CA (pp. 1135–1142).

Wohlrab, L., & Fürnkranz, J. (2011). A review and comparison of strategies for handling missing values in
separate-and-conquer rule learning. Journal of Intelligent Information Systems, 36(1), 73–98.

Yang, H., Rudin, C., & Seltzer, M. (2017). Scalable Bayesian rule lists. In Proceedings of the International
Conference on Machine Learning (ICML) (pp. 3921–3930). PMLR.

Yin, X., & Han, J. (2003). CPAR: Classification based on predictive association rules. In Proceedings of the
SIAM Conference on Data Mining (SDM-03) (pp. 331–335).

Zighed, D. A., Rabaséda, S., & Rakotomalala, R. (1998). FUSINTER: A method for discretization of con-
tinuous attributes. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
6(3), 307–326.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	Efficient learning of large sets of locally optimal classification rules
	Abstract
	1 Introduction
	2 Locally optimal rules
	2.1 Problem definition and notational conventions
	2.2 Learning rule sets
	2.3 Locally optimal rule learning
	2.4 Related work
	2.4.1 Covering algorithms
	2.4.2 Associative classification
	2.4.3 Modern rule learning algorithms

	3 The LORD algorithm
	3.1 Initialization
	3.2 PPC-trees
	3.3 N-list generation
	3.4 Rule learning
	3.5 R-tree
	3.6 Example
	3.7 Complexity analysis

	4 Experiments
	4.1 Experimental setup
	4.2 Predictive accuracy
	4.3 Runtime comparison
	4.4 Rule complexity
	4.5 Influence of discretization
	4.6 Scalability analysis
	4.7 Influence of m-estimate Heuristic
	4.8 Analysis of hill-climbing variants
	4.9 Analysis of rule filtering

	5 Conclusion
	Acknowledgements
	References

