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Abstract
Despite the vast success of standard planar convolutional neural networks, they are not the 
most efficient choice for analyzing signals that lie on an arbitrarily curved manifold, such 
as a cylinder. The problem arises when one performs a planar projection of these signals 
and inevitably causes them to be distorted or broken where there is valuable information. 
We propose a Circular-symmetric Correlation Layer (CCL) based on the formalism of 
roto-translation equivariant correlation on the continuous group S1 ×ℝ , and implement it 
efficiently using the well-known Fast Fourier Transform (FFT) algorithm. We showcase 
the performance analysis of a general network equipped with CCL on various recognition 
and classification tasks and datasets.

Keywords Equivariant neural networks · Panoramic image processing · LiDAR 
segmentation · Fast Fourier transform (FFT)

1 Introduction

Planar convolutional neural networks, widely known as CNNs, are characterized by pat-
tern-matching kernels that can identify motifs in the signal residing on a 2D plane. How-
ever, various applications exist in which signals lie on some curved planes, e.g., tempera-
ture and climate data on the surface of the (spherical) earth, and 360◦−panoramic images 
and videos from panoramic cameras for 3D object classification, change detection and 
LiDAR segmentation. Analyzing signals in these applications is achievable by using the 
planar projection of them. Specifically, for 360◦−panoramic image processing, which is 
the interest of this study, the image is usually unwrapped to a standard 2D image to be 
treated as an input feature map. However, the resulting arbitrary breakage of the signal at 
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the boundary may be destructive in object-detection tasks in terms of both information lost 
at the boundary and lack of equivariance to noticeable shifts. (see Fig. 1).

A convolution kernel produces a single value associated with the region in the image 
covered by it at a specific shift. However, the area at the boundaries of the image is 
neglected as the kernel shift needs to stop at a margin equal to half of the size of the ker-
nel. This is detrimental for panoramic image processing because of potentially valuable 
information that exists in the border of the image (The car in Fig 1). In addition, the ever-
shrinking size of the middle layer feature maps prevents the formation of deeper networks. 
Zero-padding applied to the out-of-image regions solves the latter issue, but the introduced 
distortion propagates inward from the boundaries as we go deeper in the CNN. Other proxy 
techniques trying to alleviate the border information loss problem exists, such as input 
padding [e.g., Shi et  al. (2015)], but they increase the computational time and memory 
consumption.

Furthermore, a commonly neglected shortcoming of CNN becomes noticeable in the 
case of panoramic image processing where desired outputs should be immune to arbitrarily 
large rolling of the input image. This limitation is related to what is known as invariance 
and equivariance properties of the neural network as a function. For defining these proper-
ties, we consider a family, or a “group”, of transformations (e.g., rotations, or translations) 
of input and output to a given layer of the neural network. The elements of the group can 
“act” on the input and output of each layer in some specific way. The neural network is 
invariant to the action of the group if transformations of the input do not change the output. 
Otherwise, it is equivariant if as we transform the input, the output is transformed accord-
ing to some other action of the group. The convolution layers are empirically known to be 
invariant to small translations of their input image, but they are not completely immune to 
large shifts nonetheless (Goodfellow et al., 2009; Schmidt & Roth, 2012; He et al., 2015; 
Lenc & Vedaldi, 2015; Jaderberg et al., 2015; Cohen & Welling, 2016; Dieleman et al., 
2016). In panoramic image processing, which can be achieved by a distortion-less pro-
jection of a cylindrical image onto a rectangular grid, arbitrary rotation around the prin-
cipal axis of a cylindrical image manifests itself as a horizontal translation in a 2D grid. 

Fig. 1  Object breakage in 360◦-panoramic image unwrapping. Top: The car has been subjected to image 
cut. Bottom: Cognition tasks should be invariant to shifting of the object on the surface the cylinder
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Therefore, utilizing planar CNN, with the aforementioned limitation, will not guarantee 
invariance to such transformation when required. Figure 1 (bottom) shows an example of 
this phenomenon. The object (car) identification task should be invariant to rotation around 
the principal axis. These issues have been heretofore addressed by creating more training 
data using multiple circularly shifted versions of the original data, i.e., data augmentation 
[see Lo et al. (2002)]. Although this approach seems adequate to some extent, it increases 
the training time by inflicting sample complexity, does not always guarantee invariance 
(Elesedy & Zaidi, 2021), and could have an adversary effect on the kernels’ representa-
tional capacity as it exposes them to more border areas.

Nevertheless, because the building block of CNN (i.e., convolution or cross-correlation 
layer) has the potential equivariance property, we may exploit them to construct a network 
suitable for the translation-invariant tasks such as object detection in Fig.  1. Therefore, 
for a systematic treatment of analyzing the 360◦−panoramic data, we propose a circular-
symmetric correlation Layer (CCL) based on the formalism of roto-translation equivariant 
correlation on the continuous group S1 ×ℝ —a group constructed of the unit circle and the 
real line. We implement this layer efficiently using the well-known Fast Fourier Transform 
(FFT) and discrete cosine transform (DCT) algorithms. We discuss how the FFT yields 
the exact calculation of the correlation along the panoramic direction due to its circular 
symmetry and guarantees the invariance to circular shift. The DCT provides an improved 
approximation to transnational symmetry compared to what we observe in CNNs. We 
showcase the performance analysis of a general network equipped with CCL on various 
recognition and classification tasks and datasets. The PyTorch package implementation of 
CCL is provided in the supplementary. Our contributions are as follows:

• Theoretical treatment of circular-symmetric correlation on the surface of a cylinder.
• Efficient implementation of CCL based on FFT and DCT.
• Experimental results showing competitive performance of neural networks equipped 

with CCL.

2  Related work

The outstanding ability of CNN in processing spatially and temporally correlated signals 
comes from the fact that it exploits the translational symmetry and equivariance property 
of its correlation layers. In other words, a trained kernel should be able to detect a particu-
lar pattern regardless of its specific location in the image. Due to this compelling property, 
there has been an increasing attempt to generalize the idea of CNN to other spaces and 
symmetry groups (Gens & Domingos, 2014; Olah, 2014; Dieleman et al., 2015; Gutten-
berg et al., 2016; Dieleman et al., 2016; Cohen & Welling, 2017; Ravanbakhsh et al., 2016; 
Zaheer et  al., 2017; Ravanbakhsh et  al., 2017; Worrall et  al., 2017; Maron et  al., 2020; 
Dym & Maron, 2021). Theoretical guarantee for generalization benefit of equivariant mod-
els was treated in Elesedy and Zaidi (2021).

Most of these studies focus on discrete groups. For example, the investigation of discrete 
90◦ rotations acting on planar images in the work of Cohen and Welling (2016), permuta-
tions of nodes in graphs in Maron et al. (2019), or permutations of points in the point cloud 
in Zaheer et al. (2017). Recent works [such as Cohen et al. (2018), Cohen et al. (2019)] 
have been investigating equivariance to continuous groups and generalized the CNN to 
various spaces. Kondor and Trivedi (2018) and Cohen et  al. (2018) use the generalized 
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Fourier transform for group correlation and provided a formalism to efficiently implement 
these layers. Circular symmetry, which is the interest of this paper, has also been empiri-
cally studied in Schubert et al. (2019), Papadakis et al. (2010) and Kim et al. (2020), but 
none of these works addressed the issue in a formal analytic way.

From another perspective, vision transformers (ViT) (Dosovitskiy et al., 2020) are mod-
els with good potential in this context. The vision transformer, which is used for image 
classification, employs a transformer architecture over fixed-size patches of the image. Lin-
ear embeddings of the patches are added to the positional embeddings and then are fed to 
the transformer encoder along with a learnable classification token for classification tasks. 
The transformer model can take into account both the locality in the data and also any 
other connection that may exist between patches.

3  Circular‑symmetric correlation layer

To learn a function that predicts a quantity based on a spatially correlated signal such as an 
image, we need to perform cross-correlation (correlation, in short). Specifically, we slide a 
kernel (filter) throughout the signal and measure the similarity. We have the familiar case 
of a classical planar ℝ2 correlation, in which the output value at translation x ∈ ℝ

2 is com-
puted as an inner product between the input and a kernel, translated to x. However, cor-
relation is not limited to signals on ℝ2 , and in our case, we are interested in images on the 
surface of a cylinder. We begin our discussion by introducing the correlation on the surface 
of a cylinder. To do so, we start with defining its mathematical building blocks.

3.1  Preliminaries and notation

Cylinder We consider the lateral surface of a cylinder, a manifold, which is constructed 
by the combination of two other manifolds—a circle and a line segment.1 The unit circle 
S1 , defined as the set of points z ∈ ℝ

2 with norm 1, is a one-dimensional manifold that 
can be parameterized by polar coordinate � ∈ [0, 2�] . Cartesian product of S1 with a line 
ℝ (or, a line segment (−a, a) ) constructs a two-dimensional manifold, known as a cylin-
der 𝕏 = S1 ×ℝ (or, S1 × (−a, a) in case of having a line segment). We characterize the set 
of points on the lateral surface of the cylinder by cylindrical coordinates � ∈ [0, 2�] and 
z ∈ ℝ and define circular-symmetric signals and convolution kernels as continuous func-
tions on this surface f ∶ 𝕏 ↦ ℝ

K , where K is the number of channels.
Rotation and translation on cylinder surface The set of rotations around and transla-

tions along the z-axis is a subgroup of SE(3) , the “special Euclidean group”, denoted as 
G ≤ SE(3) and is isomorphic to � , i.e., G = S1 ×ℝ . The action of an element � in G is 
a pair (R� , �) , where R� belongs to a subgroup of the “special orthogonal group” SO(3) 
representing a rotation by � around z-axis, and a translation by � ∈ ℝ along z-axis. The 
representation of G corresponds to the set of all 4 × 4 transformation matrices of the form

(1)

1 It is either an infinite line or a line segment without its endpoints which is also a manifold.
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where R� is a 3D rotation matrix. In this study, we consider filters and functions on the 
cylindrical surface corresponding to applying the roto-translation operator L� which takes a 
function f ∶ 𝕏 ↦ ℝ

K and produces a shifted version by rotating it around and translating it 
along the principal axis:

As we explained earlier, since G is a group and groups contain inverses, for �, �� ∈ G we 
have L��� = L�L�� . We show this using inverse and associative properties of groups:

3.2  Correlation on cylinder

To define the correlation we begin with the established definition of the inner product. The 
inner product on the vector space of cylindrical signals is characterized:

where the integration measure dx denotes the Haar measure (invariant integration meas-
ure) on the lateral surface of the cylinder and it is equal to d�dz in cylindrical coordinate. 
Due to the invariance of the measure, the value of the integral of a function affected by 
any � ∈ G remains the same, namely, ∫

�
f (�x)dx = ∫

�
f (x)dx for all � ∈ G . Using the inner 

product in (4), we define the correlation of signals and filters on the surface of the cylinder. 
Given a point on the cylinder x ∈ � , a transformation on the subgroup of SE(3) , � ∈ G , and 
functions f(x) and h(x), the correlation is defined:

Note that the correlation in (5) is also equivalent to ⟨f , L�−1h⟩ as the value of the correla-
tion at a shift � is equal to the inner product of f and h, where either f is shifted by � , or h 
is shifted by the inverse of � ( �−1 ). Therefore, if we express the point x as x = (�, z) , the 
transformation as � = (� , �) , and the Haar measure as dx = d�dz , the correlation in (5) can 
be rewritten as:

where the integral with respect to � is the circular cross-correlation. It is worthwhile to 
mention that the resulting correlation function lies on the group G which is isomorphic to 
the space � that the initial functions have lied on, namely S1 ×ℝ.

(2)[L� f ](x) = f (�−1x).

(3)
[L��� f ](x) = f

(
(���)−1x

)
= f

(
��−1(�−1x)

)

= [L�� f ]
(
�−1x

)
= [L�L�� f ](x).

(4)⟨f , h⟩ = ∫
�

K�

k=1

fk(x) hk(x)dx,

(5)[f ⋆ h](𝜉) = ⟨L𝜉 f , h⟩ = ∫
�

K�

k=1

fk(𝜉
−1x)hk(x)dx.

(6)

[f ⋆ h](𝜉) = ⟨L𝜉 f , h⟩

= ∫
ℝ
∫

2𝜋

0

K�

k=1

fk(𝜑 − 𝜓 , z − 𝜈) hk(𝜑 − 𝜓 , z − 𝜈)d𝜑dz,
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3.3  Equivariance of correlation layers

For the correlation in (6), defined in terms of the roto-translation operator L� , we can show 
the crucial equivariance property known for all convolution and correlation layers. We 
express mathematically what we informally stated earlier.

Group actions: for a set of points � , we have a group G that acts on � . This means that 
for each element � ∈ G , there exist a transformation T� ∶ � → � corresponding to group 
action x ↦ T�(x) . We showed this simply as �x to simplify notation. As we have seen ear-
lier, the action of G on � extends to functions on � (induced action) and that is what we 
have denoted as the operator L� ∶ f ↦ f � which is f �(x) = [L� f ](x) = f (�−1x).

Equivariance: equivariance is the potential property of a map between functions on a 
pair of spaces with respect to a group acting on these spaces through the group action.

Definition 1 Let �1 , �2 be two sets with group G acting on them. Consider V1 and V2 as 
the corresponding vector spaces of functions defined on these sets, and L� and L′

�
 as the 

induced actions of G on functions. We say that a map Φ ∶ V1 → V2 is G–equivariant if

Considering that the map in our case corresponds to the cross-correlation function we 
have defined on the cylindrical surface in (5), its equivariance with respect to the action of 
the group G = S1 ×ℝ can be demonstrated as follows:

Theorem 1 Cross-correlation on lateral surface of a cylinder is equivariant to the action of 
the group S1 ×ℝ.

Proof Given that the group G of transformations on the cylinder surface is isomorphic to 
the set of points on the cylindrical manifold, we have:

◻ where [h ⋆ .](𝜉) is the cross-correlation function, and L� is a transformation operator. 
Note that in our case L� = L�

�
 . Equivariance can be represented graphically by commuta-

tive diagram as:

Φ(L�(f )) = L�
�
(Φ(f )) ∀f ∈ V1, ∀� ∈ G.

[h ⋆ L𝜔f ](𝜉)
by (5)
= ⟨L𝜉h, L𝜔f ⟩ = ⟨L𝜔−1L𝜉h, f ⟩

by (3)
= ⟨L𝜔−1𝜉h, f ⟩ = [h ⋆ f ](𝜔−1𝜉)

by (2)
= [L𝜔[h ⋆ f ]](𝜉),
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3.4  Implementing CCL using FFT

Computing cross-correlation and convolution using the Fast Fourier Transform (FFT) is 
known to be more efficient than their direct calculation. This is an important result of the 
Convolution theorem, according to which, the cross-correlation between two signals is 
equal to the product of the Fourier transform of one signal multiplied by the complex con-
jugate of Fourier transform of the other signal, or mathematically, �f ∗ g = f̂ ⊙ ĝ , where ⊙ 
is the element-wise product. Fourier transform is a linear projection of a function onto a set 
of orthogonal basis functions. For the real line ( ℝ ) and the circle ( S1 ), these basis functions 
are the familiar complex exponentials exp(�n�) , where � =

√
−1.

The input of the CCL is the spatial signal f on � , sampled on a discrete grid of the cylin-
drical coordinate (�, z) . This signal is periodic in � due to the 2D image being wrapped 
around a cylindrical manifold, and it is finite along z. Therefore, the convolution theorem 
holds for the dimension along unwrapped � , and it is appropriate to use FFT for imple-
menting the correlation in this dimension. However, we do not have the same periodicity 
in the z dimension. Hence, we use another set of basis functions (i.e., cosine waves), and 
as a consequence, we use discrete cosine transform (DCT) in the z dimension. As opposed 
to FFT, which is related to Fourier series coefficients of a periodically extended sequence, 
DCT (Muchahary et al., 2015) is associated with Fourier series coefficients of a periodi-
cally and symmetrically extended sequence, yields a continuous extension at the bounda-
ries. As shown in Fig. 2 for a 360◦−panoramic image, by applying FFT along unwrapped 
� a circular symmetry is evoked along the horizontal axis, and by applying DCT along z 
dimension, a reflection symmetry is evoked along the vertical axis, which imply smooth 
boundaries in both dimensions. We will show in the experiments that the usage of DCT 
in this setting benefits the overall performance of the deep learning module in terms of 
vertical translation. We compute DCT by using N-FFT (Makhoul, 1980) in which a signal 
f =

[
fn ∣

N
n=1

]
 is organized as f̂ =

[
f2n−1 ∣

N∕2

n=1
, fN−2n+2 ∣

N∕2

n=1

]
 and FFT is applied to the result-

ing signal:

where ⊙ and ℜ denote element-wise multiplication and real part, respectively, and e
−j�n

2N  is a 
half-sample shift. The CCL class computation graph is summarized in Algorithm 1.

DCT(f ) = ℜ

([
2e

−j𝜋n

2N ∣N
n=1

]
⊙ FFT(f̂ )

)
,

Fig. 2  360◦−panoramic image with circular symmetry along the horizontal axis (unwrapped � ) and reflec-
tion symmetry along the vertical axis which are evoked by FFT and DCT, respectively
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3.5  Computational complexity of CCL vs. CNN

The computational complexity of applying a Conv2d filter with kernel size K in a CNN 
to a panoramic image of size H ×W is O(WHK2) , whereas for CCL is O(WH log2 W) and 
is independent of the kernel size. For a typical panoramic image of width W = 1024 with 
kernel size K = 5 , log2 W < K2 and therefore CCL performs relatively faster. This becomes 
more evident when using larger kernel sizes (e.g., in favor of a shallower network) or in 
deeper layers where kernel size becomes relatively larger w.r.t. image dimensions after 
applying pooling layers.

4  Experiments

We begin our experiments by investigating the effect of discretizing the continuous con-
volution in (6). We then demonstrate the accuracy and effectiveness of the CCL layer in 
comparison with the standard convolution layer by evaluating it over a couple of well-
known datasets such as MNIST and CIFAR10. Finally, we provide application examples 
for adopting CCL in designing neural networks, e.g., 3D object classification using a 360◦−
panoramic projection of the object on a cylindrical surface, change detection, and LiDAR 
segmentation.

4.1  Discretization error of equivariant layer

In our attempt to design a group equivariant neural layer, we started by assuming the con-
tinuous group S1 ×ℝ . However, for implementation, we need to discretize each function 
and group with a specific resolution. As a result of discretization of signal, correlation ker-
nel, and continuous rotation group, the equivariance property does not hold exactly ( i.e., 
we cannot exactly prove [L𝜉 f ] ⋆ g = L𝜉[f ⋆ g] ). Furthermore, when using more than one 
layer, essentially a network, a moderate discretization error could propagate through the 
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network. Therefore, it is necessary to examine the impact of discretization on the equivari-
ance properties of the network.

To this aim, we test the equivariance of CCL by sampling N = 1000 random input fea-
ture maps fn with 10 input channels, and for each feature map we sample a rotation � ∈ 
[0, 2�] . To create and compare both sides of the above-mentioned equivariance equality, 
we first shift the input feature map before passing it through the network, and then we 
shift the output feature map of the intact input. We compute the discretization error as 
� =

1

N

∑N

n=1
std

�
L�nΦ(fn) − Φ(L�n fn)

�
∕std

�
Φ(fn)

�
 , where Φ(.) is a composition of CCL cor-

relation layers with randomly initialized filters interleaved with ReLU non-linearity. As we 
can see in Fig. 3, the approximation error is in the order of 10−7 and although it grows with 
the resolution, it decreases when we add more layers with ReLU. Furthermore, the increase 
rate with resolutions of the image seems to be quite low and saturating.

4.2  Invariance analysis of networks built with CCL

We first evaluate the equivariance performance of a neural network equipped with CCL 
to rotations of the input along the z-axis. We propose a version of MNIST and CIFAR10 
datasets called Rolled MNIST ( RMNIST ) and Rolled CIFAR10 ( RCIFAR10 ), respec-
tively, wrapped around a cylindrical surface as shown in Fig. 4. In these datasets, we aug-
ment the actual MNIST and CIFAR10 datasets with the horizontally rolled version of the 

Fig. 3  Equivariance approximate 
error as a function of resolution 
and number of layer

Fig. 4  RMNIST. For the dataset to be representative of all the define transformations mentioned in the 
paper, namely, rotation around the z-axis and translation along the z-axis, we randomly generated the discre-
tised rolls ( �

i
∈ [0, 2�] with step size of 1/28). Left: panoramic boundary cut is rolled from �

1
 to �

2
 . right: 

the image is translated north by �
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original images using random samples of � ∈ [0, 2�] (see Fig. 4). Therefore, for a standard 
image size of 28 × 28 , the rotation by �∕2 is equivalent to shifting the image horizontally 
by �∕2 × 28∕2� = 7 . Consequently, the boundary cut of the image can pass through and 
destruct the consistency of the object (e.g., the digits in the MNIST dataset or the animal in 
the CIFAR10 dataset).

We perform three testing experiments using the actual datasets or their rolled versions 
and report the results in Table  1. Note that in our experiments, we do not aim at opti-
mizing the architectures for the best accuracy. Our goal is to demonstrate how a neural 
network equipped with CCL can outperform regular CNN in terms of accuracy for tasks 
requiring equivariance. In the case of training and testing with the original MNIST and 
CIFAR10, the performance of a neural network using CCL is comparable to its CNN coun-
terpart, although the CCL network slightly outperforms. However, if we train these two 
neural networks on the original non-augmented datasets and test them on the RMNIST 
and RCIFAR10 , we see a considerable performance drop for CNN. The reason is that 
CNNs cannot handle a considerable degree of image translation. The accuracy of the CNN 
improves by training on the augmented version of the datasets, however, it is still consider-
ably lower than that of CCL. Also, note that training with the augmented dataset is signifi-
cantly slower as it contains several times more samples, i.e., for each rotation. Additionally, 
we compared the CCL network with circular convolutional neural network (CCNN) (Schu-
bert et al., 2019) which uses circular padding for panoramic images. Although circular pad-
ding helps remedy the broken horizontal equivariance, CCL still performs better because 
using FFT and DCT promotes smooth rotation and translation equivariance. Also, CCL 
performs 38% faster on average. To see the adopted architectures refer to Table 2. To make 
the learned representation invariant to the rotation around the z-axis, a global average pool-
ing layer is used between the correlation and fully-connected layers [see Lin et al. (2013)].

We show another set of results comparing the equivariance of neural networks adopting 
CCL layers and regular CNN. We adopt similar network architectures described in Table 2. 
CCL(M) corresponds to the usage of the CCL layer with an output channel size of M. For 
the regular CNN, we replace the CCL with the Conv2d layer and keep everything else 
the same. Figure 5 shows the accuracy of the CCL neural network (red) and CNN (blue) 
trained on MNIST and CIFAR10 datasets and tested on their rolled and translated versions. 

Fig. 5  Accuracy of the neural networks trained on MNIST and CIFAR10 and tested on the rolled and 
translated version. The red, blue, and green curves correspond to the accuracy results of CNN, the network 
adopting CCL, and the network adopting a CCL variant with FFT in both directions denoted by CCL (No 
DCT), respectively. The two left figures show the accuracy performance of the models versus the rotation 
of the images around the principal axis (z-axis). The two right figures show the accuracy performance of the 
models versus translation along the z-axis. We observe that the CCL layer is exactly equivariant to S1 , and 
it demonstrates a greater degree of equivariance to translation along the z-axis compared to its counterparts 
(conv2d) and (CCL-No DCT) (Color figure online)
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The two left figures show the accuracy performance of the models versus different degrees 
of rotation of the images around the principal axis (z-axis). It is obvious that the CCL neu-
ral network trained only on the unperturbed data generalizes quite well in all the rotations 
of the test data, hence the flat red line. Nonetheless, CNN performance drops as the rota-
tion value increases to the point where the image begins to roll back to its original position, 
hence the sharp drop of the blue line. The two right figures show the accuracy performance 
of the models versus translation along z-axis. For a finite signal, the equivariance prop-
erty does not hold for the translations along the z-axis. Therefore, although the CCL layer 
is exactly equivariant to S1 , it is not completely equivariant to vertical translation. How-
ever, networks equipped by the CCL layer demonstrate a greater degree of equivariance 
compared to their counterpart (conv2d), which is the consequence of using DCT in imple-
menting the CCL layer. Specifically, because DCT exploits an even reflection symmetry of 
the images, objects remain more consistent along the upper and lower edges of the image 
(see Fig. 2). To further investigate the effect of DCT along the vertical dimension, we also 
implemented a version of CCL layer adopting FFT in both directions (green). It can be 
observed that adopting DCT better preserve translation equivariance (z-axis) and conse-
quently results in higher accuracy.

4.3  Application to 3D object classification

We evaluate the effectiveness of our model in an image-based 3D object classification 
task against standard CNN and spherical CNN ( S2-CNN) (Cohen et al., 2018), which is a 
convolutional neural network for spherical data. Specifically, we took three different archi-
tectures VGG16, ResNet18, and a self-designed architecture to compare the classification 
results of various networks adapting CCL layers versus Conv2d. Here, we adopt continu-
ous panoramic views of 3D objects that describe the position of the object’s surface with 
respect to a cylindrical surface in the 3D space (Yavartanoo et al., 2018; Sfikas et al., 2018; 
Shi et al., 2015; Papadakis et al., 2010). We use ShapeNetCore, a subset of the ShapeNet 
dataset, (Chang et al., 2015), with 51,300 unique 3D models that covers 55 common object 
categories. This dataset consists of two subsets: a regular subset of consistently aligned 3D 
models and another subset where 3D models are perturbed by random rotations in 3D. For 
this study, we aim to use 360◦−panoramic images with rotations along a specific axis (e.g. 
z-axis). We construct this dataset by rolling the 360◦−panoramic images in Fig. 6b using 
random samples of � ∈ [0, 2�] . According to the Table 1, the classification accuracy of our 
model is higher than that of CNN, CCNN, and S2-CNN for this dataset. See Table 2 for 
information regarding the architecture.

4.4  Application to change detection

We further evaluated the CCL in image-based detection of temporal scene changes. We 
used the Tsunami change detection dataset (Sakurada & Okatani, 2015), which consists 
of one hundred aligned panoramic image pairs of scenes in tsunami-damaged areas of 
Japan and the corresponding ground-truth masks of scene changes. We generated a ran-
domly rolled version of this dataset ( RTSUNAMI) in which the first and second views 
are relatively rolled. This task demonstrates the absolute need for an equivariant layer 
for designing an efficient neural network architecture. Since the inputs are two pano-
ramic images, a regular network architecture requires the two images to be precisely 
aligned. Hence the network performance declines when this requirement is not satisfied. 
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We relax this cumbersome condition, by designing a neural network that is equivariant 
to the roll of the first view and invariant to the shift of the second view. The network 
consists of two CCL(50)-MaxPool-ReLU layers followed by two CCL(50)-Transpose-
ReLU and a final CCL(1)-Sigmoid layer which regresses the change mask. The second 
layer is followed by a global AvgPool across feature maps of the second view (to make 
it invariant) and is then summed with feature maps of the first view. CCL-Transpose 
layer is implemented by up-sampling feature maps with zeros of appropriate stride. This 
network architecture is visualized in Fig. 7 and summarized in Table 2. We tested our 
model against the CNN and CCNN versions of the same architecture and reported the 
results in Table 1. In Fig. 8 we show that our model generalizes better to the test set due 
to its equivariance to S1.

4.5  Application to LiDAR semantic segmentation

Lastly, we evaluated the CCL in LiDAR data semantic segmentation. For this purpose, 
we used the nuScenes (Caesar et al., 2020) dataset, including 40, 000 LiDAR point clouds 
(34, 000 train and 6000 test) with 32 highly imbalanced semantic labels. We merged these 
labels into six dominant classes of background, pedestrian, bicycle/motorcycle, movable 
object, bus/truck, and car, and projected each point cloud onto a panoramic image (see sup-
plementary for more details). We adopted the architecture shown in Table 2 for CCL, CNN, 
and CCNN with a weighted cross-entropy loss to account for class imbalance. We also 
compared with S2-CNN (Cohen et al., 2018) by projecting each point cloud on the surface 
of a sphere. We report balanced accuracy (average of the recall for all classes) in Table 1. 
The confusion matrix for networks equipped with CCL and Conv2d CNN are depicted in 
Fig. 10. The CCL network has done a better job classifying the labels specifically regard-
ing the bicycle/motorcycle class. In Fig. 9, we show an instance of the segmentation per-
formance for CCL and Conv2d CNN along with ground truth (GT). CCL performs better 
particularly on the vertical borders. Note that S2-CNN is not an effective choice for LiDar 
dataset in the autonomous driving application. This is because the vertical field of view is 
often as low as 40◦ and as a result, a large portion of pixels in the sphere (top and bottom 
regions) is left unused.

Fig. 6  360◦−panoramic view of a 3D object: a we cast a ray from each pixel on the cylinder surface to the 
3D object and measure the depth. b Depth measurements form a 360◦−panoramic image
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Table 2  Network architectures

CCL(cOUT) : cOUT implies number of output channels. FC(lIN , lOUT) : lIN and lIN imply input and output features 
dimensions, respectively. MaxPool(k, s) : k and s imply kernel and stride sizes, respectively. AvgPool(k) : k 
implies kernel sizes. BN denotes batch normalization. The global average pooling makes the network invar-
iant to the input roll. For regular CNN and circular CNN, the CCL layers are replaced with Conv2d and 
circularly-padded Conv2d layers, respectively

Layer MNIST CIFAR10 Panoramic Shap-
eNet

Panoramic TSU-
NAMI

nuScenes LiDAR

Input f ∈ ℝ
1×28×28

f ∈ ℝ
3×32×32

f ∈ ℝ
1×48×100

f ∈ ℝ
1×28×128

f ∈ ℝ
4×40×360

1 CCL(8), ReLU CCL(128), ReLU CCL(64), BN, 
ReLU

CCL(50), ReLU CCL(32), ReLU

2 CCL(8), ReLU CCL(128), ReLU MaxPool(2, 2) MaxPool(2, 2) CCL(32), ReLU
3 MaxPool(2, 2) MaxPool(2, 2) CCL(64), BN, 

ReLU
CCL(50), ReLU CCL(32), ReLU

4 CCL(8), ReLU CCL(128), ReLU CCL(128), BN, 
ReLU

MaxPool(2, 2) CCL(32), ReLU

5 CCL(8), ReLU CCL(256), ReLU MaxPool(2, 2) AvgPool(224) CCL(6), Softmax
6 MaxPool(2, 2) MaxPool(2, 2) CCL(256), BN, 

ReLU
UpSample(2, 2)

7 CCL(10), ReLU AvgPool(8) AvgPool(300) CCL(50), ReLU
8 AvgPool(7), 

Softmax
FC(256, 120), 

ReLU
FC(256, 100), 

ReLU
UpSample(2, 2)

9 FC(120, 84), 
ReLU

FC(100, 55), 
Softmax

CCL(50), ReLU

10 FC(84, 10), 
Softmax

CCL(1), Sigmoid

Fig. 7  Network architecture design for change detection
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5  Discussion and conclusion

We have proposed a Circular-symmetric Correlation Layer (CCL) based on the formal-
ism of roto-translation equivariant correlation on the continuous group S1 ×ℝ , and imple-
ment it efficiently using the well-known FFT and DCT algorithm. Our numerical results 
demonstrate the effectiveness and accuracy obtained from adopting the CCL layer. A neu-
ral network equipped with CCL generalizes across rotations around the principal axis and 

Fig. 8  Change detection performance comparison for Tsunami dataset

Fig. 9  Segmentation results compared to ground truth (GT). CCL performs better particularly on the verti-
cal borders

Fig. 10  Confusion matrix, CCL (Left), Conv2d CNN (Right)
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outperforms its CNN counterpart and state-of-the-art on competitive 3D model recogni-
tion. Note that the achieved gain is not at the expense of increasing the number of param-
eters (by zero- or input-padding of the input data) or data augmentation and hence longer 
training time and sample complexity. It is merely due to the intrinsic property of the CCL 
layer in mimicking the circular symmetry and reflection symmetry in the data.

Appendix A Background on group theory

The formalism used in the paper is based on various concepts in group theory and abstract 
algebra. In this part, we aim to provide these key concepts, and their corresponding nota-
tions and definitions.

Symmetry: a symmetry is a set of transformations applied to a structure. The transfor-
mations should preserve the properties of the structure. Generally it is also presumed that 
the transformations must be invertible, i.e. for each transformation there is another trans-
formation, called its inverse, which reverses its effect.

Symmetry is thus can be stated mathematically as an operator acting on an object, 
where the defining feature is that the object remains unchanged. In other words, the object 
is invariant under the symmetry transformation. Symmetries are modeled by Groups.

Group: let G be a non-empty set with a binary operation defined as ◦ ∶ G × G ↦ G . We 
call the pair (G;◦) a group if it has the following properties:

(Closure): G is closed under its binary operation,
(Associativity axiom): the group operation is associative -i.e., (g1◦g2)◦g3 = g1◦(g2◦g3) 
for g1, g2, g3 ∈ G,
(Identity axiom): there exists an identity e ∈ G such that g◦e = e◦g = g for all g ∈ G,
(Inverse axiom): every element g ∈ G has an inverse g−1 ∈ G , such that 
g◦g−1 = g−1◦g = e.

Subgroup: A non-empty subset H of G is called a subgroup, if H is a group equipped with 
the same binary operation of as in G . We show this as H ≤ G . H is called a proper sub-
group of if H ≠ G and we show it as H < G.

Group order: the number of elements in a group G is called the order of G and is denoted 
∣ G ∣ . G is called a finite group if ∣ G ∣< ∞ and infinite otherwise.

Group action: we are interested on the way a group “acts” on the input and output of a 
deep network. Function � ∶ G ×� → � is the left action of group G on � iff I) �(e, �) = � 
and; II)�(g1, �(g2, �)) = �(g1g2, �).

Faithful G-action: G-action is faithful iff two groups are isomorphic G ≅ G
ℕ
.

Normal subgroup: for H , a subgroup of a group G , the similarity transformation of H by 
a fixed element g in G not in H always gives a subgroup. If

for every element g in G , then H is said to be a normal subgroup of G , written H ⊲ G . Nor-
mal subgroups are also known as invariant subgroups or self-conjugate subgroup.

Homogeneous space and transitivity: transitivity is the property that taking any x0 ∈ X  , 
any other x ∈ X  can be reached by the action of some g ∈ G , i.e., x = g(x0) . If the action of 
G on X  is transitive, we say that X is a homogeneous space of G.

gHg−1 = H
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Homomorphism: let G with binary operation ◦ and H with binary operation ⋆ be groups. 
The map Φ ∶ G → H is called a homomorphism from (G, ◦) to (H,⋆) , if for all g1, g2 ∈ G 
we have:

A homomorphism Φ ∶ G → H is called

monomorphism if the map Φ is injective,
epimorphism if the map Φ is surjective,
isomorphism if the map Φ is bijective,
endomorphism if G = H,
automorphism if G = H and the map Φ is bijective.

Isomorphic: two groups are isomorphic G ≅ H if there exists a bijection Φ ∶ G → H 
between them.

Appendix B Code, Datasets, and Experimental Settings

In this section, we explain the details of dataset preparation, code, and experimental 
settings.

B.1 Datasets

Rolled MNIST and Rolled CIFAR10 We first evaluate the generalization performance 
a neural network equipped with CCL with respect to rotations of the input along z-axis. 
We propose a version of MNIST and CIFAR10 datasets called RMNIST and RCIFAR10, 
respectively, wrapped around a cylindrical surface as shown in Fig. 4.

In this dataset, we augment the actual MNIST and CIFAR10 datasets with horizontally 
rolled version of the original images using random samples of � ∈ [0, 2�] (see Fig.  4). 
Therefore, for a standard image size of 28 × 28 , the rotation by �∕2 is equivalent to shifting 
the image horizontally by �∕2 × 28∕2� = 7 . As the result, the images could be cut in the 
middle and destruct the consistency of the object in the figure, namely the digits in MNIST 
dataset, or the animal in CIFAR10 dataset.

For the dataset to be representative of all the define transformations mentioned in the 
paper, namely, rotation around the z-axis and translation along the z-axis, we randomly 
generated the discretised rolls ( �i ∈ [0, 2�] with step size of 1/28). As illustrated in 
Fig. 11(bottom-left: original cylindrical image. bottom-right: The image is translated up by 
� . up-left: panoramic is rolled by �1 (the image is cut in the middle). up-right: panoramic is 
rolled by �2 ) this transformations will disturb the perception neural network.

Panoramic change detection dataset: TSUNAMI dataset, Sakurada and Okatani (2015), 
consists of one hundred panoramic image pairs of scenes in tsunami-damaged areas of 
Japan. The size of these images is 224 × 1024 pixels. For each image, they hand-labeled 
the ground truth of scene changes. It is given in the form of binary image of the same size 
as the input pair of images. The binary value at each pixel is indicative of the change that 
occurred at the corresponding scene point on the paired images. The scene changes are 
defined to be detected as 2D changes of surfaces of objects (e.g., changes of the advertis-
ing board) and 3D, structural changes (e.g., emergence/vanishing of buildings and cars). 

Φ(g1◦g2) = Φ(g1) ⋆Φ(g2).
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The changes due to differences in illumination and photographing condition and those of 
the sky and the ground are excluded, such as changes due to specular reflection on build-
ing windows and changes of cloud and signs on the road surface. For the ground-truth, all 
image pairs have ground truths of temporal scene changes, which are manually obtained by 
the authors in Sakurada and Okatani (2015).

The original dataset is captured in a way that the two panoramic images to be aligned 
completely as it can be seen in Fig. 12. In order to make the dataset more challenging and 
realistic, and to demonstrate the power of using CCL on this dataset, we built a variation of 
the dataset based on the original one by rolling/shifting one of the panoramic image rela-
tive to the other. In this way the network needs to be invariant to these rolls in the images in 
order to perform the task.

LiDAR Dataset The LiDAR dataset consists of sequences of 3D point clouds collected 
from 1000 scenes and annotated at 2 Hz (40,000 point clouds/LiDAR sweeps in total). 
The LiDAR’s vertical field of view (FOV) is between −10◦ to 30◦ and its horizontal FOV 
is between −180◦ to 180◦ . We projected each point cloud to a panoramic image of height 
40 = 30 − (−10) and width 360 = 180 − (−180) considering a vertical and horizontal 

Fig. 11  RMNIST. For the 
dataset to be representative of 
all the define transformations 
mentioned in the paper, namely, 
rotation around the z-axis and 
translation along the z-axis, we 
randomly generated the discre-
tised rolls ( �

i
∈ [0, 2�] with step 

size of 1/28).bottom-left: original 
cylindrical image. bottom-right: 
the image is translated up by � . 
up-left: panoramic is rolled by �

1
 

(the image is cut in the middle). 
up-right: panoramic is rolled 
by �

2

Fig. 12  TSUNAMI dataset. a The original dataset with the two panoramic images aligned at the time of 
capture. b The dataset we built based on the original one to roll/shift one of the panoramic image relative to 
the other
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resolution of 1◦ , and encoded 3D coordinates of each point as well as its LiDAR intensity 
in the four channels of this panoramic image, resulting in a 360◦−panoramic image of size 
4 × 40 × 360 for each point cloud along with its ground-truth annotation.

B.2 Code and computational resources

We implemented CCL and performed our experiemnts in PyTorch v1.8 (Paszke et  al., 
2017) and used the Adam optimizer (Kingma & Ba, 2014) with learning rate of 0.001. 
We initialized all parameters randomly. Each CCL layer has Cout × Cin × K1 × K2 param-
eters similar to that of a CNN layer. The time complexity for training a CCL layer is 
O(Cin × Cout × N × log(N)) per data sample and epoch, where N is the dimension of 
input data, and the space complexity is O(b × Cin × Cout × N) where b is the batch size. 
We learned and tested all the models on an Intel Core i9 CPU@3.6GHz with 64 GB of 
RAM and Nvidia GeForce RTX 2080 with 11 GB of RAM . Per-epoch training time varied 
from 30ms in smaller datasets to 1s in larger experiments and 25 epochs sufficed for all 
experiments.

B.3 Training and inference time

We have reported the training and inference times in Table 3.
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